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國家科學及技術委員會補助專題研究計畫出席國際學術會議 

心得報告 

                                    日期：113 年 10月 21日 

                                 

一、 參加會議經過 

今年的會議將於 2024 年 7月 13日至 17日，在波蘭克拉克夫市連續舉行五天。此次會議由華沙醫

科大學主辦，吸引了來自全球的專家學者及研究人員，參與人數超過一千人。會議內容豐富，包括海

洋微生物、對抗新興傳染病的天然產物研究、天然產物的合成技術以及食品和藥品應用的規範等多個

尖端領域，共展示了 868篇關於前沿技術的壁報。 

在這次大會中，我有榮幸發表了一篇關於八放珊瑚 Junceella fragilis的研究論文。這篇論文主要介

紹從八放珊瑚分離出的天然產物，並通過光譜技術及其數據解析進行了詳細的化學結構鑑定。更重要

的是，我們的研究利用人類成骨細胞的模型，證實這些天然產物具有顯著的治療骨質疏鬆症的潛力。

此外，本次大會也設有每日上下午共五場的專家演講和座談會，進一步促進了學術交流和知識分享，

為參與者提供了一個卓越的學習平台。 

 

計畫編號 NSTC  112 － 2320 － B － 291 － 002 － MY3 

計畫名稱 台灣產海綿及其共生微生物活性天然物之開發與持續藥源之建立 

出國人員

姓名 
宋秉鈞 

服務機構

及職稱 
國立海洋生物博物館 

會議時間 

113年 07月 13日

至 

113年 07月 17日 

會議地點 
波蘭-克拉克夫 

會議名稱 
(中文)2024國際天然產物研究大會 

(英文)2024 International Congress On Natural Products Research 

發表題目 

(中文)來自八放珊瑚 Junceella fragilis 的含氯多乙酰氧基 briarane 類化

合物。 

(英文) Chlorine-containing polyacetoxybriaranes from the octocoral 

Junceella fragilis. 

附件五 



2 

 

 

二、 與會心得 

在會議中可明顯看出國際間在天然產物領域的合作與交流研究上有很多值得學習的地方。不僅

涵蓋天然產物化學研究，也涉及二次代謝物在生物體內的生合成路徑，顯示新藥的需求愈發重要。

因此，跨領域合作對天然物學家來說是必要的。在我國，參與此次會議的有國立成功大學的吳天賞

教授、高雄醫學大學張芳榮教授和中國醫藥大學吳永昌教授等，他們主要發表了關於天然產物的不

同領域研究。我參加此次研討會的目的是關注國際間天然產物研究的發展趨勢，比較我國在醫藥生

技研發方面的優缺點。 

值得注意的是，各國學者都在利用其獨特的生物多樣性來發展具有特色的研究方向。建議台灣

應該加強在海洋天然物研究上的投資，特別是因為台灣地處熱帶及亞熱帶海域交匯處，具有非常高

的生物多樣性和歧異度，有潛力在海洋天然物化學研究領域建立獨特的研究學門。這不僅符合國家

的海洋政策，也能推動相關的科學和技術發展。 

此外，美國的學者如 Prof. Guido F. Pauli 和 Dr. Valerie Paul 也在會議中分享了他們的研究成果。

Prof. Pauli 專注於利用複雜奈米顆粒作為保健品和新藥的來源，並開發了包括定量核磁共振波譜和

反流分離在內的分析和天然產物技術。Dr. Valerie Paul 則專注於海洋化學生態學和珊瑚礁研究，其

工作在國際海洋科學社區中具有重要影響。這些研究突顯了海洋天然物研究的多面性和應用潛力，

為未來的研究方向提供了重要的參考。 

 

三、 發表論文全文或摘要 
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四、 建議 

建議應多鼓勵並提供充足資源給國內的博士後研究員和博士班學生，以便他們能積極參與國際學

術研討會，從而擴展其視野並增進專業知識。通過這些學術活動，研究人員不僅能夠與全球的專家學

者交流思想，還可以掌握行業最新動態，促進學術合作與專業發展。這種國際交流經驗對於他們未來

的研究工作及職業生涯規劃將具有不可估量的價值。 

 

五、 攜回資料名稱及內容 

大會會議手冊一份。 

 

歐洲藥學會專家學者分享 臺灣優秀博士生報告 
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六、 其他 

研討會發表海報相關 SCI 論文。 



Chlorine-containing polyacetoxybriarane
diterpenoids from the octocoral Junceella fragilis†

Hai Nhat Do,‡ab Yu-Ta Chen,‡c Su-Ying Chien,d You-Ying Chen,b

Mingzi M. Zhang, e Lun Kelvin Tsou,f Jih-Jung Chen,g Zhi-HongWen,a Yi-Hao Lo,chi

Li-Guo Zheng *j and Ping-Jyun Sung *abklm

The chemical screening of an octocoral identifed as Junceella fragilis has led to the isolation of five

chlorinated briarane-type diterpenoids, including three known metabolites, gemmacolide X (1),

frajunolide I (2), and fragilide F (3), along with two new analogs, 12a-acetoxyfragilide F (4) and 12a-

acetoxyjunceellin (5). Single-crystal X-ray diffraction analysis was carried out to determine the absolute

configurations of 1 and 2, while the structures of new compounds 4 and 5 were ascertained with 2D

NMR experiments. Briaranes 1 and 3–5 were active in enhancing alkaline phosphatase (ALP) activity.

1 Introduction

The octocorals belonging to genus Junceella (phylum Cnidaria,
sub-phylum Anthozoa, class Octocorallia, order Scler-
alcyonacea, family Ellisellidae),1 distributed in the shallow
waters of the tropical Indo-Pacic Ocean, have been proven to
be a rich source of briarane-type diterpenoids with uncommon

structures.2 This study explored further new substances from
Junceella fragilis (Ridley 1884), collected from waters off the
coast of Taiwan, an area with high biodiversity at the intersec-
tion of Kuroshio and South China Sea surface currents. The
study successfully isolated ve chlorinated briaranes, including
three known metabolites, gemmacolide X (1),3 frajunolide I (2),4

and fragilide F (3),5 as well as two new analogs, 12a-acetoxy-
fragilide F (4) and 12a-acetoxyjunceellin (5) (Fig. 1) and ascer-
tained their structures and ALP activity. The absolute
congurations of 1 and 2 were further determined via single-

Fig. 1 Structures of gemmacolide X (1), frajunolide I (2), fragilide F (3),
12a-acetoxyfragilide F (4), 12a-acetoxyjunceellin (5), and junceellin (6).
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crystal X-ray diffraction analysis with a diffractometer equipped
with a copper (Cu Ka) source.

2 Results and discussion

Gemmacolide X (1) and frajunolide I (2) were originally isolated
from the octocorals Dichotella gemmacea and Junceella fragilis,
respectively; and the structures of these two briaranes,
including the relative conguration, were elucidated by spec-
troscopic analysis.3,4 The absolute conguration of these two
compounds was supported in this study by single-crystal X-ray
diffraction analysis (Flack parameter x = 0.000(5) for 1 and
−0.002(13) for 2).6 The ORTEP diagram (Fig. 2) showed that the
absolute conguration of stereogenic carbons of 1 and 2 are
assigned as 1R, 2R, 3R, 4R, 6S, 7R, 8R, 9S, 10S, 11R, 12R, 14S, 17R
and 1S, 2S, 6S, 7R, 8R, 9S, 10S, 11R, 13S, 14R, 17R, respectively.

The (+)-ESIMS of 3 showed sodiated peaks atm/z 657/659/661
([M + Na]+/[M + 2 + Na]+/[M + 4 + Na]+) (9 : 6 : 1) with a relative

intensity suggestive of two chlorine atoms. Strong bands at
3478, 1790, and 1742 cm−1 observed in the IR spectrum
conrmed the presence of hydroxy, g-lactone, and ester groups
in 3. It was found that the spectroscopic data of 3 were identical
to those of a known briarane, fragilide F, and these two
compounds possessed negative optical values ([a]−15 for 3 and
[a] −19 for fragilide F);5 thus, compound 3 was identied as
fragilide F.

12a-Acetoxyfragilide F (4) was isolated as an amorphous
powder and its molecular formula was determined to be
C30H38Cl2O14 (U = 11) by (+)-HRESIMS at m/z 715.15302 (calcd
for C30H38Cl2O14 + Na, 715.15308). Comparison of the 1H NMR,
HSQC, and HMBC data with the molecular formula indicated
that there must be an exchangeable proton, requiring the
presence of a hydroxy group, and this deduction was supported
by a broad absorption in the IR spectrum at 3466 cm−1. The IR
spectrum of 4 also showed strong bands at 1791 and 1740 cm−1,
consistent with the presence of g-lactone and ester groups. The
presence of an exocyclic olen was deduced from the signals of
an sp2 methylene carbon at dC 119.6 (CH2-16). Six carbonyl
resonances at dC 175.2 (C-19), 171.2, 170.2, 170.2, 169.8, and
169.6, conrmed the presence of a g-lactone and ve ester
groups; ve acetate methyls (dH 2.36, 2.07, 2.04, 2.03, and 2.01,
each 3H × s) were also observed. From the above NMR data
(Table 1), seven degrees of unsaturation were accounted for,
and 4 must be tetracyclic.

In addition, a tertiary methyl singlet, a methyl doublet, a pair
of aliphatic methylene protons, two aliphatic methine protons,
seven oxymethine protons, a downeld methine proton (dH
5.04, 1H, ddd, J = 2.4, 2.4, 2.4 Hz, H-6), a pair of low eld
methylene protons (dH 3.52, 1H, d, J = 12.0 Hz; 3.84, 1H, d, J =
12.0 Hz, H-20a/b), and a hydroxy proton (dH 3.11, 1H, s, OH-11)
were observed in the 1H NMR spectrum of 4 (Table 1).

The gross structure of 4 was veried by 2D NMR studies. 1H
NMR coupling information in the 1H–1H COSY spectrum of 4
enabled identication of C2–C3–C4, C6–C7, C12–C13–C14, and
C17–C18 units, which were assembled with the assistance of an
HMBC experiment (Fig. 3). The HMBC between protons and
non-protonated carbons of 4, such as H-2, H-9, H-10, H3-15/C-1;
H-4, H-10, H3-18/C-8; H-9, H-10, H-20a/C-11; and H-17, H3-18/C-
19, permitted elucidation of the carbon skeleton. An exocyclic
double bond attached at C-5 was conrmed by the allylic
coupling between H2-16 and H-6 in the 1H–1H COSY experiment
and by the HMBC between H-16a/C-4, C-6; and H-16b/C-6. The
ring junction C-15 methyl group was positioned at C-1 from the
HMBC between H3-15/C-1, C-2, C-10, C-14. The presence of
a hydroxy group at C-11 was deduced from the HMBC between
a hydroxy proton (dH 3.11) with C-10 methine (dC 41.6). The
acetate ester at C-9 was established by a correlation between H-9
(dH 6.40) and the acetate carbonyl (dC 169.6) observed in the
HMBC spectrum. Thus, the remaining four acetoxy groups
should be positioned at C-2, C-3, C-12, and C-14, as indicated by
the characteristic NMR signal analysis of the oxymethines CH-2
(dH 5.48/dC 73.1), CH-3 (dH 6.19/dC 63.8), CH-12 (dH 5.52/dC 68.6),
and CH-14 (dH 4.83/dC 72.6), respectively, although no HMBC
was observed between the oxymethine protons H-2, H-3, H-12,
and H-14 and those acetate carbonyls.

Fig. 2 ORTEP demonstrates the structures of gemmacolide X (1) and
frajunolide I (2).
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The intensity of sodiated molecules (M + 2 + Na)+ and (M + 4
+ Na)+ isotope peaks observed in (+)-ESIMS spectrum [(M +
Na)+ : (M + 2 + Na)+ : (M + 4 + Na)+ = 9 : 6 : 1] were strong
evidence of the presence of two chlorine atoms in 4. The
methine unit at dC 53.9 was more shielded than that expected
for an oxygenated C-atom and was correlated to the methine
proton at dH 5.04 in the HSQC spectrum and this proton signal
was 3J-correlated with H-7 (dH 4.37) (J = 2.4 Hz), proving the
attachment of a chlorine atom at C-6. In addition, the methy-
lene unit at dC 48.3 was also more shielded than that expected
for an oxygenated C-atom and was correlated to the methylene
protons at dH 3.52 and 3.84 in the HSQC spectrum and one of
the methylene proton signals (dH 3.52, H-20a) exhibited HMBC
with C-11 and C-12, proving the attachment of a chloromethyl
group at C-11. Furthermore, an HMBC between H-4 (dH 4.47)
and an oxygenated quaternary carbon at dC 83.9 (C-8) suggested
the presence of a C-4/8 ether linkage.

The relative stereochemistry of 4 was elucidated by analysis
of NOESY correlations and by vicinal 1H–1H proton coupling
constants analysis. In the NOESY experiment (Fig. 4), H-10
correlated with H-2, H-9, and H3-18 indicated that these

protons were situated on the same face; they were assigned as a-
protons, as C-15 methyl was b-oriented at C-1 and H3-15 did not
show correlation with H-10. Also, no coupling was found
between H-9 and H-10, indicating that the dihedral angle
between these two protons was approximately 90°, further
conrmed that H-9 had an a-orientation. Due to H-14 proton
being correlated with H3-15, this proton was of a b-orientation
at C-14. The C-13 methylene protons displayed identical
coupling constants with H-14 (J = 3.0, 3.0 Hz) and H-12 (J = 3.0,
3.0 Hz), respectively, indicating that both H-14 and H-12 should
be positioned on the b-equatorial direction in the six-membered
ring of 4.

The oxymethine proton H-3 and one of the chlorinated C-20
methylene protons (dH 3.84, H-20b) were found to exhibit
responses with H3-15 but not with H-10, revealing H-3 and C-20
methylene were b-oriented at C-3 and C-11, respectively. H-9 was
found to show correlations with H-7, H-17, and one proton of C-
20 methylene protons (dH 3.52, H-20a). Frommodeling analysis,
H-9 was found to be reasonably close with H-7, H-17, and H-20a
and can therefore be placed on the a face in the 10-membered

Table 1 1H and 13C NMR data for briarane 4

Position dH
a (J in Hz) dC

b, Mult.c

1 45.1, C
2 5.48 d (6.6) 73.1, CH
3 6.19 dd (10.8, 6.6) 63.8, CH
4 4.47 d (10.8) 78.5, CH
5 N. o.d

6 5.04 ddd (2.4, 2.4, 2.4) 53.9, CH
7 4.37 d (2.4) 78.9, CH
8 83.9, C
9 6.40 s 73.2, CH
10 2.99 s 41.6, CH
11 74.6, C
12 5.52 dd (3.0, 3.0) 68.6, CH
13a/b 2.20 ddd (16.8, 3.0, 3.0);

1.97 ddd (16.8, 3.0, 3.0)
26.2, CH2

14 4.83 dd (3.0, 3.0) 72.6, CH
15 1.30 s 16.4, CH3

16a/b 5.36 d (2.4); 5.57 d (2.4) 119.6, CH2

17 2.82 q (7.2) 49.5, CH
18 1.39 d (7.2) 7.2, CH3

19 175.2, C
20a/b 3.52 d (12.0); 3.84 d (12.0) 48.3, CH2

OH-11 3.11 s
Acetoxy groups 2.36 s 21.0, CH3

169.6, C
2.07 s 21.2, CH3

171.2, C
2.04 s 21.0, CH3

170.2, C
2.03 s 20.4, CH3

170.2, C
2.01 s 21.0, CH3

169.8, C

a Spectra recorded at 600 MHz in CDCl3 at 25 °C. b Spectra recorded at
150 MHz in CDCl3 at 25 °C.

c Data assigned with the assistance of HSQC
and HMBC spectra. d N. o. = not observed.

Fig. 3 Key HMBC and COSY correlations of 4.

Fig. 4 Stereo-view of 4 (generated by computer modeling) and
calculated distances (Å) between selected protons with key NOESY
correlations.

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 17195–17201 | 17197
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ring and both H-7 and H-17 are b-oriented in the g-lactone
moiety. H-7 exhibited interactions with H-6 and H-17; and H-6
correlated with H-3, indicating that H-7 and H-6 are on the
b face. Furthermore, H-4 showed a correlation with H-2; and
a large coupling constant was found between H-4 and H-3 (J =
10.8 Hz), indicating the dihedral angle between H-4 and H-3 is
approximately 180° and H-4 has an a-orientation at C-4. The
above interpretation enables the identication of the relative
conguration of all stereogenic centers of 4 as 1R*, 2R*, 3R*,
4R*, 6S*, 7R*, 8R*, 9S*, 10S*, 11S*, 12R*, 14S*, 17R*. According
to the above and comparing the NMR data of 4 with those of the
literature, the structure of 4 was similar to that of fragilide F (3)
(Fig. 1),5 except for the 12a-proton in 3 was instead of an acetoxy
group in 4. Hence, 4 was found to be the 12a-acetoxy derivative
of 3 and named 12a-acetoxyfragilide F.

12a-Acetoxyjunceellin (5) was isolated as an amorphous
powder. Its (+)-HRESIMS peak was at m/z 663.18121, consistent
with the molecular formula C30H37ClO13 (calcd for C30H37ClO13

+ Na, 663.18149) with 12 degrees of unsaturation. The IR

spectrum of 5 contained signals of g-lactone (nmax 1791 cm−1)
and ester (nmax 1740 cm−1) functionalities. Analyzing the 1H
NMR (Table 2), HSQC, and HMBC spectra of 5 led to the
assignment of ve acetoxy groups; as well as two exocyclic
carbon–carbon double bonds, a g-lactone moiety, and other 15
carbon signals (Table 2).

The carbon skeleton of 5 was fully established by following
correlations observed in the 1H–1H COSY and HMBC spectra
(Fig. 5). The oxymethine protons H-3 (dH 6.16), H-9 (dH 5.89),
and H-2 (dH 5.55) showed HMBC to the acetate carbonyls at dC
169.6, 169.8, and 170.4, conrmed the position of acetoxy
groups at C-3, C-9, and C-2, respectively. Evaluated on the NMR
chemical shis of oxymethines CH-12 (dH 5.38/dC 74.8) and CH-
14 (dH 4.93/dC 73.6), the remaining acetoxy groups should be
positioned at C-12 and C-14, respectively.

The relative stereochemistry of 5 was established by
analyzing the NOESY information in combination with the
computer-generated model structure. We have noticed that all
naturally-occurring briaranes possess a b-Me-15 placed at C-1
and have an a-orientation of H-10. In the NOESY spectrum
(Fig. 6), H-10 showed correlations with H-2, H-9, and H3-18; H3-
15 was correlated with H-3, H-14, and one of the C-13 methylene
protons (dH 1.90, H-13b); and H-13b was correlated with H-12,
proving the a-orientation of OAc-3, OAc-12, and OAc-14; and
b-orientation of OAc-2 and OAc-9. H-3 exhibited an interaction
with H-6; and H-6 correlated with H-7, indicating that H-6 and
H-7 are on the b face. Furthermore, H-4 showed a correlation
with H-2; and a large coupling constant was found between H-4
and H-3 (J= 10.8 Hz), indicating the dihedral angle between H-4
and H-3 is approximately 180° and H-4 has an a-orientation at
C-4. Additionally, there was a correlation between H-7 and H-17,
suggesting that H-17 is situated on the b face in the g-lactone
moiety. The above interpretation enables the identication of
the relative conguration of all stereogenic centers of 5 as 1R*,
2R*, 3R*, 4R*, 6S*, 7R*, 8R*, 9S*, 10S*, 12R*, 14S*, 17R*. It was
found that the NMR signals of 5 were similar to those of
a known briarane, junceellin (6),7,8 except that the signals cor-
responding to the a-proton at C-12 in 6 were replaced by signals
for an acetoxy group in 5. Thus, 5 was found to be the 12a-
acetoxy derivative of 6 and named 12a-acetoxyjunceellin.

Table 2 1H and 13C NMR data for briarane 5

Position dH
a (J in Hz) dC

b, Mult.c

1 47.1, C
2 5.55 d (6.6) 72.6, CH
3 6.16 dd (10.8, 6.6) 63.6, CH
4 4.51 d (10.8) 79.0, CHg

5 134.1, C
6 5.01 ddd (3.0, 1.8, 1.8) 53.8, CH
7 4.52 d (3.0) 79.0, CHg

8 82.8, C
9 5.89 s 77.5, CH
10 3.56 s 39.7, CH
11 144.5, C
12 5.38 dd (3.6, 3.6)de 74.8, CH
13a/b 2.19 ddd (16.2, 3.6, 3.0);

1.90 ddd (16.2, 3.6, 2.4)
30.6, CH2

14 4.93 dd (3.0, 2.4) 73.6, CH
15 1.14 s 14.5, CH3

16a/b 5.38 d (1.8)df; 5.59 d (1.8)f 119.7, CH2

17 2.78 q (7.2) 49.9, CH
18 1.35 d (7.2) 6.9, CH3

19 173.9, C
20a/b 5.44 s; 5.03 br s 117.5, CH2

Acetoxy groups 2.34 s 21.2, CH3

169.8, C
2.05 s 21.0, CH3

170.7, C
2.05 s 21.0, CH3

169.4, C
2.01 s 21.0, CH3

170.4, C
2.01 s 21.0, CH3

169.6, C

a Spectra recorded at 600 MHz in CDCl3 at 25 °C. b Spectra recorded at
150 MHz in CDCl3 at 25 °C.

c Data assigned with the assistance of HSQC
and HMBC spectra. d Signals overlapped. e The coupling pattern and
coupling constant for H-12 were assigned by its vicinal couplings with
H-13a/b. f The coupling pattern and coupling constant for H-16a/
b were assigned by their allylic long-range 4J-coupling with H-6.
g Signals overlapped.

Fig. 5 Key HMBC and COSY correlations of 5.
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As briaranes 4 and 5, in addition to 1 and 2, were isolated
from the same target organism, J. fragilis, it is reasonable to
assume on biogenetic grounds that briaranes 4 and 5 have the
same absolute conguration as 1 and 2. Therefore, the absolute
congurations of 4 and 5 were suggested to be (1R, 2R, 3R, 4R,
6S, 7R, 8R, 9S, 10S, 11S, 12R, 14S, 17R) and (1R, 2R, 3R, 4R, 6S,
7R, 8R, 9S, 10S, 12R, 14S, 17R), respectively.

Previous studies have found briarane-type natural products
to be a natural remedy for osteoclastogenic disease.9,10 Via an
ALP ELISA assay with MG63 human mesenchymal stem cells
(Table 3), the study found that briaranes 1 and 3–5 were active
in enhancing ALP activity at a concentration of 10 mM.

3 Conclusions

The octocorals belonging to the genus Junceella have demon-
strated a wide structural diversity of briarane diterpenoids with
various pharmacological properties.2 In our ongoing research

on J. fragilis, we isolated ve chlorinated briaranes, including
two previously undiscovered briaranes: 12a-acetoxyfragilide F
(4) and 12a-acetoxyjunceellin (5). Three known analogs were
also identied: gemmacolidex (1),3 frajunolide I (2),4 and fragi-
lide F (3).5 The structures, including the absolute congura-
tions, of 1 and 2 were further established through single-crystal
X-ray diffraction analysis. For compounds 4 and 5, their struc-
tures were conrmed using various spectroscopic techniques,
particularly 2D NMR experiments and comparison with existing
literature data. Briaranes 1 and 3–5 were active in enhancing
ALP activity.

4 Experimental
4.1 General experimental procedures

Optical rotation values were measured using a JASCO P-1010
digital polarimeter. IR spectra were obtained with a Thermo
Scientic Nicolet iS5 FT-IR spectrophotometer. NMR spectra
were recorded on a 600 MHz Jeol ECZ NMR spectrometer using
the residual CHCl3 (dH 7.26 ppm) and CDCl3 (dC 77.0 ppm) as
internal standards for 1H and 13C NMR, respectively; coupling
constants (J) are presented in Hertz (Hz). The ESIMS and
HRESIMS spectra were ascertained with Thermo Fisher orbitrap
Exploris 120 mass spectrometer equipped with an ESI ion
source in positive ionization mode. The extracted samples were
separated via column chromatography with silica gel (particle
size, 230–400 mesh; Merck). TLC was performed on plates
precoated with silica gel 60 (DC-Fertigfolien Alugram Xtra SIL G/
UV254, layer thickness 0.20 mm, Macherey-Nagel) and RP-18
F254s (layer thickness 0.16–0.20 mm, Merck), and visualization
of the TLC plates was conducted using an aqueous solution of
10% H2SO4, subsequently to be heated to show the spots of
signals. Reverse-phase HPLC (RP-HPLC) separation was carried
out with a system containing a pump (Hitachi, model L-7110)
with a photo-diode array detector (Hitachi, model L-2400),
equipped with a reverse-phase column (Luna, 5 mm, C18(2)
100 Å, 250 × 21.2 mm). Normal-phase HPLC (NP-HPLC) sepa-
ration was carried out with a system containing a pump (Hita-
chi, model L-5110), equipped with a normal-phase column
(Galaksil, EF-SiO2, 5 mm 120 Å, 250 × 10 mm).

4.2 Animal material

Specimen of J. fragilis was collected manually via SCUBA diving
off the coast of Southern Taiwan in 2012. A voucher specimen
was deposited at the National Museum of Marine Biology &
Aquarium, Taiwan. To identify the species, we compared its
physical characteristics and microscopic images of the coral
sclerites with those mentioned in previous studies.1,11–13

4.3 Extraction and isolation

The freeze-dried specimen (wet/dry weight = 6.01/2.39 kg) was
sliced and treated with a 1 : 1 mixture solvent of MeOH and
CH2Cl2 at room temperature to produce crude extract weighing
140.1 g, which was then subjected to liquid–liquid partition
between EtOAc and H2O. The EtOAc phase (19.2 g) was applied
to a silica gel column chromatography (Si. C. C.). Elution was

Fig. 6 Stereo-view of 5 (generated by computer modeling) and
calculated distances (Å) between selected protons with key NOESY
correlations.

Table 3 The evaluation of ALP activity ensued subsequent to sub-
jecting MG63 cells to briaranes 1–5 at concentration of 10 mM or 100
mM rutin (utilized as a positive control) fora 72 h

Compounds
ALP activity (king
unit per mg prot.)

1 4.2 � 1.0**
2 2.9 � 1.1**
3 6.6 � 0.2***
4 5.8 � 0.5***
5 4.8 � 0.7***
Rutin 3.1 � 0.2
Control −5.0 � 0.5

a Data are expressed with the mean standard error of the mean (SEM) (n
= 3). The signicance was determined with Student's t-test. **p < 0.01,
***p < 0.001 and comparison with untreated cells.

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 17195–17201 | 17199
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carried out with a gradient solvent system containing n-hexane,
followed by increasing polarity mixtures of n-hexane and EtOAc,
pure acetone, and pure methanol for use as eluting solvents.
The process yielded 13 fractions A–M. Fraction D was chroma-
tographed with NP-HPLC via an isocratic solvent system, n-
hexane/acetone mixture (6 : 1). The process yielded 7 fractions
D1–D7. Fraction D6 was separated with NP-HPLC via an iso-
cratic solvent system, DCM/acetone mixture (18 : 1). The process
yielded 3 fractions D6A–D6C. Fraction D6A was puried with
RP-HPLC via an isocratic solvent system, ACN/H2Omixture (60 :
40; ow rate = 3 mL min−1), to afford 3 (0.4 mg). Fraction E was
chromatographed with Si. C.C. and eluted with an isocratic
solvent system, DCM/acetone mixture (10 : 1). The process
yielded 8 fractions E1–E8. Fraction E2 was separated by NP-
HPLC via an isocratic solvent system, n-hexane/EtOAC mixture
(2 : 1) to obtain 5 fractions E2A–E2E. Fraction E2E was puried
by RP-HPLC with an isocratic solvent system, ACN/H2O mixture
(50 : 50; ow rate = 3 mL min−1), to obtain 2 (0.3 mg). Fraction
E2D was puried by RP-HPLC with an isocratic solvent system,
ACN/H2O mixture (60 : 40; ow rate = 3 mL min−1), to obtain 5
(0.4 mg). Fraction F was separated on Si. C. C. with an isocratic
solvent system, DCM/acetone mixture (15 : 1). The process
yielded 8 fractions F1–F8. Fraction F4 was separated Si C. C. and
eluted with DCM/EtOAc mixture (20 : 1) to yield 6 fraction F4A–
F4F. Fraction F4E was puried by RP-HPLC with an isocratic
solvent system, MeOH/H2O mixture (70 : 30; ow rate = 3
mL min−1) to obtain 1 (0.8 mg) and 4 (0.4 mg), respectively.

4.4 Structural characterization of undescribed compounds

4.4.1 12a-Acetoxyfragilide F (4). Amorphous powder; [a]
−39 (c 0.02, CHCl3); IR (KBr) nmax 3466, 1791, 1740 cm−1; 1H
(600 MHz, CDCl3) and

13C NMR (150 MHz, CDCl3) data (see
Table 1); ESIMS:m/z 715 [M + Na]+, 717 [M + 2 + Na]+, 719 [M + 4
+ Na]+; HRESIMS: m/z 715.15302 (calcd for C30H38Cl2O14 + Na,
715.15308).

4.4.2 12a-Acetoxyjunceellin (5). Amorphous powder; [a]
+275 (c 0.02, CHCl3); IR (KBr) nmax 1791, 1740 cm−1; 1H (600
MHz, CDCl3) and

13C NMR (150 MHz, CDCl3) data (see Table 2);
ESIMS: m/z 663 [M + Na]+, 665 [M + 2 + Na]+; HRESIMS: m/z
663.18121 (calcd for C30H37ClO13 + Na, 663.18149).

4.5 Single-crystal X-ray crystallography of gemmacolide X (1)

Suitable colorless prisms of 1 were obtained from a solution of
MeOH. The crystal (0.363 × 0.235 × 0.198 mm3) was identied
as being of the orthorhombic system, space group P212121
(#19),14 with a= 12.2945(2) Å, b= 12.4454(2) Å, c= 22.2997(4) Å,
V= 3412.08(10) Å3, Z= 4, Dcalcd= 1.297 Mgm−3 and l (Cu Ka)=
1.54178 Å. Intensity data were obtained on a crystal diffrac-
tometer (Bruker, model: D8 Venture) up to a qmax of 68.349°. All
measurement data of 34 394 reections were collected, of which
6232 were independent. The structure was solved by direct
methods and rened by a full-matrix least-squares on F2

procedure.15,16 The rened structural model converged to a nal
R1 = 0.0292; wR2 = 0.0758 for 5969 observed reections [I >
2s(I)] and 425 variable parameters; and the absolute congu-
ration was established from the Flack parameter x =

0.000(5).6,17,18 Crystallographic data for the structure of gem-
macolide X (1) were submitted to the Cambridge Crystallo-
graphic Data Center (CCDC) with ESI publication number
CCDC 2323829 (data can be obtained from the CCDC website at
https://www.ccdc.cam.ac.uk/conts/retrieving.html).

4.6 Single-crystal X-ray crystallography of frajunolide I (2)

Suitable colorless prisms of 2 were obtained from a solution of
MeOH. The crystal (0.191 × 0.102 × 0.049 mm3) was identied
as being of the hexagonal system, space group P61 (#169),14 with
a= b= 22.8317(3) Å, c= 10.2937(2) Å, V= 4647.06(15) Å3, Z= 6,
Dcalcd = 1.284 Mg m−3 and l (Cu Ka) = 1.54178 Å. Intensity data
were obtained on a crystal diffractometer (Bruker, model: D8
Venture) up to a qmax of 74.402°. All measurement data of 47 636
reections were collected, of which 6221 were independent. The
structure was solved by direct methods and rened by a full-
matrix least-squares on F2 procedure.15,16 The rened struc-
tural model converged to a nal R1 = 0.0358; wR2 = 0.0960 for
5789 observed reections [I > 2s(I)] and 377 variable parame-
ters; and the absolute conguration was established from the
Flack parameter x = −0.002(13).6,17,18 Crystallographic data for
the structure of frajunolide I (2) were submitted to CCDC with
ESI publication number CCDC 2326820 (data can be obtained
from the CCDC website at https://www.ccdc.cam.ac.uk/conts/
retrieving.html).

4.7 Alkaline phosphatase (ALP) activity assay

The ALP assay was released to assess the activity of compounds
1–5 from MG63 human mesenchymal stem cells, in line with
suggestion of previous studies.19
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