

AVL M.O.V.E

AVL Aerosol & Gas Measurement Solution

Painsi, Alexander

AVL List GmbH

Introduction

Alexander Painsi Senior Business Development Manager

Aerosol & Gas Measurement

alexander.painsi@avl.com

Over 22 years of engine testing experience in different global positions.

- Development Engineer
- Technical Trainer
- Product Manager
- Senior business development manager for Aerosol & Gas measurement at AVL.

Work focus: Particle and RDE measurement for all areas (LD,HD,NRMM)

EURO 7 – Actual Status

Trialogue finished:

- Interinstitutional file published on Dec. 21/2023
- Positive vote within ENVI on Jan. 11/2024
- Start of AGVES meetings (implementing regulation) on Feb. 05/2024

Main Changes:

- PC/ LD:
 - NH3 limit removed
 - THC/ NMHC: unclear if it needs to be measured on the road.
 - Testing conditions, instruments specs based UNR168 (= EU6e)
- HD:
 - HCHO removed, will be reviewed in 12/2027,
 - NMOG: unclear whether it will be calculated or whether HCHO needed
 - CF of 1.5 eliminated, considered in the RDE limit (~30%)
 - Instruments specs based on R49

Euro 7:

Euro 7 Legislation:

 After 5 years of consultations, meetings and documents, Europe has reached a general decision about Euro 7. Considering the amount of work done, the outcome is low and does not meet the targets of the European Green Deal.

• Implementing (technical) details are still open und shall be defined till 2025.

- Major improvements are implemented for emobility and new non-tailpipe emission requirements for emissions from brakes and tiers.
- For pollutant tailpipe emissions there are challenges for heavy duty vehicles, but only minor improvements for light-duty vehicles.

Euro 7: Requirements

Euro 7		Light-Duty		Heavy-Duty					
Implementation date		Q4 2026 New types / Q4 2027 All vehicles Implementing regulations 29.5.02025			Q2 2028 New types / Q2 2029 All vehicles				
Tailpipe emission on testbed	Limit	wie EU6 mg/km / #/km				-50% of EU-VI mg/kWh / #/kWh			
	Pollutants	CO, NOx, THC, NOx+THC, NMHC, PM, PN10				CO, NOx, NMOG, CH4, NH3 as mass, N2O, HCHO (HCHO will be reviewed in 2027), PM, PN10			
UNR-154	Fuel	separate limits for Diesel and Gasoline				-			
RDE tailpipe emission UNR-168	Pollutants	CO, NOx, THC, NOx+THC, NMHC, PN10				CO, NOx, NMOG, CH4, NH3 as mass, N2O, HCHO (HCHO will be reviewed in 2027), PN10			
	Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	Altitude	700m extended 1.300m				~ 1700 m (based on abs. pressure)			
	Driving	Euro 6 limitations with CF				Euro VI limitations, 6% power threshold			
Non-Tailpipe emissions	Brake wear	WLTP-B cycle, 7mg/km and 3mg/km for PEV				Yes (procedure tbd)			
	Tire micro-Plastic	Yes, Tire C1 in 2028, Tire C2 in 2030 (procedure tbd)				Yes, Tire C3 in 2032			
	EVAP	1,5g instead of 2,0g				no			
OBM (On Board Monitoring)		NOx, PM (based on OBD)			NOx, NH3, PM (based on OBD)				
Anti tampering		Yes			yes				
Durability-Emission and battery Battery state of health		Yes			yes				
CO2, Energy consumption, e-Range		Chassis dyno testbed based on WLTP			Engine testbed and VECTO simulation				

AVL M.O.V.E

AVL on the way to EU7

M.O.V.E iS+ Euro 7 Extensions

1956"

AVL M.O.V.E System – new Solutions

AVL M.O.V.E - EURO 6 → EURO 7 → global RDE

AVL M.O.V.E - Light Duty System Overview Option A

AVL M.O.V.E Euro 7 Light Duty System Overview Option B – <u>Multi-Component Analyzer</u>

HEAVY DUTY PEMS TESTING With proven AVL M.O.V.E iS+ portfolio

AVL M.O.V.E Euro 7 Heavy Duty System Overview Option A – Global RDE Compliant

AVL M.O.V.E Euro 7 Heavy Duty System Overview Option B – Multi-Component Analyzer

AVL M.O.V.E – THE RDE Testing Solution

Global "RDE" support	 Modular concept Extensions/Alternatives/ Options available to cover all vehicle applications, worldwide RDE regulations and R&D
Future safe	 Improvement of standard technology to ensure lowest uncertainty New technologies to allow more than 20 components simultaneously Electrical Energy Measurement and Range Testing Wide range of ambient boundaries supported
Cost effective	 Re-use and extension of existing M.O.V.E iS+ possible Tailored solutions acc. to individual needs available
Efficient	 Guided and automated testing workflow Automated data evaluation and report generation Automated RDE testing process
Compliant	 All known legislative formulas implemented in MDT Certificated tool according legislative requirements Ready for corporate Data Management ISO 17025 & CEN

GASEOUS PEMS

AVL M.O.V.E FT - Highlights

- FTIR spectrometer for the measurement of NO/ NO2, CO/ CO2, NH₃ (Ammonia), N2O (Nitrous Oxide), HCHO (Formaldehyde) and more
- No liquid nitrogen (LN2) and no supply gases needed
- One box including pump and everything needed for the FTIR measurement
- Long-term gas calibration for each individual FTIR spectrometer with verified accuracy
- Small footprint and lightweight (~18kg)
- Stand-alone or as add-on to the well known AVL M.O.V.E test system
- Full integration into M.O.V.E System Control
- Efficiency gains for R&D: easy mounting + THC approximation + no calibration necessary.
- Ready for China 7.

AVL M.O.V.E FT – Technical Specification

Dimensions:	495 x 360 x 189 mm			
Weight:	~18 kg			
Power supply:	24V / 20 A max. w 5m HL			
Power consumption:	~150 W (after warm-up @ 20 °C, w			
	1m HL)			
Ambient temperature:	-10 °C to +45 °C			
Ambient pressure:	800 – 1,100 hPa			
Humidity:	5 – 90%			
Flow rate:	~5 l/min			
Response time:	< 2.5 s			
Data rate:	1 Hz			
Spectral resolution:	0.5 cm ⁻¹			

AVL GAS ADVANCED

- Recommend for existing und upcoming RDE legislations:
- Uses standard analyzer technology: Low NOx NDUV (NO/ NO2), NDIR (CO/ CO2, N2O optional for R&D purpose)
- Based on GAS PEMS iS+ with focus on high NOx accuracy at the low range and low drift
- Automated linearization
- NEW TEC coating
- NEW Purge Connection behind service flap for easier maintenance of condensate pump
- Weight: ~ 27kg

AVL GAS ADVANCED - Specifications

Gas Advanced NOx Specifications				
Measurement ranges (linearity check range, analyzer can still measure higher concentrations)	NO: 0 – 1,500 ppm (standard calibration) NO2: 0 – 1,000 ppm (standard calibration)			
Measurement accuracy	NO: 0 – 999ppm: +/-1ppm or +/-1.5% rel. 1000 – 1,500ppm and above: +-2% rel. NO2: +/-1ppm or +/-1.5% rel.; above 1,000 ppm: +- 2% rel.			
Zero drift / 4 hrs.	NOx: <u><</u> 1 ppm			

AVL M.O.V.E NH3 PEMS

- Low Measurement uncertainty: Accurate NH3 measurement over a wide ambient operating range
- Based on Laser Spectroscopy, Tunable Diode Laser, temperature stabilized
- Uses highly sensitive photo-based detector to ensure accuracy over the entire measurement range
- Heated above 170° to avoid sample artefacts/ condensation of chemical side products
- H20 compensation up to 40 vol. % H2O (~ 0.05ppm/ vol. % H2O)
- ADDON: if NH3 shall be measured in addition
- Fully integrated into System Control (<u>R19</u>, release on 23.10/23)

AVL NH3 PEMS - Specifications

			AVL 炎
	•		AVL *
a .		AVL M.O.V.E NH3	

NEW AVL M.O.V.E NH3 – Portable Emission Measurement System (PEMS)

AVL M.O.V.E (S+ Extension - Highly a

EDUBITY CONCLEVENCE INF Euro 7 draft proposel, published in November 2022, will raise the challenge of Real Driving Emissions (RDE) development, and Lesting, A reduction of estations (Intel and Vehicles are expected in parallet, anthent boundary Vehicles are expected in parallet, anthent boundary itesting conditions are extended and driving will be as per-hormal use². The conformity factor considering the measurement uncetainty will be eliminated. Lowest uncettainty of PEINS over the entire Euro? ambient do antitional challence is the through out all converses to an entire of challence is the through out all converses to an entire of challence is the through out all converses to an entire of challence is the through out all converses to an entire of challence is the through out all converses to a settion of challence is the through out all converses through the set of the through out all converses the converses of the converses of the through out all converses the converses of the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses through the converses of the converses of the converses of the converses through the converses of the con An additional challenge is that though not all requirements of the upcoming EURO7 legislation are defined yet, it shall come into force already in 2025 for Light Duty.

The AVL M.O.V.E. NH3 PEMS uses robust tunable diode laser spectroscopy to measure the NH3 concentration during RDE. The device is developed according to the expected Euro7 specifications. It is an extension of the well-known MOVE iS+ to address the upcoming Euro7 requirements.

Special focus was on lowest measurement uncertainty over the entire Euro7 ambient boundary range and on robustness.

- · Can be easily integrated into existing AVL M.O.V.E iS+ and combined with actual and upcoming M.O.V.E. devices, no need to purchase everything new
- · Accurate NH3 measurement within a wide ambient operating range
- · Robust due to the chosen analyzer technology and
- additional measures · Cost effective compared to other technologies when
- NH3 only shall be measured, e. g. for Euro7 Light Duty · User guided workflow including test preparation, test execution and data evaluation for high testing efficiency. Requires additional M.O.V.E. iS+ devices and tools

TECHNICAL DETAILS	
Measurement principle	Tunable Diode Laser (TDLAS)
Measurement value	NH3 (ppm)
Measurment range	0 – 1,500 ppm
Ambient operating range	-10 °C to +45 °C; 700 to 1,050 hPa (~ 0 – 3000 m)
Operating voltage	22 to 28.8 VDC/ appr. 350 W after warm-up
Accuracy	0 - 999: +-1.5 ppm or 1% rel. 1,000 - 1,500 ppm: +-2% rel.
Zero drift 🔭	≤ 1,5 ppm/ 4 hrs.
Weight/dimensions (WxHxD)	~ 17.5 / ~ 490 × 180 × 330 mm

PARTICLE MEASUREMENT

AVL M.O.V.E PN Advanced LD & HD On Road **Particle Counting for 10nm** particles

AVL M.O.V.E PN Advanced LD & HD On Road **Particle Counting for 10nm** particles

- EPC Advanced inside:
 - Measurement of 10/23 nm particle number concentration for Light and Heavy Duty
 - Higher sensitivity, ~ 3 times lower LOD (~ 1,000 #/cm³) compared with PN PEMS iS
 - Max. measurement range: 7*10⁷ #/cm³ (2* times higher)
 - New electronic filter supports further improved correlation
 - Extended linear sensor range to better cope with cold start peaks
 - <u>Upgrade</u> of existing devices possible

New EPC Advanced

INTEGRATION

System Control Advanced

"Heart" of AVL M.O.V.E

- Robust design for mobile use, MIL Standard
- Wide operating temperature range (-20 ... 60 °C)
 - **External digital GNSS (=GPS) and ambient sensors**
 - can be calibrated w/o System Control
- 2*times better computing power compared to the predecessor
- Integrated smart battery to avoid data loss
- TPM Chip for solid state disc encryption to support IT security needs
- Seamless and automated RDE process with the AVL In-Vehicle Data Management Solution
- Central operation of devices and data acquisition
- Secure data transfer with signed certificates

System Control Advanced – Technical Specs

Main Specification

CPU: Intel® Core[™] i3-9100HL 256GB SSD

2x 1000Base-T Ethernet on 10-port Gbit-Switch Wi-Fi 5 (802.11/a/b/g/n/ac) Security: TPM 2.0

Backup Energy: Smart battery integration

Interfaces

Frontside:

- 2x standard USB plugs (Type A)
- 1x Standard Display port
- 1x Standard DVI port
- 2x Standard Ethernet ports

Backside:

- 4x USB 3.1 Fischer plugs
- 2x Standard USB 3.1 plugs
- 1x Power In
- 8x Ethernet (ODU)
- 1x RS232

AVL M.O.V.E QUALITY STATION Boost your Efficiency in PEMS testing

Automated Checks (via System Control):

- Response Time checks
- Linearity Checks with AVL GDU Dividers (incl. new GDU SL)
- Automated pre-/ post test, zero/ span checks with single <u>and</u> mixed gases
- Connection of up to 10 single gas cylinders possible + Synthetic Air/ N2 in

All AVL M.O.V.E GAS PEMS systems are

supported :

- GAS PEMS 493/ iX
- GAS PEMS iS/ iS+
- FID iS+
- Will remain compatible with future AVL MOVE devices

POWER SUPPLY

Power Supply

M.O.V.E Power – Flexible Power Solutions

- Max. 2 measurements devices in addition to EFM and System Control:
- **Power Out:** 2*30A, 3*10A + 5*Ethernet
- Support of Li-Ion batteries only (no AGM)
- Weight: ~2kg

- Up to 4 measurements devices in addition to EFM and System Control:
- Power Out: 4*30A (from Rev. 15 on), 4*10A, 2*2A power outputs + 5*Ethernet
- Weight: ~ 5kg
- "Wired" Remote on/ off with SoC (voltage) indication
- Support of Li-Ion <u>or</u> AGM batteries

Power Supply – EURO7/ EURO VI/ 6e

Battery box w 4 Li-Ion

100A MV ChargeMaster

- Up to 4 Boxes with each 4*Li-Ion can be directly connected to the EBOX iS+
- Hot swap of batteries possible: pre-request: either battery charger or a battery box with remaining capacity
- Nominal capacity: 150Ah for ~ 3.5 to 4hrs testing (3 devices);
- Weight of the battery box ~ 30kg incl. 4 batteries

Embedded battery management with data monitoring: Optionally one pcs. for each location?

Pack Specifications					
Nominal Voltage	25.9 V				
Capacity (Nominal) @0.5C	150.8 Ah ±6%.				
Energy	3905 Wh				
Weight	29.6 kg. ±500g.				
Size, Max. (L x W x H) mm	499x x 394 x 192 ±6				
Operating Specifications					
Operating Voltage	21.0 V to 29.4 V				
Charge Voltage	(Max . 29.4 V) ±0.6V				
Discharge End Volt.	21.0V				
Operating Temperature: Discharge Charge	-20°C to 50°C - 10°C to 45°C				
Max. Discharge Current	72A @ (-10°C-55°C) 100 A ±5A (Peak)				
Max. Charge Current	72A @ (-10°C-45°C) 100 A ±5A (Peak)				

MOUNTING

Flexibility: Towbar, Trunk, partly on Towbar in Trunk

Some Pictures..

Some Pictures

Installation Examples

AVL Brake Emission Testing Solution

AVL Aerosol & Gas Measurement Solution

Painsi, Alexander

AVL List GmbH

Agenda

Introduction

Global Technical Regulation

AVL Brake Emission Testing Solution

Tire Wear Measurement

Introduction

Alexander Painsi Senior Business Development Manager

Aerosol & Gas Measurement

alexander.painsi@avl.com

Over 22 years of engine testing experience in different global positions.

- Development Engineer
- Technical Trainer
- Product Manager
- Senior business development manager for Aerosol & Gas measurement at AVL.

Work focus: Particle and RDE measurement for all areas (LD,HD,NRMM)

Particulate Sources

PM10 Sources and Distribution Neckartor (Stuttgart)

Source: LUBW, www.feinstaubalarm.stuttgart.de

United Nations Global Technical Regulation (UN GTR)

Way to United Nations Global Technical Regulation (UN GTR)

Sources Pictures: //www.audi.com; //www.bmw.com; //www.ford.com; //www.gm.com; //www.stellantis.com; //www.link.com; //www.tsi.com; //www.dekati.com; //www.itt.com; //www.brembo.com; //www.continental.com; //www.tmdfriction.com; //www.mat-gmbh.de; //www.tu-ilmenau.de

/ 7

WLTP – BRAKE

WLTP – BRAKE

Cycle is split in 10 sections with intermediate cooling between (40°C) which leads to extended testing time.

Way to United Nations Global Technical Regulation UN GTR – WLTP Brake Emission Procedure

Way to United Nations Global Technical Regulation Definition of Measurement Methodology

Particulate Mass – PM

- Critical property with long-established correlation with adverse health effects (<u>HEI</u>, <u>WHO</u>).
- Key concern given the high emission levels (both PM_{2.5} and PM₁₀) relative to exhaust and their relevance even for electric vehicles.
- Several studies verified the feasibility of representative measurements of PM₁₀.
- → Gravimetric quantification of both $PM_{2.5}$ and PM_{10} is <u>required</u>.

Particulte Number – PN

- Strong interest in PN measurements mainly due to concerns about elevated emission of volatile nanoparticles
- ➔ Solid PN & Total PN measurement necessary
 - Methodology largely based on exhaust
 - Focus on 10 nm 2.5 μm range

AVL Brake Emission Measurement Solution Measured BW emission levels

- BW emissions from three reference brake systems (#1 to #3; all front brakes) were measured
- Emission Results:
 - Brake System #1 with NAO pads NAO
 → close to EU7 Proposal*
 - Brake Systems with ECE Pads ECE
 → clearly above EU7 Proposal*
 - PN solid vs. total ... for the WLTP-Brake Cyle(!)
 → close correlation observed at AVL Testbed

Conclusion:

- Technical risk for OEMs to achieve limits OEMs
- High Testing need → gain knowledge about emission levels of brake systems

* Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL 10^{th} of November 2022; EU7 Proposal*: PM_{10} : 7mg/km

AVL Brake Emission Measurement Solution Development according GTR Requirements

AVL Brake Emission Testing Solution

AVL PM Sampler

- GTR compliant particulate mass measurement ٠ device
- Particulate Mass Measurement: •
 - PM10 & PM2.5
- Cyclones for PM10 & PM2.5 included
- PM Filter Size 47mm

D 0

 \propto

0

- Flow Rate: 3 17 ln/min
 - Accuracy: <±2%
- Real-time compensation for pressure, temperature • and humidity

AVL Brake Emission PM Sampler xChange

- Filter changer meets current GTR requirements (GTR status 13.01.2023)
 - Sample gas path identical to current PM sampler
 → no flow split!
- maximum flexibility and efficiency

Change

Sampler

AVL PM S

Emission

Brake

- Test field utilization 24/7
- automated loading of up to 16 filters (e.g. overnight or over the weekend)
- PM measurement with up to max. 16 filters per size (2.5/10µm)
 - Optimized with regard to particle losses:
- Optional: Filter identification via RFID \rightarrow Compatibility with weighing robot

AVL APC xBrake SPN & TPN

- Core Sensor AVL CPC 10nm
- Lower particle size limit: 10nm ٠
- Measuring range:

ΓPΝ

Ø

- 0 30,000 p/cm³ (single count mode)
- PCRF Tot: 20, 100, 1000 •
- Flow rate: 8 l/min •
- Total Particle Number (TPN): •
 - No Catalytic Stripper •
 - No heating of sample gas
 - Active cooling of PND1 •

AVL Brake Emission Sampling System

AVL Brake Emission Sampling System

- GTR compliant Brake Emission Sampling System GTR
- Inner Diameter 200mm
- Flow Rate: 300 1500 m³/h
 - Flow Straightener in Enclosure implemented
- Sampling: modular design
 - AVL recommendation: Straight Sampling Probes configurations
 - Other probe (90° bend) available (e.g. Flange solution)

Active Dyno

AVL provides test system concept with active dynos which enables to transfer Co-Simulation to brake emission testing.

Compact Footprint

AVL concepts follows min. footprint which allows to max. testing capability by limited space requirements.

Integrated Solution

Comprehensive integrated solution for test- and emission measurement equipment.

Test System Layout Examples

Cover Additional Testing Effort

Upgrade of Existing Testbed Infrastructure Brake Emission Test System incl. Containerized Facility

Painsi, Alexander | | 25 September 2024 | AVL 🐲

Engineering

/ 22

AVL Particle Measurement

- Market leader in particulate measurement
 - >50 years experience
 - > 17.000 installed particulate measurement devices
- Complete product portfolio for Brake emissions testing
- Strong application knowhow on brake emissions
- AVL has an active role in GTR 24 (Brake Emission) discussions and best-in-class measurement results.

Inputs - Responsibilities

- Deliver to AVL the relevant channels/data for post-processing
- Piping adaptions for the enclosure
- Adaption of the mechanical interface to the enclosure
- Etc.

- Device handling
- Test guidance Pre/Post routines
- Time synchronisation
- Data storage

- and reliable brake emissions measurement Sampling probes + flow measurement + Post-processing)
- Automation for Emissions Devices (pre/main/post)
- Emissions data recording & relevant parameters from the testbed
- Data post-processing (Concerto)

Inputs/Responsibilities

Outlook & Conclusion

Brake Wear - Real Driving Emissions (RDE) Measurements

- Investigating the effects of different driving characteristics and ambient conditions
- Real world temperature and emission behaviour
- Geographically varying emissions influence of descents
- Fill knowledge gaps regenerative braking
- Driver for legislation

Brake Wear - Real Driving Emissions (RDE) Measurements

Conclusion

- Non-Exhaust Emissions → Introduction with EU7 (Brake Emission & Tyre Abrasion)
- Establishment of a new and complex measurement method
- AVL supports with state-of-the-art instrumentation and methodology
- RDE approach for Brake Emissions → Announcement already in EU7
- Further cooperative research efforts needed (on Brake & Tyre Abrasion/Emission)

AVL References

- > CATARC
- > VETC
- ≻ IAV
- > AUDI
- > DAIMLER
- > BMW
- ➢ BREMBO
- > IDIADA
- TecSA
- JAGUAR LANDROVER

Obrembo

厦门环境保护机动车污染控制技术中心

Xiamen Environment Protection Vehicle Emission Control Technology Center

Mercedes-Benz

Applus[⊕] automoti engineeri

From Tire Abrasion to Tire Emission The AVL View

Painsi, Alexander

AVL view on future of EU7 – From Tire Abrasion to Tire Emission

*Publication of EU7 Main regulation; 8^{th} of May 2024

AVL view:

- EU7 implementation with convoy testing or Lab testing drum method (Nov. 2026) --> Phase I
 - + well known method
 - + fast implementation possible
 - impact of environmental conditions and road surface
 - Poor Repeatability
 - Huge testing amount \rightarrow consumes a lot of testing capacity

Correlation between convoy testing and lab testing (already discussed in PMP) to be demonstrated

- + Lab testing ensures better repeatability
- + stable environmental conditions
- + fixed and comparable drum surface
- + high repeatability
- high acquisition costs
From Tire Testbed to Tire Emission

Tire Testbed

- Roating drum
- Steerabel wheel suspension Fx, Fy, Fz
- Stable environment repeatable testing

Tire Emission Testbed

- Conditioned cooling air
- Particle Sampling System (Enclosure & Aerosolpiping)
- Non Exhaust Emission Measurement instruments
 - PM
 - PN

Enclsoure

PM & PN Pasuremen

Thank you

www.avl.com

AVL Ultrafine Particle Monitor

AVL Aerosol Measurement Technology Portfolio

WHO Guidelines and the Introduction of Ultra Fine Particles

Global Guidelines and the Extension to Ultra Fine Particles

Particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxid and carbon monoxide

Latest Release: 2021

Air pollution caused <u>4.2 million premature deaths</u> worldwide in 2019. (WHO, <u>Link</u>)

Governments globally search for countermeasures to reduce the economic burden caused by air pollution (OECD: <u>21 billion USD in 2015</u>, <u>LINK</u>)

Air Pollution Index: https://waqi.info/

Source: web; 25.04.23; WHO releases updated Global Air Quality Guidelines (rehva.eu) Air Quality Guidelines (AQG) include + cont. limit refinement : SO_2 , NO_2 , O_3 , CO, PM_{10} , $PM_{2.5}$

UItra **F**ine **P**articles(UFP) = <100nm) for the 1st time introduced as "metric of interest"; recommendation to expand container equipment by UFP devices due to shortcomings of other methods

Black Carbon (BC) and/or Elemental Carbon (EC) are also gaining in importance. These must be systematically measured in order to establish standards and derive limit values.

Global Guidelines and the Extension to Ultra Fine Particles

WHO global air quality guidelines

Particulate matter (PM_{2.5} and PM₁₀), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide

Latest Release: 2021

Air pollution to be on par with other major health risks: unhealthy diet, smoking tobacco

Air pollution increases: morbidity and mortality from cardiovascular & respiratory disease and lung cancer

Governments globally search for countermeasures to reduce the economic burden caused by air pollution

Source: web; 25.04.23; WHO releases updated Global Air Quality Guidelines (rehva.eu) Air Quality Guidelines (AQG) include + cont. limit refinement : SO_2 , NO_2 , O_3 , CO, PM_{10} , $PM_{2.5}$

Traditional mass-based measurements are not fully representative: recommendation expand container equipment by UFP devices

Harmonization of UFP measurement procedure : CEN 16976 – final version expected in 2024

EN 16976 = technical specifications: e.g. measurement range, working principle, calibration procedure, ...

Source: Seinfeld, J.H.; Pandis, S.N., Atmospheric Chemistry and Physics; John Wiley and Sons, 1998

Peak performance condensation particle counting

AVL UltraFine Particle Monitor

Expertise

... in Particle Number Counting:

- 15+ years in the field of emission testing
- Installed Base: 1000+ units worldwide
- Applications: Automotive, Non-Road Mobile Machineries and Aviation
- Global Customer's: OEM's, Tier 1, Legal Authorities (e.g.JRC), Universities, Institutes
- Global available service and repair centers

AVL Strengths & USPs

Laminar full flow butanol-based CPC: 100% AVL Technology

Fully compliant to the EN 16976 requirements and specifications

ACTRIS compliance approved

Automatic re-boot functionality ensures consistent data flow

Advanced drift detection leads to highest data quality

Very robust optical components tested with harshest aerosol compositions

-20E+01 p/ccm

Simplified component access for a straightforward maintenance, e.g. wick exchange

Expertise

... in Particle Number Counting:

- 15+ years in the field of emission testing
- Installed Base: 1000+ units worldwide
- Applications: Automotive, Non-Road Mobile Machineries and Aviation
- Global Customer's: OEM's, Tier 1, Legal Authorities (e.g.JRC), Universities, Institutes
- Global available service and repair centers

Performance Evaluation for ACTRIS Compatibility

of

Condensation Particle Counter

Date of issue:	2024-01-29	
Date of Calibration	2023-11-13	
Instrument Model	AVL Ultrafine Particle Monitor	
Evaluating Unit	WCCAP, Leipzig, Germany	

Performance Evaluation Results:

Performance Characteristics	Criteria	CPC1	CPC2	CPC3	Unit
Detection efficiency at 40 \pm 10 nm	$\geq 95\%$	102	103	101	%
Particle diameter where efficiency is $\geq 50\%$	$D_{50}=10\pm1~\mathrm{nm}$	10.31	10.27	10.29	$\mathbf{n}\mathbf{m}$
Detection efficiency at < 20 nm	$\geq 90\%$	97	99	95	%
Concentration response (linearity)	$100\% \pm 5\%$	101	101	100	%

Expertise

... in Particle Number Counting:

- 15+ years in the field of emission testing
- Installed Base: 1000+ units worldwide
- Applications: Automotive, Non-Road Mobile Machineries and Aviation
- Global Customer's: OEM's, Tier 1, Legal Authorities (e.g.JRC), Universities, Institutes
- Global available service and repair centers

Monthly diurnal cycle from 2 individual 6 months campaigns (2022-2024)

Device Experiences from multiple Measurement Campaign

- Focus: November June
- Short-term max. UFP concentrations up to 1.5 E+05 #/cm³
- After the device installation only a re-filling of the operating fluid was necessary
- No error, no warnings no other operator interaction was necessary
- Issues with competitive station CPC were identified with drift detection and underlined by manufacturer recalibration
- Currently multiple campaigns ongoing in Graz & Vienna.

10 week concentration statistics for Graz and Vienna

Thank you

www.avl.com f in Y D

(BBBRT)

Johannes Murg

AVL

Group Product Manager Aerosol and Gas Measurement AVL List GmbH, Graz

johannes.murg@avl.com

Light Duty CVS SL System for Future Legislation and beyond

Rongxin Gu 顾荣欣

Legislation: Passenger cars 2018 – 2025 (expected)

Euro-7 Update

CLOVE = Consortium for Low Vehicle Emissions

Euro 7	Light-Duty	Heavy-Duty
Implementation date	Q4 2026 New types / Q4 2027 All vehicles	Q2 2028 New types / Q2 2029 All vehicles

E	uro 7	Light-	Duty			Heavy	-Duty		
Implementatio	n date	Q4 2026 Ne	w types / Q4	1 2027 All ve	ehicles	Q2 2028 Ne	w types / Q	2 2029 All vo	ehicles
	Limit	wie EU6 mg/k	m / #/km, no e	mission budge	ŧ	-50% of EU-\	/I mg/kWh / #	/kWh, no emiss	sion budget
	Fuel	separate Diese	el and Gasoline,	, no harmoniza	tion	-			
	Pollutants Gaseous	CO, NOx, THC	, NOx+THC, NM	1HC, NH₃		CO, NOx, NMC HCHO will be	OG, CH ₄ , NH₃ a reviewed 2027	as mass, N ₂ O, , no Idle NOx	
Tailpipe	Pollutants PM/PN	PM, PN10				PM (only in W	HTC/WHSC), P	N10	
Emission	based on	WLTP and RDE	E NOx and PN w	vith CF (UNR-1	68)	WHTC/WHSC,	RDE all exce	pt PM and hig	her limits
	RDE Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	RDE Altitude	700m extende	d 1,300m			∼ 1,700 m (ba	ased on abs. p	ressure)	
	RDE Driving	Euro 6 limitati	ons with CF, wi	de open road		Euro VI limitat	tions, 6% pow	er threshold, w i	ide open road

E	uro 7	Light-	Duty			Heavy	-Duty		
Implementatio	n date	Q4 2026 Ne	w types / Q	4 2027 All ve	hicles	Q2 2028 Ne	w types / Q	2 2029 All v	ehicles
	Limit	wie EU6 mg/ki	m / #/km, no c	emission budge	ŧ	-50% of EU-\	/I mg/kWh / #	/kWh, no emis	sion budget
	Fuel	separate Diese	el and Gasoline	, no harmoniza	tion	-			
	Pollutants Gaseous	CO, NOx, THC	, NOx+THC, NI	MHC, NH ₃		CO, NOx, NMC HCHO will be	OG, CH ₄ , NH₃ a reviewed 2027	as mass, N ₂ O, , no Idle NOx	
Tailpipe	Pollutants PM/PN	PM, PN10				PM (only in W	HTC/WHSC), P	N10	
Emission	based on	WLTP and RDE	E NOx and PN v	vith CF (UNR-16	58)	WHTC/WHSC,	RDE all exce	pt PM and hig	her limits
	RDE Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	RDE Altitude	700m extende	d 1,300m			∼ 1,700 m (ba	ased on abs. p	ressure)	
	RDE Driving	Euro 6 limitati	ons with CF, w	i de open road		Euro VI limitat	tions, 6% pow	er threshold, -w	ide open road
Non-Tailnine	Brake wear	7mg/km and 11mg/km an	l 3mg/km (PE Id 5mg/km (P	EV) PEV)					
emissions	Tire micro-Plastic	Yes				Yes			
	EVAP	1.5g instead of	of 2.0g, Re-Fue	ling test		no			

E	uro 7	Light-	Duty			Heavy	-Duty		
Implementatio	n date	Q4 2026 Ne	w types / Q4	1 2027 All ve	hicles	Q2 2028 Ne	w types / Q	2 2029 All v	ehicles
	Limit	wie EU6 mg/ki	m / #/km, no e	mission budge	ŧ	-50% of EU-V	I mg/kWh / #	/kWh, no emis	sion budget
	Fuel	separate Diese	el and Gasoline,	, no harmoniza	tion	-			
	Pollutants Gaseous	CO, NOx, THC	, NOx+THC, NM	1HC, NH₃		CO, NOx, NMO HCHO will be r	G, CH ₄ , NH ₃ a eviewed 2027	a <mark>s mass, N₂O,</mark> , no Idle NOx	
Tailpipe	Pollutants PM/PN	PM, PN10				PM (only in WH	HTC/WHSC), P	N10	
Emission	based on	WLTP and RDE	E NOx and PN w	vith CF (UNR-16	58)	WHTC/WHSC,	RDE all exce	pt PM and hig	her limits
	RDE Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	RDE Altitude	700m extende	d 1,300m			∼ 1,700 m (ba	sed on abs. p	ressure)	
	RDE Driving	Euro 6 limitati	ons with CF, wi	de open road		Euro VI limitat	ions, 6% pow	er threshold, -w	ide open road
Non-Tailpipe	Brake wear	7mg/km and 11mg/km an	l 3mg/km (PE Id 5mg/km (P	V) EV)					
emissions	Tire micro-Plastic	Yes				Yes			
	EVAP	1.5g instead of	of 2.0g, -<mark>Re-Fue</mark>l	ling test		no			
CO ₂ , Energy con	sumption, e-Range	Chassis dyno t	estbed based o	on WLTP		Engine testbed	and VECTO s	imulation	

E	uro 7	Light-	Duty			Heavy	-Duty		
Implementatio	n date	Q4 2026 Ne	w types / Q4	2027 All ve	ehicles	Q2 2028 Ne	w types / Q	2 2029 All ve	ehicles
	Limit	wie EU6 mg/kr	n / #/km, no e	mission budge	ŧ	-50% of EU-V	/I mg/kWh / #	/kWh, no emiss	ion budget
	Fuel	separate Diese	el and Gasoline,	no harmoniza	tion	-			
	Pollutants Gaseous	CO, NOx, THC,	NOx+THC, NM	1HC, NH ₃		CO, NOx, NMC HCHO will be i	OG, CH ₄ , NH ₃ a reviewed 2027	ns mass, N ₂ O, , no Idle NOx	
Tailpipe	Pollutants PM/PN	PM, PN10				PM (only in Wi	HTC/WHSC), P	N10	
Emission	based on	WLTP and RDE	NOx and PN w	ith CF (UNR-1	68)	WHTC/WHSC,	RDE all exce	pt PM and hig	her limits
	RDE Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	RDE Altitude	700m extende	d 1,300m			~ 1,700 m (ba	ased on abs. p	ressure)	
	RDE Driving	Euro 6 limitatio	ons with CF, wi	de open road		Euro VI limitat	cions, 6% powe	er threshold, -wi	de open road
Non-Tailpipe	Brake wear	7mg/km and 11mg/km an	3mg/km (PE d 5mg/km (P	V) EV)					
emissions	Tire micro-Plastic	Yes				Yes			
	EVAP	1.5g instead o	f 2.0g, Re-Fuel	ing test		no			
CO ₂ , Energy con	sumption, e-Range	Chassis dyno t	estbed based o	n WLTP		Engine testbed	d and VECTO s	imulation	
OBM (On Board	d Monitoring)	NOx, PM, ₩H ₃	ŧ			NOx, PM, NH	3		
Anti tampering]	Yes				Yes			

E	uro 7	Light-	Duty			Heavy	-Duty		
Implementatio	n date	Q4 2026 Ne	w types / Q4	4 2027 All ve	ehicles	Q2 2028 Ne	w types / Q	2 2029 All v	ehicles
	Limit	wie EU6 mg/kr	m / #/km, no c	emission budge	ŧ	-50% of EU-V	/I mg/kWh / #	/kWh, no emis	ion budget
	Fuel	separate Diese	el and Gasoline	, no harmoniza	ition	-			
	Pollutants Gaseous	CO, NOx, THC	, NOx+THC, NN	MHC, NH ₃		CO, NOx, NMC HCHO will be r	OG, CH ₄ , NH ₃ a reviewed 2027	as mass, N ₂ O, , no Idle NOx	
Tailpipe	Pollutants PM/PN	PM, PN10				PM (only in WI	HTC/WHSC), P	N10	
Emission	based on	WLTP and RDE	Light-Duty 2026 New types / Q4 2027 All vehicles EU6 mg/km / #/km, no emission budget arate Diesel and Gasoline, no harmonization NOx, THC, NOx+THC, NMHC, NH ₃ PN10 TP and RDE NOx and PN with CF (UNR-168) (-7°C) 0°C +35°C (- m extended 1,300m to 6 limitations with CF, wide open road g/km and 3mg/km (PEV) mg/km and 5mg/km (PEV) fg instead of 2.0g, -Re-Fueling test ssis dyno testbed based on WLTP k, PM, NH ₃		68)	WHTC/WHSC,	RDE all exce	pt PM and hig	her limits
	RDE Temperature	(-7°C)	0°C	+35°C	(+38°C)	-	-7°C	~ +35°C	-
	RDE Altitude	700m extende	d 1,300m			∼ 1,700 m (ba	ased on abs. p	ressure)	
	RDE Driving	Euro 6 limitatio	ons with CF, w i	i de open road		Euro VI limitat	tions, 6% pow	er threshold, w	ide open road
Non-Tailnine	Brake wear	7mg/km and 11mg/km an	3mg/km (PE d 5mg/km (P	EV) PEV)					
emissions	Tire micro-Plastic	Yes				Yes			
	EVAP	1.5g instead o	of 2.0g, Re-Fue	ling test		no			
CO2, Energy co	nsumption, e-Range	Chassis dyno t	estbed based o	on WLTP		Engine testbed	d and VECTO s	imulation	
OBM (On Boar	d Monitoring)	NOx, PM, NH ₂	÷			NOx, PM, NH	3		
Anti tampering]	Yes				Yes			
Durability-Emiss	ion and Durability	Yes				Yes			

Euro 7 Legislation:

- After 5 years of consultations, meetings and documents, Europe has reached a general decision about Euro 7. Considering the amount of work done, the outcome is low.
 - It doesn't meet the European Green Deal.
 - It might fail the up-coming air quality standards.
- For pollutant tailpipe emissions there are:
 - Challenges for heavy duty vehicles
 - Only minor improvements for light-duty vehicles.
- Improvements are for e-mobility, brake wear, tier micro plastic and On-Board Monitoring.
- <u>Implementing (technical) details are still open</u> <u>und shall be defined until mid 2025.</u>

Euro-7 – Timeline (Preliminary for LDV Implementing act)

Euro-7 – Timeline (Preliminary for HDV Implementing act)

EU6e/EU7 Evaporative Emission Requirement

GTR-19 Summay

GTR-19 – Soak Requirements

, <u>t</u>) t

DIFFERENT SOAK DEMANDS FOR DIFFERENT WORKFLOWS

May requires additional SOAK areas, SHED functionality or conditioning container solution

New SHED temperature settings for SOAK procedures and combined SOAK/Diurnal test templates required

GTR-19 – Vehicle Conditioning

BAKING FUNCTION FOR VEHICLES OR VEHICLE COMPONENTS

The vehicle shall be prepared in accordance to paragraphs 5.1.1. and 5.1.2. of Annex 7 to Regulation No. 83-07. At the request of the manufacturer and with approval of the responsible authority, non-fuel background emission sources (e.g. paint, adhesives, plastics, fuel/vapour lines, tyres, and other rubber or polymer components) may be reduced to typical vehicle background levels before testing (e.g. baking of tyres at temperatures of 50 °C or higher for appropriate periods, baking of the vehicle, draining washer fluid).

High temperature request of e.g. 50°C or higher... Additional baking containers or enclosures required

GTR-19 Vehicle Pre-conditioning

CANISTER CONDITIONING - PURGE

New additional EVAP-specific pre-conditioning cycles. The phases are coming from the WLTC phases, but the sequence is different compared to the WLTC test runs for tailpipe emissions.

		Low 3	Medium 3-2	Low 3	Low 3		Medium 3-	-2	Low	3
	WLTC	mmmm	mm	y mm n	mm	mm	mm	MN	mm	MM M
EU	EVAP	Low 3	Medium 3-2	High 3-2 N	ledium 3-2					
		M MMM M	MMM	m m	mm					

New EVAP pre-conditioning cycles in Chassis dyno automation system.

For OVC-HEV, emission measurement might be required for emission and fuel consumption type approval.

GTR-19 Testing Calculation

DIURNAL SHED VEHICLE TESTING & CALCULATION

Old calculation

 $M_{HS} + M_{D1} < 2.0 \text{ g (Total)}$

HS = Hot SoakD = Diurnal Enhanced workflow, 2 days Diurnal Test including a more complex and new final calculation

New calculation

 $M_{HS} + M_{D1} + M_{D2} + PF + PF < 2.0 g (EU 7: 1.5 g)$

(Instead of reducing the Limit they modify the calculation \rightarrow same effect)

GTR-19 Permeability Factor (PF)

DETERMINATION OF PERMEABILITY \rightarrow PF

PF Permeability Factor

- Additional VV/VT-SHED Mini / Micro for tank rigs and components
- Additional SOAK enclosures with stationary temperature conditioning (40°C) – Container Solutions
- $PF = HC_{20w} HC_{3w}$
- Assigned Permeability Factor (APF) (120 mg/day)

GTR-19 Canister Aging

FUEL VAPOR CANISTER AGING AND STABILISATION

Combined test system setup Butane + Fuel

Fuel vapor/N₂ stabilization (300 cycles) followed by 5 cycles Butane/N₂

 \rightarrow BWC validation

GTR-19 Typical Lab Setup – Canload 2L-BF

Typical lab setup for standard vehicle conditioning as well as for long-term canister aging and stabilization.

It fulfils all global regulation and provides R&D options like

Dynamic canister purge

Dynamic canister loading profiles

Heated housing with online gas mixture validation

High accurate balances 0.01g

High purge rate capability for PHEV (boost pump simulation) up to 100 l/min

Integrated safety functions (%LEL sensor, active exhaust flow module with flow detection – dp, facility interface)

Etc.

AVL SlimLineTM Systems

AVL: Ready Today For Tomorrow

Emission CD

Devices/Systems:

- Engine On/Off detection
- Battery simulator for R&D

Devices

- Cooling fan
- 1 axle chassis dyno
- 2nd chassis dyno axle
- RDE drivers aid

Automation system:

- Drivers aid
- Test control computer
- Result reporting
- Hybrid UNR-101, CFR1066
- Repeating tests and parallelization of functions
- WLTP (GTR-15)
- Soak area charging software integration
- PEMS integration
- Road-2-Lab

CVS:

- Constant volume sampler
- PM sampler
- PN sampler 10nm (23nm)
- CVS for repeating tests
- CVS bags for 4 phases
- Heated exhaust transfer lines
- Tailpipe pressure control
- Flow Sonix dilution air flow

Emission analyzers:

- Diluted emission bench
- PEMS (+ validation on CD)
- Additional pollutants (FTIR, QCL)
- Pre-Post cat emission AMA R2, APC, Micro Soot

Energy measurement:

- Power analyzer propulsion B
- H₂ consumption (scale)
- Current clamp 12V battery

AVL 💑

Hybrid Vehicle Testing

Hybrid - NOVC (Not Off Vehicle Charging):

The vehicle can move only by the E-motor and batteries are only charged by the IC-engine or breaking, no external charging

- The SOC (State of Charge) is measured before, during and after the test
- If the SOC before and after the test is:
 - the same, CO₂ and fuel consumption is as measured
 - different then a Δ SCO correction is applied

Hybrid - OVC (Off Vehicle Charging):

The vehicle can move only by the E-motor and batteries can be charged externally (Plug-In Hybrids)

- Testing is complex and time consuming:
 - <u>Charge Depleting mode:</u>
 - Test is started with a fully charged battery
 - One after the other test is executed until the battery is empty or the vehicle starts to charge the battery with the IC engine (reaching Charge Sustaining mode)
 - Charge Sustaining mode:
 - One WLTC test is executed
- A final CO₂ and Fuel Consumption result is calculated based on the measured CO₂ and fuel consumption values and the number of cycle driven and a charge utility factor.
- Pollutant emissions must be within the limits in all tests.

AVL Solution for EU 7 hybrid vehicle test

AVL Solution for EU 7 hybrid vehicle test

© AVL Emission Test Systems

Automation system

iGEM 2 Vehicle Online Data Display

Devices	Reports Bag Ar	nalysis						
+ →	System							
Bench Be		Bench		CDH	CDH	CDH	CDH	VAISALA_PTU300
EBH11 User: Rem Status: Star	► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ► ►	EBH13 User: Rer Status: Sta	note ndby	PTS User: Remote Status: Standby	CVS User: Remote Status: Standby	AVL489 User: Remote Status: Standby	CDA User: Remote Status: Standby	VAISALA_PTU300 RelHum 34.485
COL 980 ► 1100	Standby 0.440 ppm 4	NOX 936 ► 1050	5tandby 0.315	FilterFlow 59.990	Q_CVS 16.457 ^{m3/min}	PC_CoS 0.150	Velocity 0.000	T_AIR 24.420
CO2 44590 ► 50	Standby 20.00 ppm 4	NO 802 ► 900	Standby 0.270 ppm 4	DDFlow 0.002	P_CVS 98.350	PC_CoDc 15.000 _{p/cm3}	Force - 426.000	DEWTEMP 7.794
NOX 936 ► 1050	Standby 0.420	THC 713 ► 800	Standby 0.240 ppmC1 4	ProbeFlow 0.000 Vmin	T_CVS 323.150 ⊮	Integ. conc. PCRF corr. ****** p/cm3	DISTANCE 0.000	HUMIDABS 6.730
NO 3 ▶ 4	Standby 0.360	CH4 44 ► 50	Standby 0.015 ppmC1 2	FilterTemp 45.150	DiffPressure 13.500 KPa	PC_CoMw ****** p/cm3		P_AIR 988.176
THC ○► 0	Standby 0.002 ppmC1 0	NO2 4►5	Standby 0.007	DilAirTemp 24.520		Integration time *****		mbar
CH4 ○►0	Standby 0.004 ppmC1 0			TunnelTemp 45.812	Standb Standb Standb Standb y y y y y y			
O2 0►0	Standby 16.00 ppm 0			FilterDiffPressure -1.498	Clean Clean Clean Clean Standb			
NO2 0►0	Standby 0.002 ppm 0				Error 0.00 - CFVTemp 323.2 K CFVPress 98.35 kPa			
N2O 0►0	Standby 0.002 ppm 0			Actual Values ritter Volume	TailpipeFi 3.20 m3/min BagFillRate 0.00 l/min DilutionAi 300.2 K DilutionAi 13.25 m3/min		Error 0.00 - Fan Status Off - RIrLockStat On - Weight 1884 kg	

Automation system – iGEM 2 Vehicle

Calculated from user input

Read from CSV File

Transmission:	Manual	\sim
Shift schedule:	External	\checkmark
External Shift schedule:	GS input 150306	\checkmark

CSV File local, or on shared file server

	417A_V60_10020m1500_123
	1
gear	clutch
0	0
1	0
2	1
3	0
4	0
5	1
4	0
3	0
2	1
	gear 0 1 2 3 4 5 4 3 2 2 3 2

 Transmission:
 Manual

 Shift schedule:
 Dynamic

ynamic Gear Shift D	etermination Ir	nputs				
Rated power:	200	kW Idle speed:	700 1/min			
Number of gears:	5	- Rated speed:	3,300 1/min			
Engine full load curv	e: SpeedT	foPower	\checkmark			
ear Engine/Vehicle Speed Ratios Gear Minimum Engine Speeds						
ndv1	125 _	1	600 1/min			
ndv2	67 _	2	750 1/min			
ndv3	46 _	3	850 1/min			
ndv4	35 _	4	1,000 1/min			
ndv5	29 _	5	1,200 1/min			
ndv6	20 _	6	1,300 1/min			
	45		1 400			

AVL Solution for EU 7 hybrid vehicle test

AVL iGEM 2 Vehicle: ideal for RDE

- Full AVL tool chain integration
- Devices synchronization
- Automatic data management
- Automatic correlation report & status

Chassis dyno must support gradient simulation

Summary

AVL SlimLineTM

AVL SlimLine[™]

- Complete product line
 - Emission Bench AMA
 - Constant Volume Sampler CVS up to 40m³/min as standard
 - Particulate Sampler PSS
- Easy to operate with highest degree of automatic functions accordingly all worldwide legislations
- Fulfills current and foreseeable future worldwide emission legislation
- Smallest Footprint, only 1/3 of all others systems on the market

297 mm i.e. a show size EU 41 or US 8

AVL SlimLineTM

Before

After

AVL SlimLineTM Dilution Systems Reference: US CARB

CARB New Facility

AVL Scope: 9 LD CVS 4 HD CVS 30 Emission bench 7 LD Chassis dyno 3 HD Chassis dyno 2 MC Chassis dyno 5 Engine Dyno **4 SESAM FTIR** 4 SHED 16 Automation system Lab Management System

State of California's goal is to have a zero net energy facility

Worldwide Emission Supplier

Thank you

www.avl.com