CHASSIS DYNO OPERATIONS

27th November 2024

Chassis dynamometer testing

Building 31 (Churchill)

Building 12

Particulate number (PN) measurement (PN10)

- PN10 measurement has been our standard for many years.
- We use a combination of equipment:

- Measuring principle -
- Laser scattering condensation particle counting (CPC)

AVL APC

STÄHLE SAP2000

- BEV EV range and PHEV charge deplete only
- All cells to be equipped
- Written approval from:
 - EPA (USA)
 - IDIADA (EU + UN + India + Japan + RoW)
 - Brazil
 - South Korea
- Provisional Approval from:
 - VCA (EU + UN + India + RoW)

Particulate mass (PM) measurement

- Controlled temperature, dew point and monitored atmospheric pressure within the weighing chamber
- High Precision scales (accurate to 0.1μg)

- Automated PM filter weighing process; taking away chances of human error
- Easy traceability of filters using RFID

Real Driving Emissions (RDE)

Facility Resources

- Portable Emissions Measurement Systems (PEMS)
 - Gaseous Components CO, CO2, NO, NO2
 - Particulate Number (PN)
 - Exhaust Flow
 - Ambient Temperature & Humidity
 - GPS Speed & Altitude
- Vehicle Soaking from -10°C to 50°C
- Artificial Payload Testing

Real Driving Emissions

HORIBA VERIDRIVE

Principle	Quantum cascade laser infrared spectros	scopy (QCL-IR) + FID
Si ngle Range [ppm]	NH₃ 1500ppm CO (Low) 8000 ppm CO (High) 12 vol% CO2 20 vol% NO 2000 ppm NO2 800 ppm N2O 1000 ppm NH3 1500 ppm HCHO 50 ppm CH4 (Low) 2000 ppm CH4 (High) 10000 ppmC THC 10000 ppmC	HORIBA DBS—DN OR BUNDO MERCHON MEAGURE TO THE STATE OF

SPN10 – Condensation Particulate Counter

Particle Diameter	10 – 1000nm
Measurement Range	$0 - 5x10^7 \text{ #/cm}^3$

Facility Resources

- Climatic Controlled 4WD Dynamometer * 2
 - (Ambient to 42 °C)
- Ambient 4WD Dynamometer * 4
- Ambient RWD Dynamometer * 2
- Automated Robot Drivers * 8
- Vehicle Fuelling
- EV Charging

Sealed housing for evaporative determination (SHED)

- YORK SHED * 2 (B12)
- AVL SHED (B31)
- Measure Hydrocarbons from:
 - Fuel systems
 - Tyres
 - Other components
- Hot Soak, Diurnal, Onboard Refuelling Vapour Recovery (ORVR)
- Carbon Canister Loading (x3 B12 / x3 B31)

- EO10023 Possess 3 x Vehicle workshops with 23 Ramps.
- Supporting various teams such as Certification,
 Robustness, Warranty and Powertrain Gasoline and Diesel Calibration
- All workshops are reactive and prepared to support requests e.g.
 - Certification Preps
 - Warranty investigations
 - Electrical diagnosis and investigations
 - Emission test preparations
 - Major and minor component changes

