出國報告 (出國類別:實習)

赴馬來西亞參加「PETRONAS LNG COURSE 2024」 研習課程

服務機關:台灣中油股份有限公司天然氣事業部

姓名職稱:蔡庭維 台中液化天然氣廠 人事管理師

李冠穎 觀塘港營運處 環境保護師

派赴地點: 馬來西亞吉隆坡、馬來西亞民都魯

出國期間: 113 年 12 月 1 日至 12 月 7 日

報告日期: 113年12月25日

摘要

馬來西亞國家石油公司(Petroliam Nasional Berhad, Petronas)每年為其員工舉辦液化 天然氣研討會(Petronas LNG Course),並提供部份員額供其 LNG 客戶派員參加,希望藉 此達到買賣雙方交流合作之目的,本次研習課程自 113 年 12 月 2 日起至 12 月 6 日止, 共為期 5 日,內容包含液化天然氣(以下簡稱 LNG)市場資訊、LNG 整體價值鏈議題分享 (含天然氣探勘及生產、氣態天然氣液化、Petronas 海上浮動式液化廠)等 LNG 相關主題。

本課程前 3 日於馬來西亞吉隆坡會展中心(Kuala Lumpur Convention Centre)舉行,亦邀請全球能源顧問公司(Wood Mackenzie)及 S&P Global 的專家,分別講授 LNG 投資計畫、LNG 定價機制、合約談判技巧、LNG 運輸及全球 LNG 市場展望;後 2 日則安排學員實地參訪位於民都魯(Bintulu)的天然氣液化廠(Petronas LNG Complex),幫助參訓學員能深入了解 LNG 產業及其價值鏈,俾提升專業能力及視野,並推動雙邊合作與發展。

目錄

<u> </u>	出國	目的	3
二、	出國征	行程	4
三、	課程	內容及過程	5
	1.	Global LNG Market Outlook – Chong Zhi Xin	5
	2.	LNG value chain, pipeline & regasification – Dr. Chan Tuck Leong	5
	3.	LNG Shipping Overview - Shafrizal Shafiee	6
	4.	LNG Shipping and Technical Operation - Khairul Faizi Osman	7
	5.	Building Successful LNG Projects - Vincent Lau	8
	6.	Exploration & Production of Natural Gas – Ir Maaruf Mohamad 1	0
	7.	LNG Pricing – Susan Sim	0
	8.	LNG Operation – Ahmad Nizam Bin Yunus	1
四、	心得與	與建議及具體成效 1:	2
	1.	購氣合約及船舶知識1	2
	2.	廠區參訪及製程研討1	5
	3.	視野拓展及自我期許	7

一、出國目的

為因應全球暖化危害,我國行政院國家發展委員會於 111 年公佈「臺灣 2050 淨零排放路徑及策略總說明」,內容提到將以「科技研發」與「氣候法制」作為主軸,並提出「生活轉型」、「產業轉型」、「社會轉型」及「能源轉型」等 4 大綱領,且延伸 12 項因應作為,以達成 2050 淨零轉型之目標。其中,「能源轉型」不僅是制定行動計畫及落實淨零轉型目標的根基之一,也訂定以天然氣作為轉型橋梁。

再者,為使我國能於 2025 年達成天然氣發電占比達 50%之實際目標,本公司天然氣事業部係屬達成該目標的核心之一,爰此,無論是在天然氣之購氣、卸存、氣化、穩供等面向,均須做到面面俱到且缺一不可。然而,前述天然氣產業之各面向與業務單位,會因其自身業務之獨立性,以及與其他業務具備高度關聯性,進而相互影響,如購氣成本將影響建廠成本、不同購氣產地需在取貨後調整熱值掺配、興建海陸備援管線以達供氣穩定,以及天然氣安全存量法規與儲槽興建等相關議題。

綜上所述,俗諺常言:「他山之石、可以攻錯」,本次赴馬來西亞參加 Petronas LNG 研習課程係能知悉該國天然氣相關現況,且可與本公司現有業務相互比較及學習。又因馬來西亞國油公司(Petronas)在 LNG 產業係屬上游供應端,並有完整氣態天然氣(以下簡稱 NG)轉化成 LNG 之液化工廠,且曾與本公司簽訂長期購氣合約,並互相至今仍密切往來;爰此,藉由 2024 年度 Petronas LNG 課程之說明,確可使參訓人員對天然氣產業更全盤了解,而非僅限於特定廠、處、室之業務範疇,俾使「2050 淨零排放」目標能更順利地圓滿達成。

二、出國行程

本次赴馬來西亞參加 Petronas LNG Course 2024 之行程表,如表 1 所示:

表 1 Petronas LNG Course2024 之出國行程表

日期	地點	實習內容
113/12/01 (日)	台灣桃園 至馬來西亞吉隆坡	前往吉隆坡(中華航空 CI0721)
113/12/02 (一)	馬來西亞吉隆坡	 Overview of Petronas's Global LNG Business Global LNG Market Outlook LNG Value Chain, Pipeline & Regasification Building a successful LNG Projects Success stories of Malaysia LNG(MLNG)
113/12/03 (二)	馬來西亞吉隆坡	 Exploration & Production of Natural Gas Liquefaction of Natural Gas LNG Shipping LNG Operations LNG Pricing LNG Contract & Negotiation Briefing for LNG Negotiation Simulation Exercise
113/12/04 (三)	上午:馬來西亞吉隆坡 下午:馬來西亞吉隆坡 至馬來西亞民都魯	● LNG Negotiation Simulation Exercise 前往民都魯(馬來西亞航空 MH2746)
113/12/05 (四)	馬來西亞民都魯 至馬來西亞吉隆坡	● Petronas LNG Complex visit 返回吉隆坡(馬來西亞航空 MH2747)
113/12/06 (五)	馬來西亞吉隆坡	與來自各國同學更進一步交流討論課程內容,以及更深入了解各國時事及文化
113/12/07 (六)	馬來西亞吉隆坡 至台灣桃園	返回台灣(中華航空 CI0722)

三、課程內容及過程

1. Global LNG Market Outlook – Chong Zhi Xin

目前全球 LNG 供應緊張的情況已趨緩,預計自 2025 年起,新一波液化產能將逐步上線。然而,因部分 LNG 建廠或採氣之計畫延遲,如美國的 Golden Pass LNG、加拿大的 LNG Canada 及墨西哥的 Energia Costa Azul LNG等,市場供應的緊張情形將再持續一段時間,再者,LNG 價格對市場變動也具高度敏感性。

預計至 2027 年,隨著 LNG 新產能的釋放,市場將逐步實現供需平衡;2027 年至 2030 年,隨著新增供應超過需求增長,LNG 市場預計將進入價格疲軟期,天然氣長約價格也將面臨下行壓力。惟另一方面,隨著亞洲國家積極推動能源結構轉型,天然氣需求持續增長,預計將為長期合約價格提供支撐。

2. LNG value chain, pipeline & regasification – Dr. Chan Tuck Leong

天然氣碳排量約 53kg CO₂/million BTU,遠低於煤炭和汽油等傳統燃料,在各類燃料中碳排量最低;隨著全球朝淨零碳排放目標邁進,天然氣將被視為重要的過渡燃料,並在邁向低碳未來的過程中扮演關鍵角色。

液化天然氣的價值鏈涵蓋生產、液化、運輸、再氣化及利用。天然氣在液化前會先經初步處理,將二氧化碳、硫化氫、水分及汞等雜質去除,這些雜質可以透過氣相層析儀(Gas Chromatography Analyzer,簡稱 GC)檢測,以防止在後續過程中對設備造成損害。雜質去除後再經低溫處理,將溫度降至攝氏零下 162 度左右,使其液化;液化後之天然氣體積僅同量氣態天然氣的六百分之一,適合用於長途海運,且以跨洲運輸而言,為最具經濟效益的運輸方式。

LNG 經卸收後於儲槽貯存,以保持其低溫狀態,使用時則需經再氣化,並透過管道輸送,將天然氣供應到各個需求區域;部分管線未達之地區則可透過槽車 (road tankers)或駁船(barges)輸送。

3. LNG Shipping Overview - Shafrizal Shafiee

(1) LNG 運輸市場概況

2024 年第三季度,LNG 船的日租金大幅下滑,其原因主要受到全球 LNG 需求疲軟和 LNG 船供應過剩的雙重影響。LNG 需求疲軟的原因之一係預期今年冬季將較為溫暖,且天然氣庫存充足,而這些因素導致了市場對 LNG 的需求下降。

同時,部分新 LNG 建廠或採氣計畫的延遲,使得原訂應投入運營的 LNG 船, 無法按時投入市場,因而造成運輸能力過剩。此外,隨著部分租船合約到期,LNG 船重新進入市場,也進一步拉低市場租金行情。

(2) PETRONAS 船隊簡介

Petronas 目前運營中之 LNG 運輸船,共計 32 艘,且正持續擴建中,各系列 LNG 運輸船之容量從 18,000 立方米到 174,000 立方米,涵蓋小型、中型及傳統 LNG 運輸船,規格多樣化的船隊使得 Petronas 能夠應對不同市場的需求,穩定且安全地 將 LNG 運送至全球 25 個以上國家,如表 2 所示。

為了進一步提升運輸的效率和環保表現,Petronas 與現代商船(HYUNDAI LNG SHIPPING, HLS)、SK Shipping、H-LINE Shipping 及川崎汽船(Kawasaki Kisen Kaisha, Ltd)等公司合作,引入更具能源效率,且低碳足跡的 LNG 船;預計 2024 年至 2027 年期間,17 艘搭載二衝程引擎(2-Stroke Engine)及再液化系統(Re-liquefaction/Sub cooler),且蒸發率(BOR%)僅 0.085%之薄膜型 LNG 運輸船將陸續交付,有助於提高 Petronas 之營運效率並降低碳排放,如表 2 所示。

表 2 Petronas 未來 3 年預計交貨之船型比較表

	現代商船 (HYUNDAI LNG SHIPPING)	SK Shipping	H-LINE Shipping	川崎汽船 (Kawasaki Kisen Kaisha, Ltd)
船隻數量	6	4	3	4
建造商	現代重工 (HHI)	現代重工 (HHI)	建造商	現代重工 (HHI)
艙槽構造及 BOR %	薄膜型 (Membrane), GTT Mark III	薄膜型 (Membrane), GTT Mark III	薄膜型 (Membrane), GTT No.96	薄膜型 (Membrane), GTT Mark III

	Flex 0.085%	Flex 0.085%	Super+	Flex 0.085%
			0.085%	
	二衝程 XDF	二衝程 MEGA	二衝程 XDF	二衝程 XDF
動力系統	引擎(低碳足	引擎(低碳足	引擎(低碳足	引擎(低碳足
	跡)	跡)	跡)	跡)
再液化系統	具備	具備	具備	具備
船長	289.9m	289.9m	293m	299m
船寬	46.1m	46.1m	45.8-46.4m	46.4m
設計吃水深度	11.5m	11.5m	11.5m	11.5m
交付時間	2024年2月~	2025年2月~8	2025年7月	2026年11月
文川时间	2025年2月	月	~2026年2月	~2027年8月

4. LNG Shipping and Technical Operation - Khairul Faizi Osman

LNG 運輸在全球貿易中扮演著重要角色。2023 年時,全球 LNG 貿易航次達7,004 次,較去年成長 1.7%;與此同時,全球 LNG 船的訂單量也持續成長,目前約有 338 艘 LNG 船在建,顯示出全球對 LNG 運輸需求的穩定成長。LNG 船依貨艙容積大小可分為小型、中型、標準型、巴拿馬型、Q-flex 以及 Q-max,如下表所示。

表 3 各種 LNG 船艙容積及數據比較表

	儲貨容積(萬立方公尺)	船長(公尺)	載重噸位(DWT)
小型	< 3	180	20,000
中型	3-10	240	50,000
標準型	12-18	300	92,000
新巴拿馬型	20	300	106,000
Q-flex	20.5~21.7	315	110,000
Q-max	26.1~26.6	345	130,000

小型 LNG 船之儲槽通常為薄膜型(membrane)或 C型(Type C),主要用途為配送 LNG 至需求端(如小型市場或港口),或為其他 LNG 船提供燃料補給服務 (bunkering trade);中型 LNG 船則主要用於散裝運輸(break-bulking)或船對船(ship-

to-ship)轉運;標準型 LNG 船的容量目前以 174,000 立方米為主流,並搭配二衝程動力系統(2-Stroke Propulsion)。同時,約有 40%的較小型蒸汽渦輪機(ST)型 LNG 船正在逐步被淘汰;新巴拿馬型 LNG 船則專責遠東地區;另 Q-Flex 和 Q-Max 則僅用於運輸 Qatar 之天然氣項目。

5. Building Successful LNG Projects - Vincent Lau

(1) LNG 計畫的開發流程

LNG 開發計畫屬於大型基礎建設項目,此類大型項目通常採用階段關卡法 (Stage-Gate),將其開發流程分為數個階段,每個階段皆需進行費用評估,以決定是 否投入更多資源,進入下一個階段,藉此有效地控制開發費用。

- 一般而言, 階段關卡法可以分為以下六個階段:
- 1. 篩選(Screening):初步篩選和評估不同的選擇方案。
- 2. 可行性研究(Detailed Feasibility Study): 對專案進行深入分析,確定專案的可行性,並評估是否值得進一步開發。
- 3. 前期前端工程設計(Pre-FEED): 進入具體工程設計前,針對項目的工程需求進行初步規劃。
- 4. 前端工程設計(FEED):確立詳細的工程設計、施工計畫和成本預算。
- 5. 設計、採購、施工與試車(EPCC):執行實際的建設與裝置工作,並完成設施的 啟動與測試。
- 6. 營運與維護(O&M):專案完成後,進入日常營運與維護階段,確保設施的穩定 運行與長期效益。

(2) 評估 LNG 專案之價值

在進行 LNG 專案的價值評估時,通常會先使用淨現金流量法(Net Cash Flow) 預測專案生命週期內的現金流入與流出情況,並藉此初步估算專案的回收年限 (Payback Period),以助於提供初步評估並判斷專案之可行性。然而,淨現金流量 法並未考慮貨幣的時間價值(即今天的錢比明天的錢更有價值),爰可能使評估結果不夠精確。

而淨現值法(Net Present Value, NPV)則透過折現率計算未來現金流的現值總和,能更真實地反映專案的實際回報率,有助於企業做出更精確的投資決策。在使用淨現值法時,折現率的設定至關重要,它通常根據企業期望的回報率來確定,並考慮資本成本、市場風險和機會成本等因素。因此,透過折現率將未來現金流折算為現值後,可以更準確地評估專案的實際價值。

(3) 建立成功 LNG 專案的其他關鍵因素

前述的淨現金流量(Net Cash Flow)、淨現值(NPV)與內部報酬率(IRR) 提供了可衡量的數據,供決策者用以評估專案是否值得投資。然而,LNG專案的 成功並非僅依賴於這些財務指標,還有許多其他關鍵因素會影響專案的成敗。

1. 天然氣供應(Gas Supply)

確保有穩定且成本具競爭力的天然氣來源是 LNG 專案能否持續營運的基礎。在上游生產階段,氣源的位置、儲量及氣體規格等因素會直接影響供應穩定性與價格競爭力;而中游的運輸與處理成本則進一步影響專案的經濟效益。此外,還需考慮國內能源政策,尤其是對供應安全的要求;專案能否提供充足氣源以滿足能源安全規定,是確保供應安全的關鍵。

2. 法規與利益相關者(Regulatory & Stakeholders)

LNG專案需要政策支持,包括法律和法規的保障,以及可靠的司法系統,以確保在專案進行過程中若遇爭議,能夠有適當的處理機制應對;此外,獲得利害關係人的支持、與當地社區保持良好溝通、滿足當地需求,並考慮專案可能對環境、社會或經濟造成的負面影響,制定相應的緩解措施,也是專案成功的關鍵。

3. 商業結構(Business Structure)

LNG 專案的商業結構涉及合資夥伴的篩選與合作模式的確定。合資伙伴

的選擇應根據其財務實力、專業知識和雙方的共同利益。而在合作模式方面,Merchant模式和 Tolling模式是目前最為常見的兩種方式。在 Merchant模式下,LNG 廠向上游生產商購買天然氣,然後將液化後的 LNG 銷售給終端用戶,通常是通過簽訂液化天然氣買賣契約(Sale and Purchase Agreement, SPA)的方式進行銷售;而在 Tolling模式中,上游天然氣生產商支付 LNG 加工費用,將天然氣送到 LNG 廠進行液化處理。液化設施的運營商則收取固定的處理費用,銷售則由上游生產商負責,與最終買家簽訂 SPA。

6. Exploration & Production of Natural Gas – Ir Maaruf Mohamad

為滿足全球 LNG 市場需求,取得天然氣氣源係為本產業之重要一環。天然氣氣田開採可分為 5 項主要步驟,含取得礦區(Acquisition)、探勘(Exploration)、開採(Development)、生產(Production)、棄置(Abandonment)。天然氣氣源開發時間最快 8 個月到最慢 5 年均有,時間長短視環境及人為因素而定;此外,在海中找氣源主要以聲納為主,一般來說收集地質資料大致需要 1 年,然有時候有可能花幾百萬美元探勘,卻也找不到任何氣源。

製作鑽探平台主要以組合方式構成,首先,作業船隻先將底座吊起,並用鋼管將其打入海床固定。再者,由焊工將鋼管焊起,且再次打入海床,最後才是安裝平台。視海床深度,將採用鑽油平台或鑽探船,深度越深將使用會漂浮的平台或船隻,而大多鑽探平台均建置在沿岸附近,因海流會影響結構強度及建置成本。

7. LNG Pricing – Susan Sim

LNG 通常以石油為計價參考指標,但不同地區採用不同的計價方式。在西 北歐, LNG 的定價主要以 NBP 和 TTF 為基準;在美國,天然氣價格與原油價格 脫鉤,並以 Henry Hub 作為主要的計價指標;至於亞洲,儘管大部分合約仍以油價 作為氣價連動指數,但買家也開始參考 Henry Hub 定價,或採用混合定價公式。

LNG 合約計價公式主要分為直線型、S-Curve 型以及價格上下限(Cap and Floor)型。直線型計價公式為: $P=A\%*Price\ index+B$,其各組成部分說明如下:

- (1) A%:係數或斜率,數值會受到多種因素影響,包括合約談判時間、當時市場情況、合約具體條款以及雙方的談判能力。
- (2) B:固定成本常數,通常由買賣雙方協商確定,通常涵蓋如運輸費用等額外成本。
- (3) Price index: 價格指標,常見的指標有布蘭特原油(Brent)、日本關稅清關原油(JCC)、TTF、或JKM(常作為現貨指標)等。

此外,S-Curve 型和價格上下限型計價方式可以在油價大幅波動(如大漲或大跌)時,提供對雙方的保護,避免價格過度波動對合約雙方利益造成影響。這些方式設有一定的上下限或斜率變化,使得合約更具彈性與穩定性。

8. LNG Operation – Ahmad Nizam Bin Yunus

液化天然氣調度及操作(LNG Operation)過程中可分為四個主要階段:計畫 (Planning)·前置作業(Pre-Operation)·執行中(Execution)·執行後(Post Execution)。

- (1) 計畫階段 (Planning):在此階段,需要根據預期產量進行估算,並確保氣源穩定,為後續運輸安排做好充分準備。根據合約需求,安排適當的船舶運輸,以確保運輸能力符合需求。同時,還需進行長期發展規劃,並預測每年的運輸排程,確保資源能夠有效運用。
- (2) 前置作業 (Pre-Operation): 此階段的主要目的是確保 LNG 船隻能順利抵達預定的裝卸貨港口。在此階段,需確認船隻符合進入港口的相關規定,並確保所有必要的文件和許可證齊全。
- (3) 執行中 (Execution): 此階段需確定最佳的 LNG 船隻調度方式,包括選擇合 適的航線、燃料使用方式,以及考慮天氣等外部條件。此外,還需妥善管理 船上貨物,確保貨物狀況符合合約要求,並在運輸過程中即時傳遞相關資訊, 確保順利執行。
- (4) 執行後階段 (Post Execution):貨物交付完成後,需確認帳務資料並核對相關費用,如滯船費、維護保養費等。在此階段,旨在確保所有後續工作符合合約條款,並處理可能發生的問題或索賠,以保障交易雙方的利益。

四、心得與建議及具體成效

在參加 2024 年度「Petronas LNG Course」研習課程後,職對於天然氣產業有更全面的了解及深刻的體悟,無論是買氣賣氣的協商談判,或是將 NG 轉化為 LNG 之實操原理,甚至是天然氣未來 20 年之市場趨勢,均能精進自身對於天然氣產業之理解,而本次能有幸汲取寶貴知識並拓展國際視野,必須要感謝中油公司提供難得的機會,栽培我們提升自身專業度,以應用於未來相關業務上。

圖 1 與台電同仁於結業典禮合影

1. 購氣合約及船舶知識

在本次 Petronas LNG Course 之課程設計上,主辦單位可說是極其用心,因其內容涵蓋範圍雖廣泛卻又不失整體架構之完整性。特別是在研習圓滿後,職認為以我國處境來說,台灣天然氣最核心業務應屬「買氣賣氣業務」,因台灣的自然資源相對匱乏,須向其他國家購買能源,而購氣成本的高低或購氣合約的條款限制,將會影響未來建廠成本、能源穩定、燃氣發電價格,甚至是國家經濟及民生政策。以中油公司於民國 92 年順利取得台電大潭電廠供氣合約為例,本公司因向卡達取得頗具優勢之購氣合約,爰此,後續供氣

發電或建廠成本才能順利合理,且在計算內部報酬率(IRR)計算時,能適時回本且盈餘有據。

本次課程中最引人注目的係為「購氣合約」相關課程,因在第3天之「賈賣氣實操談判」課程中,能充分體會到協商談判及應對進退外,也能在第2天的「履約執行」課程中,略知合約的些微門道。職從進入本公司就職至今,均主要於現場單位工作,每次在卸收碼頭看到 Membrane 或 Self-supporting(Moss)的 LNG 船隻均無法了解其中的差異,在經過本次 Petronas 課程學習後,不但了解兩者差異,且與「購氣合約」的知識能互相連結。

首先,職認為購氣合約可類比成買房子,買房子易受坪數、地段、交通、機能等因素影響,惟最重要的還是價格因素。特別是天然氣在制定價格時,主要會以成熟市場之原物料定錨價格,常見以布蘭特原油之一定比例,例如 12%左右,再加上一定常數(如運費,目前大多可議)作為氣價。這也就造成氣價易受市價供需、地緣政治、氣候溫度、其他原物料價格、全球經濟趨勢等因素影響,且長約、中長約或短約所受的制價因素也不同。

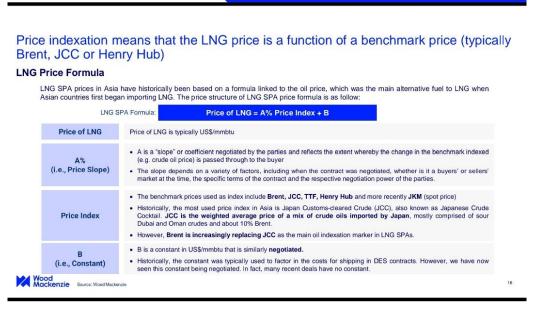


圖 2 LNG 氣價公式及組成因子

再者,購氣合約可分為「Sales and Purchase Agreements」(簡稱為 SPAs)及「Master Sales Agreements」(簡稱為 MSAs),共計 2 種。兩者主要差別除了合約期間的長短外,供貨彈

性也是另一項重點,也就是俗稱的「長約」及「短約」。大部分國家為使國內天然氣供需趨於長期穩定,或因為地緣政治風險的影響,均會先以長天期的 SPAs 購氣合約中的每年需求量「Annual Contract Quantity」(簡稱為 ACQ),來涵蓋大部分的用氣需求;惟某些時候天然氣需求大增或供貨商巧遇突發狀況,這時短天期的 MSAs 即可應付。另在實務操作上,在研議 SPAs 合約條款時,也會談到買賣家的供需貨彈性(Seller's flexibility and buyer's flexibility),以及定期再議價(price review)或調整 ACQ 的 Take or Pay(ToP)條款,方便買賣方在一個範圍內執行合約規範。

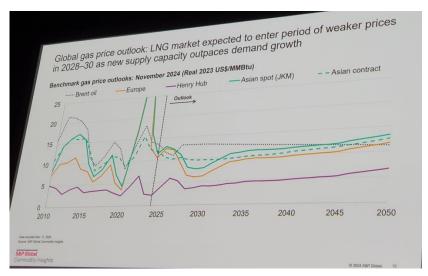


圖 3 LNG 市場至 2050 年之氣價趨勢

此外,職認為課程中與其他國家同學互相認識也能帶來莫大益處。授課講師雖於課程中提及 LNG 船分為 Membrane 及 Self-supporting(Moss)兩種,並解釋其中的差異,也特別提到 Membrane 船在裝載上有容量限制,也就是說,其內艙裝載的貨物容量應超過總容量的 85%,而空倉應於低於 5%~10%。換句話說,船隻必須完全卸料完畢才能返航;雖課程中有詢問講師為何這樣規定,惟未獲得滿意的答案,直至與國外同學討論後,才了解主因恐為靜電摩擦或船艙力學平衡所致,因 LNG 船在海上晃動時,船艙內的 LNG 會與船壁相互摩擦,而產生的靜電會造成爆炸危險。雖職認為 Moss LNG 船的圓筒槽也亦受艙壁摩擦靜電影響,故其原因恐與船艙力學平衡有關,如油罐車之內槽擋板設計,但至少是不錯的腦力激盪。

2. 廠區參訪及製程研討

本課程第 4 天的 LNG 液化工廠參訪行程是職一生難忘的寶貴經驗。以前在台中液化天然氣廠現場輪班時,很感謝有前輩們一步一腳印地教導氣化設施之運作方式,從 ORV 的鰭管巡視有無結冰,到操作卸料臂與 LNG 船上法蘭對接,再到一、二級泵的大修配合,以及半夜 ESD1 突發跳俥的緊急復歸,均使我在參訪 Petronas 的 LNG 液化工廠能更了解該廠現場設施及運作方式;本次職也向該廠現場操作人員請益該廠的大致運作流程,以及詢問主要低溫熱交換器(Main Cryogenic Heat Exchanger, MCHE)是如何將 NG 轉化成 LNG的。

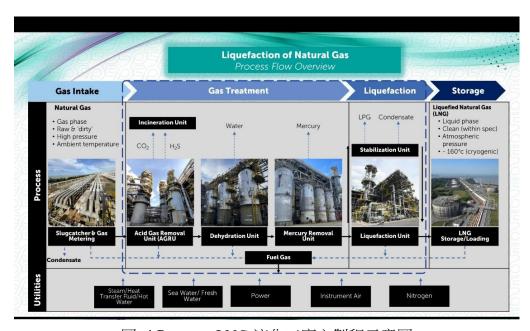


圖 4 Petronas LNG 液化工廠之製程示意圖

首先,有關 LNG 液化廠的大致運作方式一節,該位現場人員表示,NG 從氣田取至地面時,並非我們 LNG 接收站常見之透明無色無味氣體。剛出氣田的 NG 除了會夾帶大量污泥,且此氣體還含有 CO2、H2S、H2O 及 Hg 等物質,使「生 NG」是一種具有劇毒物質且骯髒的混合物。在經過污泥攔截裝置處裡後,NG 將會分別經過「酸性氣體去除裝置」(Acid Gas Removal Unit)、「卻水裝置」(Dehydration Unit)、「除汞裝置」(Mercury Removal Unit, MRU)等前處理單元,主要目的即是將雜質及危害管線或人員之物質去除,等「生NG」變乾淨成 NG 時才會再送至 MCHE 轉化成 LNG,並儲存於 LNG 儲槽。

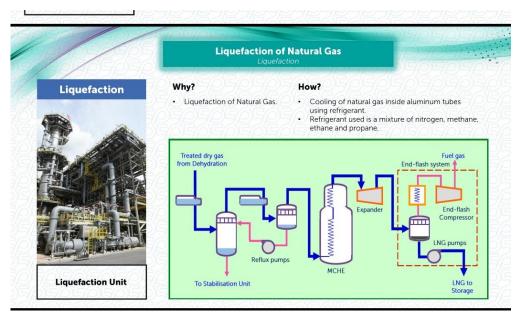


圖 5 LNG 液化核心設備(MCHE)

這邊我們再約略說明「酸性氣體去除裝置」、「卻水裝置」、「除汞裝置」等單元之操作細節及參數。首先,「酸性氣體去除裝置」除了能去除 H_2S 外(低於 3.3 ppmv),還會去除 CO_2 (低於 50 ppm),因過多的 CO_2 將會影響 LNG 購氣合約之成分標準,而去除 H_2S 是為防止下游管線腐蝕,以及人員安全考量;去除 H_2S 的方式係將其送至 flare 排燒。再者,「卻水裝置」則是以多孔隙乾燥粒料將水分降至 1 ppmv,並用物理反沖洗方式復原粒料功能性,以重複利用,而當粒料使用 3 至 6 年後將會整批更新。

最後,「除汞裝置」(MRU)係為 3 階段之去除裝置,並主要以活性碳作為吸附劑,並再用熱置換將吸附於活性碳上的汞去除,俾利長期重複使用之,且為確保已完全移除 NG中的汞物質,該系統會再以氧化鋁(alumina)再次淨化 NG(降至 10 ng/Nm3)。接下來「乾淨的 NG」則藉由該廠的核心設備—主要低溫熱交換器(Main Cryogenic Heat Exchanger, MCHE),將 NG 轉化成 LNG。

經治現場操作人員,MCHE 係利用理想氣體方程式將 LNG 產出,整個系統類似冷氣壓縮機,惟職認為單純的 MCHE 槽體實質上是一種「降溫淋灑塔」。根據現場操作人員的說明,因 NG 係屬混合物具有 C1~C4 碳數之碳氫化合物,故在 MCHE 完整單元之前段處理即去除 C2 以上之含碳物質,並將 BTEX 做後續 LNG 降溫使用。

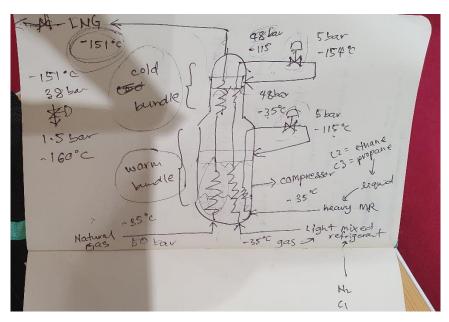


圖 6 現場操作人員解釋 MCHE 原理示意圖

首先,MCHE 會分為「暖區」跟「冷區」。「暖區」會以先前收集到的 C2、C3 的液體作為重質混合冷卻劑(R1),並藉由特殊減壓閥將 R1(-35℃, 48 bar)降壓至 5 bar,而根據理想氣體方程式所示,R1 將降溫至-115℃。帶降溫後降從上至下淋灑且重複使用;再者,「冷區」的運作原理與「暖區」相同,僅冷卻劑換成 N2、C1 的氣體作為輕質混合冷卻劑(R2),而一樣用特殊減壓閥從 48 bar 降壓至 5 bar,當然溫度也就從-115℃降溫至-154℃,並再從上至下淋灑。綜上,當 NG(-35℃, 50 bar)從槽體底部進入經過「暖區」跟「冷區」後,就會降溫至-154℃,又因淋灑管徑僅小指大小相同,故壓力會從原先 50 bar 降至 38 bar,惟送至台中廠之天然氣為-162℃,與-154℃相差至少 10℃左右。

3. 視野拓展及自我期許

職再次感謝中油公司提供本次機會,也很感謝父母從小加強職的語文能力,讓職能與來自不同國家的同學相互討論 LNG 相關業務、了解各國不同文化,甚至互相留下聯絡方式。再者,職因信仰關係無法食用牛肉,爰相當注意各餐點的內容物,並經請教在 Petronas 工作的同學 Mr. Daniel 後,也學到簡單的馬來文,如「Air Sejuk」的意思是冰水,也了解到在馬來西亞 1 天吃到 6 餐算是正常現象。工作方面,Daniel 也說馬來西亞目前發電佔比為 40%煤炭、40%天然氣、20%其他能源(含再生能源),而該國也努力降低煤炭使用,

並增加風力發電佔比,雖然他表示推動進展較為緩慢。

在「買賣氣實操談判」課程中,也了解到不同國家的同學因文化不同,故所談判重點 均不相同,而每位同學雖個性不同,卻也都有自己的「溝通手冊」,如日本同學向心力十 分驚人,且講話不明說,需反覆忖度其意思;韓國同學與台灣人個性相似,惟談判更為直 接不婉轉,講話以提出例證為主;印尼同學談判會參照市場慣例,會包容其他人的要求; 中國大陸同學談判時會留一手,態度較為強硬;馬來西亞同學則因常接觸買賣氣業務,會 協助解釋每項談判細項的重點及注意事項。雖一開始會擔心是否能順利與各國同學相互 合作,惟後來發現大家都很認真及積極,屬職多慮。

此外,談判過程中也學到,買賣氣並非漫天喊價,講話要提出理由,如遇意見相左,可提出不失禮貌卻又不吃虧的講法。以當時模擬購氣合約談判為例,買賣雙方如已簽訂 LNG Sales and Purchase Agreements (LNG SPAs,俗稱 LNG 長期合約),根據現在購氣合約常態情形,若買家遭遇突發狀況,使賣家需臨時賣 LNG 予其他臨時買家時,則售貨後之利潤係應討論買賣家分配比例 (Diversion Profit Allocation);此時,賣家會認為 LNG 船運風險及保養均屬該公司負責,故理應分配到較多利潤,惟買家認為貨物應屬本公司購買,雖買家因素而無法取貨,可提供部分利潤,但損失 50%以上利潤實屬不妥。

在談判過程中,有同學提出可由買賣雙方自行找臨時買家,誰能更快找到臨時買家,即可獲得較多比例之售後利潤。原先職一直認為談判是雙方各退一步解決問題,然經過此次經驗,職了解到除了雙方各退一步之方法外,在國際上誰有更多優勢或合作伙伴,則能更迅速把貨賣掉,而誰能獲取更多利潤,非侷限於憑感覺或底線喊價,對職而言屬展新觀點。

經過本次課程研習後,職未來將持續精進自身語文能力,無論是英文能力、日文能力或甚至是第4外語。畢竟我們身處21世紀的國際社會,學習不同語言不僅是在學習不同民族或國家之溝通方式,其實也是在體驗對方的文化結晶,相信能使職更具國際觀及順利應用於自身業務上。再者,未來若本公司內外有LNG之任何研習課程,職將盡力爭取參加機會,因在本次LNG研習課程後,職發現自身仍有許多知識或業務,須向前輩及專家

請益,俾期職能在未來奉獻棉薄之力以報公司。