出國報告

(出國類別:考察)

2025日本智慧能源展會(Smart Energy Week)與耗能設施搭配新能源建設運用 考察

服務機關:經濟部能源署

姓名職稱:張鈺謙技士

派赴國家/地區:日本/東京

出國期間:114年9月16日至114年9月20日

報告日期:114年10月9日

一、目的及行程紀要

(一)目的

2025年日本智慧能源周於9月17日至20日於千葉幕張國際展覽中心舉辦,本次展 場匯聚來約500家廠商、政府與學術機構共襄盛舉,展示了核融合、氫能、燃料電池、 太陽光電、智慧電網、風力發電等,展示智慧能源與可再生能資源領域的最新技術發 展;為各家廠商展示有關再生能源先進技術與科技,也提供各方人員交流空間,可以 了解日本推動再生能源的技術、設備、學術研究等議題,做為未來業務推動新知。

此外,隨著科技發展,人工智慧應用正在蓬勃發展不斷更新,智慧運算的成長對資料中心的運算能力和效能提出了新的需求,資料中心產業目前正處於快速發展和技術變革的特殊時期,也為資料中心所需的電力供應帶來了挑戰。根據國際能源署報告指出,AI 運算帶來龐大電力需求,全球資料中心到2030年的用電量將增加一倍以上,電力供給系統構成巨大挑戰。

藉由與日本資料中心委員會(JAPAN DATA CENTER COUNCIL, JDCC)交流,了解目前日本政府、廠商與人民在供電系統、土地環境、就業等議題上碰到之困境及因應對策。

(二)行程紀要

本次出國行程如下:

日期	行程内容	地點
2025/9/16	去程(臺灣-日本)	東京
2025/9/17-19	1. 参加秋季 Smart Energy Week 會議及展覽 (1) 國際核融合最前線會議 (2) 日本離岸風電最前線會議 (3) 參觀二次電池、碳捕獲利用與封 存、太陽光電、脫碳經營、風力發 電、核融合等展覽 2. 拜訪日本資料中心協會與三菱總合研究 所	千葉
2025/9/20	回程(日本-臺灣)	-

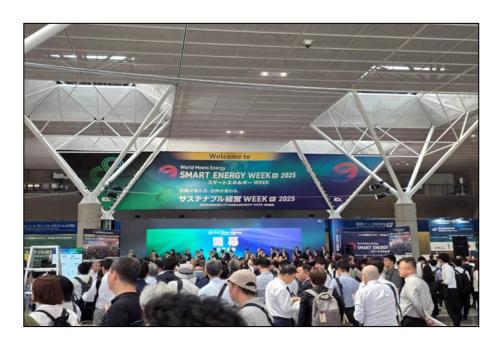


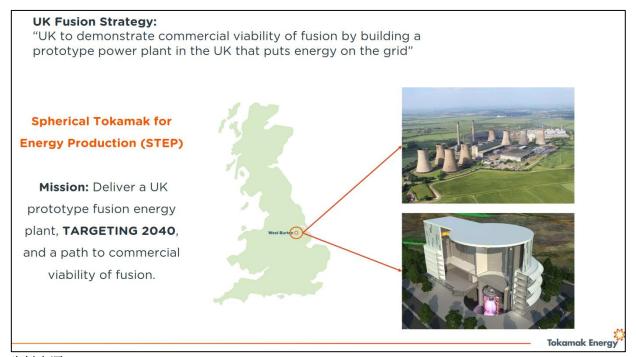
圖1日本智慧能源週開幕展

二、過程

本次展覽參加國際核融合最前線會議、日本離岸風電最前線會議,彙整摘要如下:

(一)國際核融合最前線會議

核融合產業協會(FIA)於 2025 東京智慧能源週演講,主題為「推動核融合產業規模化」。內容指出,核融合是模擬太陽能量的清潔能源,無碳排放、無熔毀風險,效率遠高於傳統能源。近年來,隨著高溫超導體、新材料、人工智慧與先進製造技術的突破,加上投資者與政府的大力支持,全球已有 53 家企業投入,投資金額超過百億美元。


強調核融合能解決氣候危機、促進能源安全並創造龐大經濟價值,但仍 面臨工程、供應鏈與政策挑戰。未來目標是於 2030 年代實現商業化,並依靠 公私合作、監管明確化與產業激勵,推動核融合成為全球主流能源。

資料來源: Scaling the Fusion Industry (Caroline Anderson)

資料來源:DELIVERING FUSION IN PARTNERSHIP(Ross Morgan)

資料來源: DELIVERING FUSION IN PARTNERSHIP(Ross Morgan)

(二)日本離岸風電最前線會議

主題為「洋上風力發電的推動與日本能源未來」,由 JERA Nex bp(由 JERA 與 bp 合資成立)山田正人執行長分享該公司在全球及日本的洋上風力 發電布局。該公司擁有 17 個據點、22 個專案,開發容量達 13GW。日本重點

專案包括石狩灣新港(112MW,2024運轉)、秋田(315MW,2028運轉)及 津輕(615MW,2030運轉),將成為日本國內最大規模海上風力發電。由於 日本電力消費及二氧化碳排放量居全球前五,能源自給率僅 13.3%,海上風 力發電被視為能源安全與碳中和的關鍵。日本政府已設定 2040年 30-45GW 的目標,並推動供應鏈、人才培育及國際合作。並強調海上風力發電是日本 未來能源轉型的核心動力,應持續推動發展。

What the government has done? 中長期的な目標設定

第7次エネルギー基本計画 2025年2月策定

洋上風力発電は、今後コスト低減が見込まれる電源として、我が国の電力供給の一定割合を占めることが見込まれ、急速なコストダウンと案件形成が進展する海外と同様、 我が国の再生可能エネルギーの主力電源化に向けた「切り札」である。

洋上風力産業ビジョン(第2次) 2025年8月改定

<3つの取組指針>

- 世界的インフレ等への対応・魅力的な国内市場創出:2040年までに30~45GW(浮体式15GW)
- 産業・技術基盤の充実: 2040年までに**国内調達比率65%、洋上風力人材4万人**育成
- グローバル市場への展開: 2040年までに**30GWの海外案件関与**、2030年までに10ヶ国連携

資料來源: JERA Nex bp の洋上風力発電への取り組み(山田正人)

本次參觀展覽風力發電、太陽光電、碳捕捉與封存、二次電池等彙整展覽心得 如下:

(一)風力發電展:

廠商展示了浮動基座、錨定系統與整合方案,顯示日本在深海風場的布局已 逐步落地。海上風機與設計創新,包括更大容量的葉片、耐腐蝕材料與結構優化, 提升效率與可靠性。

許多廠商展示了風機即時監測、預測維護與 AI 分析工具,使風場運作更安全、維護成本更低。系統整合部分也十分完整,風力發電與儲能、電網調度及其 他再生能源的協同運作,呈現出日本推動智慧能源系統整合的決心。

在地化零組件供應鏈也受到重視,包括塔架、葉片、磁鐵與控制系統等,顯 示日本正努力降低對進口依賴。

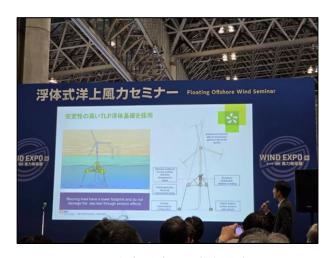


圖2 浮式風力發電機講座

圖3 風力發電機工作船模型

圖4風力與海洋觀測結合

圖5 小型高性能 ROV

(二)太陽光電展:

鈣鈦礦太陽能電池被視為最具突破性的技術,因其可輕薄、可彎曲,並可與 矽基電池疊層,大幅提升轉換效率。日本政府也加大補助力道,推動其商業化發 展。光伏與電網、儲能的整合是另一大亮點,虛擬電廠、智慧調度、AI 能量管理 等技術,展示如何解決再生能源併網挑戰。此外,日本即將推動新建住宅強制安 裝太陽能的政策,搭配補助與 FIP 制度改革,將帶動住字與分散式市場快速成長。

模組創新方面,展出穿隧氧化層鈍化接觸(TOPCon) 太陽光電疊焊模組、IBC 雙面模組,以及提升耐久性的新型封裝材料,凸顯業界在降本與長期可靠性上的競爭。應用層面則呈現多元化場景,如建築一體化光伏(BIPV)、農業光伏(Agri-PV)、浮體與車棚應用,展現太陽能從單純發電走向多元融合的趨勢。

圖6 太陽光電板清潔機器

圖7太陽光電運用各領域實績

(三)碳捕捉與封存展

展場中聚集了眾多來自日本與國際的企業與研究機構,展示了二氧化碳捕捉、利用與儲存的完整鏈條。特別是在捕捉與分離方面,許多廠商推出新型吸附材料與低能耗膜分離技術,主打降低能源消耗與提升效率,顯示業界正積極攻克成本過高的難題。

在利用端應用部分,例如將二氧化碳轉化為甲醇、合成燃料或化工原料,不僅解決排放問題,也能創造經濟價值。這種「減碳+創值」的模式,CCUS不只是環境解決方案,更有機會成為新產業。至於儲存技術,地質封存與長期監測方案成為展示焦點,廠商特別強調安全性與可持續性,這也回應了外界對 CCUS 穩定性的疑慮。



圖8 CO2輸送、儲存

圖10 開發 CO2固態吸收劑

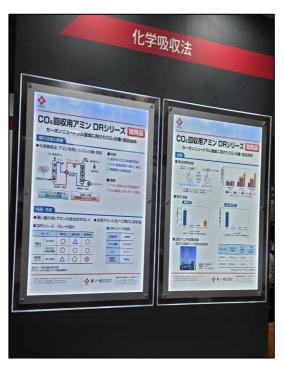


圖9 CO2化學吸收

圖11 CO2 分離回收法比較

(四)二次電池展

展會內容涵蓋鋰離子電池、固態電池、電容器等新一代產品,並展示正極、 負極、電解質等材料,以及製造、測試與回收技術。隨著電動車、再生能源與大 規模儲能需求急速成長,安全性更高、壽命更長、快充性能更佳的解決方案成為 討論核心。固態電池因具高能量密度與安全優勢,特別受到關注。同時,電池回 收與循環經濟也是產業焦點,展會將呈現回收再利用的新技術。

圖12 高能量密度汽車固態電池

圖13 住家儲能系統

圖14 200kW、150kW、60kW 急速充電器

耗能設施搭配新能源建設運用

本次與日本資料中心委員會(JAPAN DATA CENTER COUNCIL, JDCC)進行交流,

近年來,日本的資料中心在電力供應上面臨嚴峻的挑戰。隨著 AI、大數據以及雲端服務的快速成長,資料中心的能耗需求持續攀升,單一大型設施的耗電量甚至相當於一個中小城市。加上 5G 與物聯網應用的普及,數據處理的即時性與穩定性需求更高,使得電力成為資料中心營運最核心的問題之一。

然而,日本的能源結構限制了電力供應的穩定性。自 2011 年福島核災後,多數 核電廠停機,不得不仰賴天然氣、煤炭與石油等進口燃料,造成能源成本高漲。再生 能源雖然逐漸普及,但太陽能與風能的間歇發電特性,難以支撐資料中心全年無休的 運作。

高價的電價與碳排放壓力是另一大困境。日本政府承諾 2050 年達成碳中和,外資雲端企業如 Google、Microsoft、AWS 等,也要求在日業務必須使用再生能源。但目前綠電採購管道有限,導致業者需透過電力購售協議(PPA)或綠電憑證才能勉強達標,增加營運成本。

在地點選擇上,日本的兩大資料中心熱點是東京與大阪,需求量龐大,但這些都市的電力供應緊張,土地與冷卻條件也不理想。相對而言,北海道與九州具備較佳的再生能源條件與冷涼氣候,有助降低冷卻能耗,但距離主要用戶較遠,延遲與網路連線成本成為新的挑戰。此外,日本地震、颱風等自然災害頻繁,對備援電力與基礎設施的韌性提出更高要求。

面對這些困境,日本與國際業者已展開多項應對策略。例如,推動液冷技術與高效率伺服器,降低能源使用效率值(PUE);導入大容量儲能電池與氫燃料電池,提升電力穩定性;在地選擇則趨向北移,利用北海道冷氣候與風能、太陽能資源。同時,透過長期團購式購電確保綠電供應,逐步減輕碳排放壓力。

總體而言,日本資料中心的電力困境,核心在於需求增長與供給不足的矛盾。 短期內或許能提供穩定用電,隨著用電量爆炸是增加,未來該如何滿足業者需求、確 保環境生態及民眾接受度,日本政府、廠商、民眾尚處在溝通階段。



圖15 與 JDCC 討論耗能設施搭配新能源建設運用

三、心得與建議:

日本與台灣因同處環太平洋火山地震帶,兩地皆面臨多山、地震頻繁的挑戰,但 也擁有豐富的地熱資源可供開發利用。作為四面環海的島嶼,兩地缺乏自然化石燃料, 因此高度仰賴進口能源。為了追求節能減碳目標,兩者皆積極發展再生能源(如太陽 能與風能),並致力於提升能源效率,共同應對氣候變遷的壓力。

2025 年日本智慧能源週展示了智慧能源,看到日本各家廠商在不同能源產業方面 上發展新技術及成果展現,學術方面也有不同研究成果,未來也有機會應用至實務上, 本次參展了解日本政府與企業在能源轉型上的佈局。

另外,面對 AI 運算時代,資料中心用電量將爆炸性增加,電力基礎設施的超前部署至關重要。除了加速再生能源發電外,電網分布及電廠、變電站等基礎設施也至關重要,面對生態環境、土地、民眾觀感等因素,建造一座電廠所花的時間,遠遠無法滿足運算中心當即需求,藉由與日本資料中心委員會交流,台灣也面臨同樣狀況,除必須維持穩定民生用電,在產業發展方面,尤其台灣是科技大國,如何滿足產業需求及穩定持續供電,是政府須極力處理的問題,未來可以持續關注日本在此議題後續發展,做為我國電源供應政策議題一個參考方向。