轉寄
請輸入資訊,以供轉寄您轉寄好友。
E-mail Address 以逗號 [ , ] 區隔,即可發多封 E-mail,一次轉寄以十封 E-mail 為限。
有*為必填(選)欄位
國防部
Comparative Analysis of AI Language Models for Stock Trend Prediction -Based on ARIMA, GARCH, ARIMA
基本資料
系統識別號: |
C11200845 |
相關專案: |
無 |
計畫名稱: |
資通電軍國外全時進修電腦科學碩士班# |
報告名稱: |
Comparative Analysis of AI Language Models for Stock Trend Prediction -Based on ARIMA, GARCH, ARIMA |
電子全文檔: |
C11200845_1.pdf
|
附件檔: |
|
報告日期: |
114/02/07 |
報告書頁數: |
37 |
計畫主辦機關資訊
計畫主辦機關: |
國防部
|
出國期間: |
112/07/02 至 114/01/02 |
姓名 |
服務機關 |
服務單位 |
職稱 |
官職等 |
周智慧 |
國防部 |
資通電軍 |
空軍上尉 |
其他 |
報告內容摘要
This dissertation investigates the application of AI models for stock price prediction, a critical
and emerging research area given the rapid advancements in AI across various fields.
Traditional statistical models like ARIMA and GARCH are widely used for time series
forecasting but often fail to capture the non-linear patterns in stock market data. This study
explores the potential of these models, alongside a hybrid ARIMA-GARCH model, to
enhance prediction accuracy. Using historical stock data from 2018 to 2023, the models are
evaluated using four key metrics: RMSE, MAPE, MAE, and R2. The findings indicate that
traditional models outperform the hybrid model in long-term forecasting, highlighting the
need for further research into more effective hybrid approaches.
其他資料
前往地區: |
英國; |
參訪機關: |
Newcastle University |
出國類別: |
進修 |
關鍵詞: |
人工智慧,AI,數據分析,股票 |
備註: |
|
分類瀏覽