Workshop on Laboratory capacity to diagnose equine diseases in Asia and Pacific

Other diseases of importance and their diagnostic tests

Susanne Münstermann, WOAH consultant s.munstermann@outlook.de

World Organisation or Animal

Organisation Organización Mundial de Sanidad de la santé Animal Fondée en tant qu'OIE Fundada como OIE

mondiale

animale

Regional Workshop, Tokyo, 17 – 18 September 2024

List of content

- Equine herpesvirus 1
- Japanese encephalitis
- West Nile fever
- Nipah virus encephalitis

https://rr-asia.woah.org/en/events/equine-rhinopneumonitis-webinar/

Courtesy of Hiroshi Bannai

Equid alphaherpesvirus 1 and 4 infection

- -Equine Rhinopneumonitis (respiratory, abortion, neurological forms)
- -Virus shedding: nasopharynx, reproductive tract, aborted fetus
- -Notifiable in many countries

respiratory form

abortion form

neurological form

Host range

Equids

-domestic horses

-zebras

-donkeys

-mules

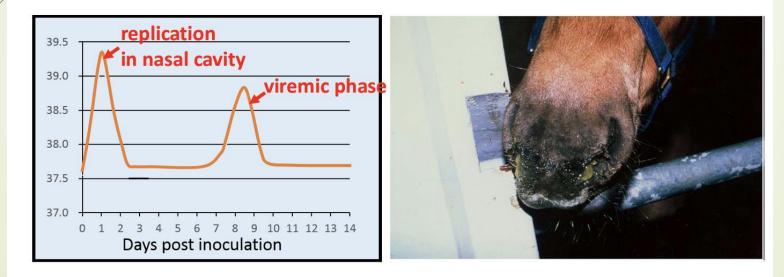
Non-equid perissodactyls -tapirs -rhinoceroses

and maybe more...

Geographical distribution

Europe	Asia	
North America	-Japan	-India
South America	-China	-Mongolia
Africa	-South Korea	-Kazakhstan
Australia, NZ	-Iran	and more

Everywhere except for Iceland



Respiratory form

-Pyrexia, nasal discharge, swelling of submandibular lymph node, ocular discharge, etc.

-Virus shedding: 1-3 weeks from infection

-Mostly affecting young horses (<3-yo)

Abortion form

-Most frequently from 9M to 11M of pregnancy

-Massive EHV-1 in fetus, placenta and amniotic fluid Transmission to other mares

Neurological form

Equine Herpesvirus Myeloencephalopathy (EHM)

-Pyrexia, followed by neurological signs
-Ataxia, recumbency, urinating incontinence
-Likely situations: event, introduction of new horses

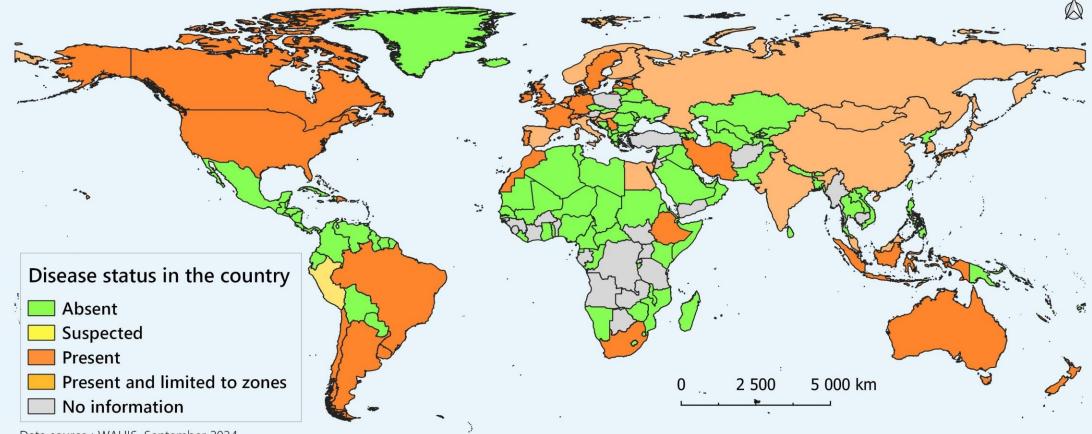
Unique nature of EHV-1 infection

-Ubiquitous

-High incidence of respiratory infection early in life

-Latency (persistence over lifetime)

-Frequent reactivation


-Same virus causes three forms of disease (respiratory, abortion, EHM)

-Asymptomatic infection

Even HHP horse is no exemption

Global distribution of equine rhinopneumonitis (equid herpesvirus-1) (2014-2023)

Data source : WAHIS, September 2024

Courtesy of Gregorie Bazimo, WAHIS

Table 1. Test methods available for the diagnosis of equine rhinopneumonitis infection with EHV-1 and their purpose

Courtesy of Ann Cullinane

	Purpose									
Method	Population freedom from infection	Individual animal freedom from infection prior to movement	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection - surveillance	Immune status in individual animals or populations post- vaccination				
	Identification of the agent									
Virus isolation	_	++	_	++	-	-				
PCR	_	+++	_	+++	_	_				
Direct Immunofluorescence	_	_	_	++	_	-				
Detection of immune response										
VN	++	++	_	++	+++	+++				
ELISA	+	++	_	++	++	++				
CFT	_	++	_	++	_	+++				

Key: +++ = recommended for this purpose; ++ recommended but has limitations; + = suitable in very limited circumstances; - = not appropriate for this purpose.

PCR = polymerase chain reaction;

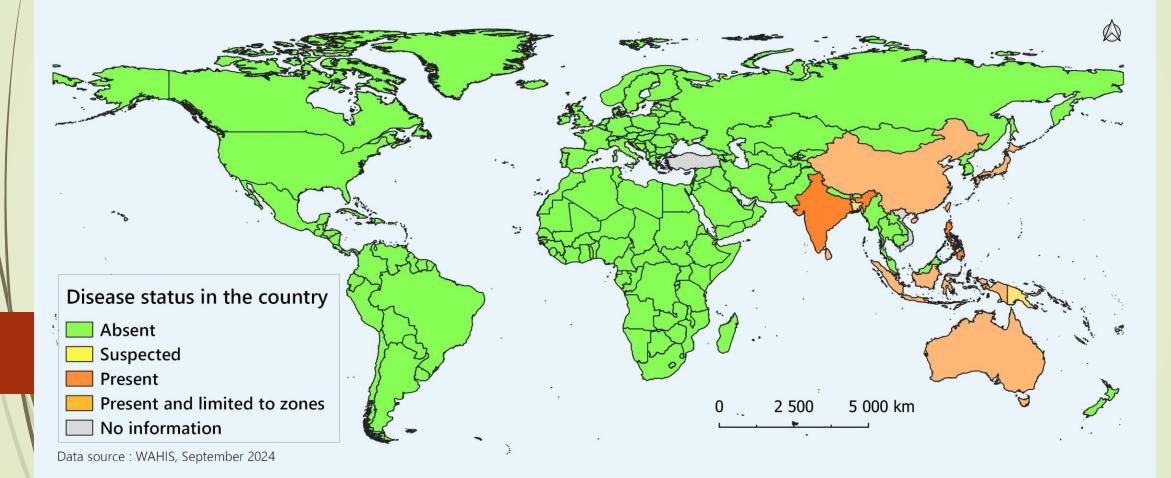
VN = virus neutralisation;

ELISA = enzyme-linked immunosorbent assay;

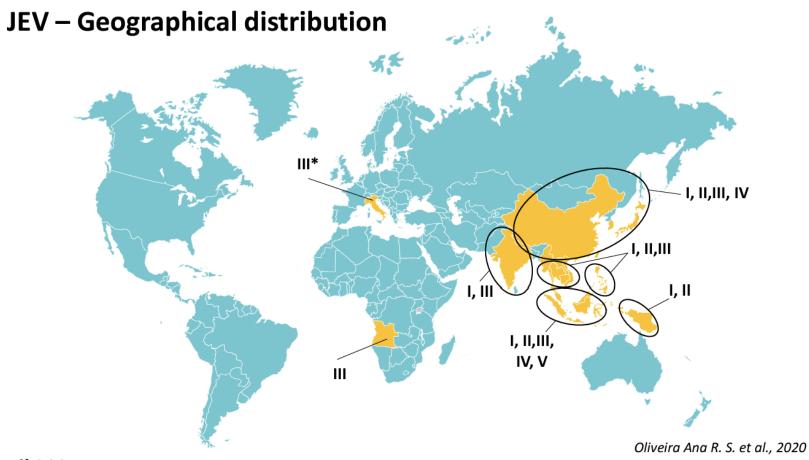
CFT = complement fixation test.

Update on EHV Diagnostic Tests in Manual

- Added method for Complement Fixation test
- Updated PCR primer/probes
- Updated recommendations of specific tests for different purposes
- Included justification of these recommendations
- Supplied template for validation data
- Included reference to new and evolving technologies

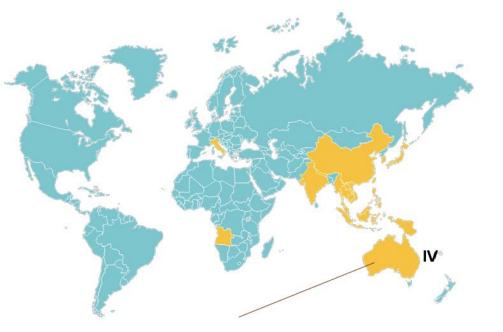


Japanese encephalitis


https://rr-asia.woah.org/en/events/zoonoses-affecting-equinesjapanese-encephalitis-west-nile-fever/

Global distribution of Japanese encephalitis (2014-2023)

Courtesy of Gregorie Bazimo, WAHIS


Courtesy of Camille Migné, Anses

<u>Until 2021 :</u>

- ightarrow Southeast Asia
- → *Italy : JEV detected in mosquitoes and birds collected in Northern Italy (no human case reported) (Platonov AE, et al., 2012; Ravanini P, et al., 2012)
- → Angola : Autochthonous JE with yellow fever co-infection in March 2016 (Simon-Loriere E., et al., 2017)

JEV – Geographical distribution

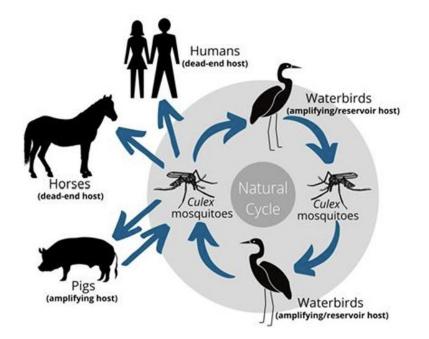
JEV outbreaks in Australia in 2022

Mackenzie John S. et al., 2022

NEW SOUTH WALES

NORTHERN

🛨 Outbreaks in pigs


WESTERN AUSTRALIA

Since 2022:

Outbreaks in pigs reported from February 2022 → March 30: Alpaca outbreak reported → May: Suspicion of equine infection (30) No cases have been definitively confirmed despite neurological signs and tests results

JEV – Transmission cycle

https://www.environment.act.gov.au

Pearce James C. et al., 2018

Mosquitoes vectors :

Cx tritaeniorhyncus (1st vector)

Cx annulirostris (Australia) Cx annulis Potential Cx bitaeniorhyncus Cx epidesmus Cx (Lu) fuscanus Cx fuscocephela Cx gelidus Cx infula Cx orientalis Cx pipiens Cx pseudovishnui Cx quinquefasciatus Cx rubithoracis Cx sitiens Cx vishnui Cx whitmorei Ma annulifera

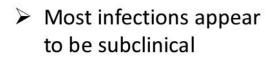
Ae albopictus Ae assamensis Ae butleri Ae japonicus Ae lineatopennis Ae togoi Ae vexans

Oc detritus

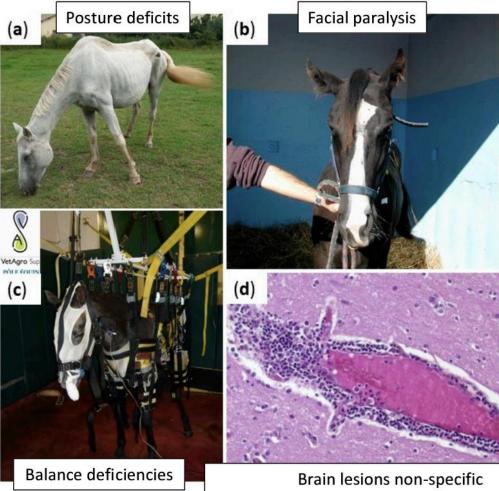
An annularis An barbirostris An pallidus An peditaeniatus An sinensis An subpictus An tessellatus An vagus

Th

Ma indiana Ma uniformis

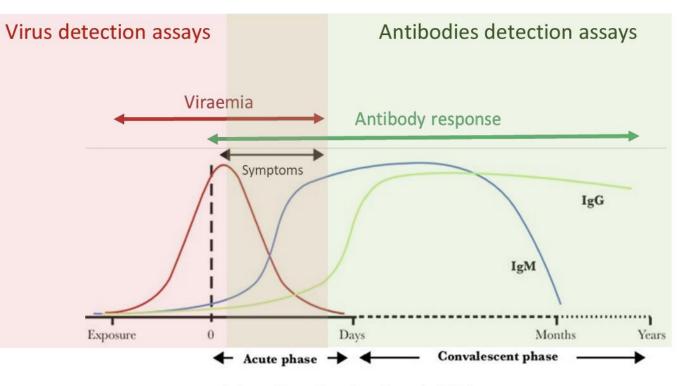

Ar subalbatus

Cx: Culex, Ma: Mansonia, Ar: Armigeres, An: Anopheles, Ae: Aedes, Oc: Ochlerotatus


JEV – Disease in horses

- Fever, jaundice, lethargy, anorexia
- Neurological signs: ataxia, paralysis, collapse
- Death reported within 1–2 days
- > 5-30% lethality in horses

Brain lesions non-specific →Perivascular infiltration of inflammatory cells


Mansfield Karen L. et al., 2017 Lecollinet Sylvie et al., 2020

JEV – Diagnosis

Diagnostic tools in laboratory

→ to be adapted according to the kinetics of infection

(adapted from Goncalves A. et al., 2017)

JEV – Vaccines

In animals (available in Asia)

Nisseiken (Japan) https://www.jpnisseiken.co.jp/en/pr oducts/vaccine/inde x.html

JEV

And the second s

JEV and Getah virus

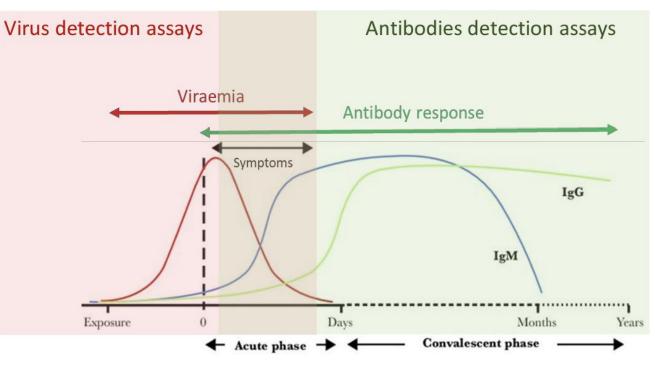
JEV, Equine Influenza and Tetanus

KM Biologics (Japan)

https://www.kmbiologic s.com/en/products/equi ne.html

JEV

JEV, Equine Influenza and Tetanus



JEV – Diagnosis

Diagnostic tools in laboratory

 \rightarrow to be adapted according to the kinetics of infection

(adapted from Goncalves A. et al., 2017)

JEV – Diagnostic tools in laboratory

	Purpose									
Method	Population freedom from infection	Individual animal freedom from infection prior to movement	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection – surveillance	Immune status in individual animals or populations post- vaccination				
Detection of the agent ¹										
Virus isolation	-	_	_	+++	_	_				
Antigen detection	+	+	+	+	+	_				
Real-time RT-PCR	++	++	++	+++	++	-				
	Detection of immune response									
н	++	+++	++	+++	+++	+++				
CFT	+	+	+	+	+	+				
ELISA	++	++	++	++	++	++				
VN (PRNT)	+	++	+	+++	++	++				

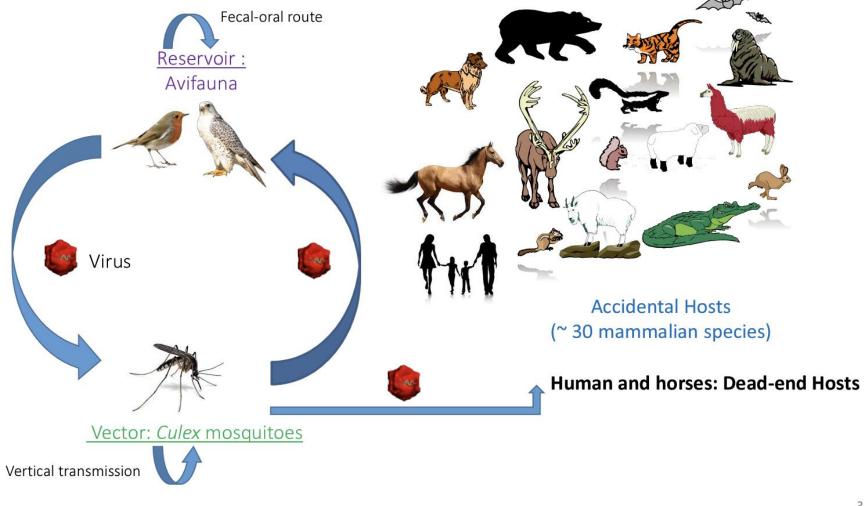
Test methods available for the diagnosis of Japanese encephalitis

Key: +++ = recommended for this purpose; ++ recommended but has limitations;

+ = suitable in very limited circumstances; - = not appropriate for this purpose.

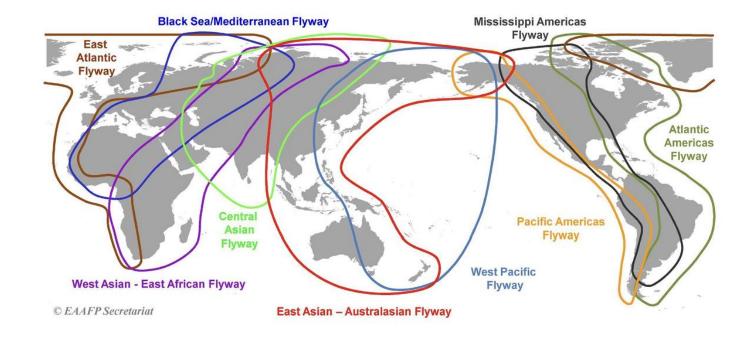
RT-PCR = reverse-transcription polymerase chain reaction; HI = haemagglutination inhibition; CFT = complement fixation test; ELISA = enzyme-linked immunosorbent assay; VN = virus neutralisation; PRNT: plaque reduction neutralisation test.

WOAH 2022, chapter 3.1.10, Japanese encephalitis

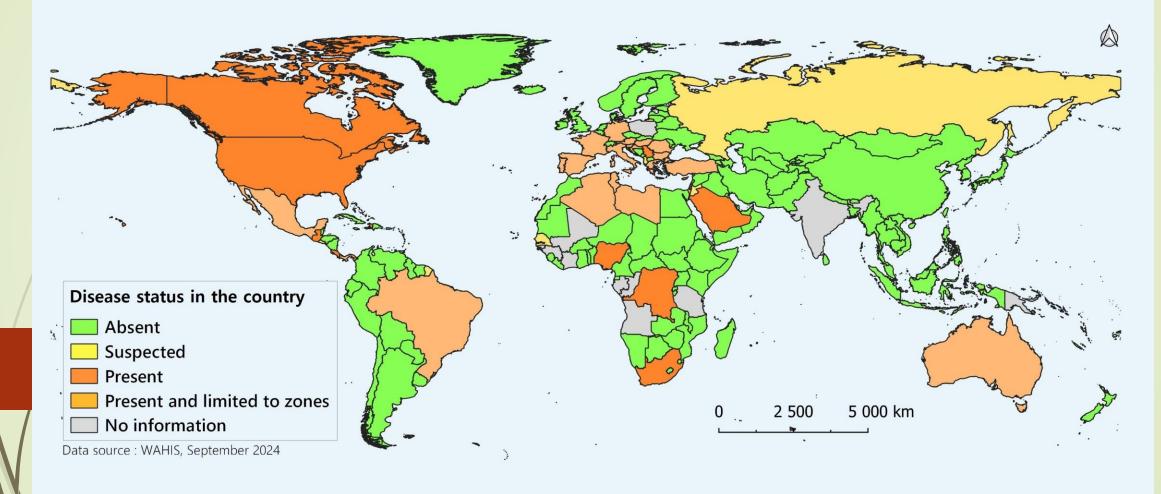

West Nile fever virus

https://rr-asia.woah.org/en/events/zoonoses-affecting-equinesjapanese-encephalitis-west-nile-fever/

Transmission Cycle

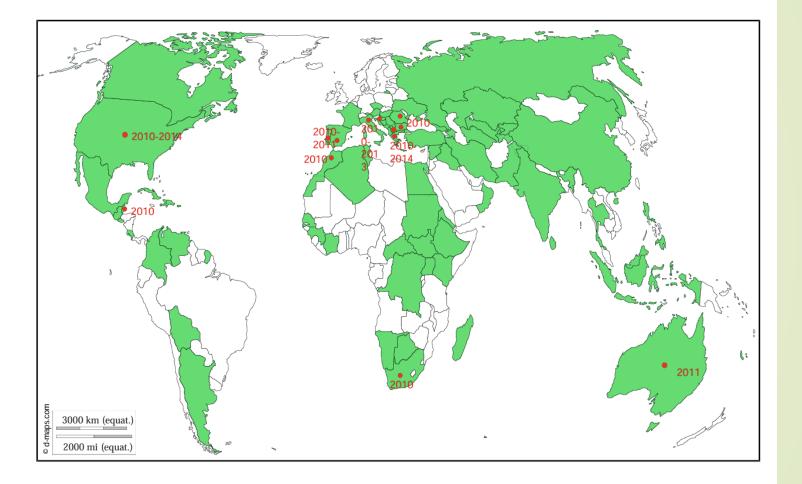


Avifauna: key role in long distance transport of the virus and local amplification

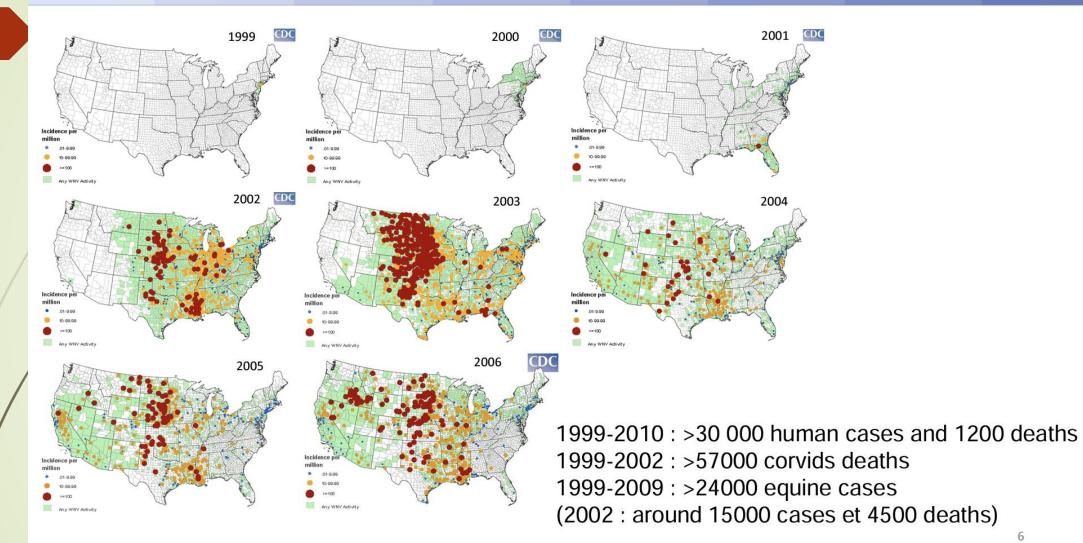

Viruses regularly introduced from the African cradle

In Europe: rare and isolated mortalities (corvids, other passerines, diurnal raptors)

Global distribution of West Nile fever (2014-2023)


Courtesy of Gregorie Bazimo

Geographical distribution of WNV


Originating from Africa

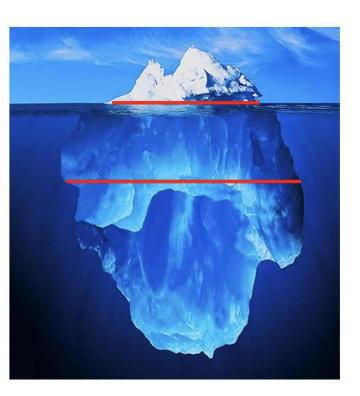
Discovered in 1937 in Uganda

Circulating on the 5 continents (except Antartica)

WNV emergence and dissemination in the USA

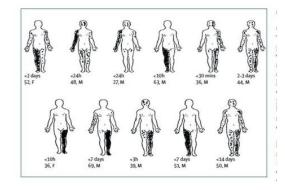
6

Disease in Horses

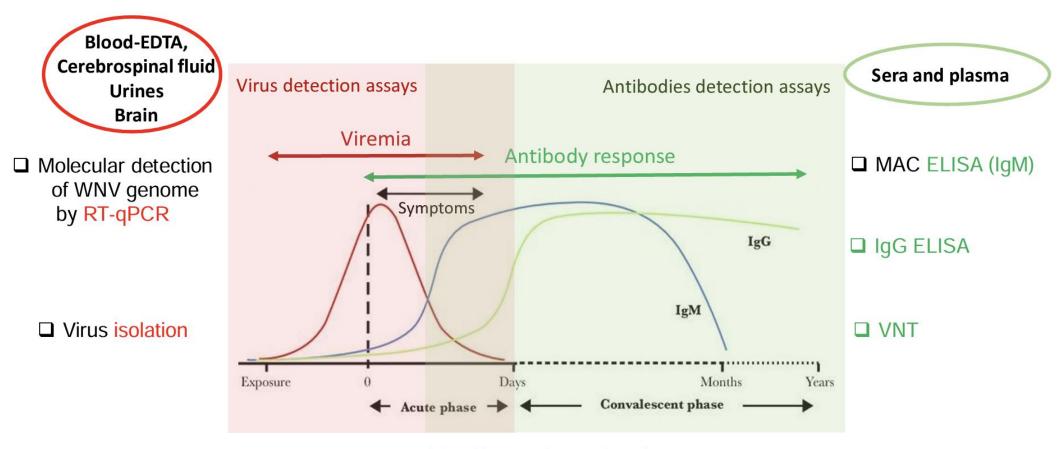


Incubation period: 3 – 15 days

Neurological symptoms (WNND) : 1-10% Lethality rate: 20-57% (horse), 10% (humans) Ataxia, Paralysis, etc.


Mild illness: < 20% Flu-like symptoms (West-Nile Fever)

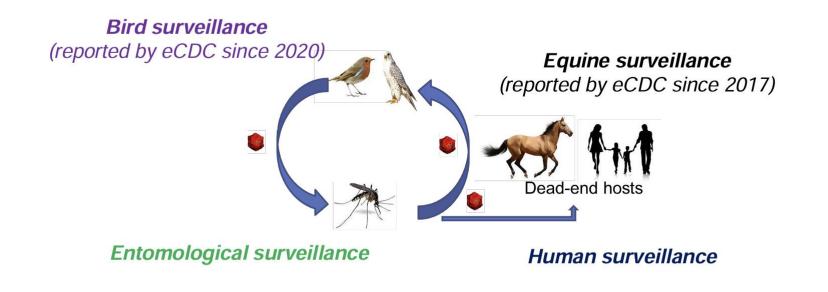
Subclinical infection: 70-79%



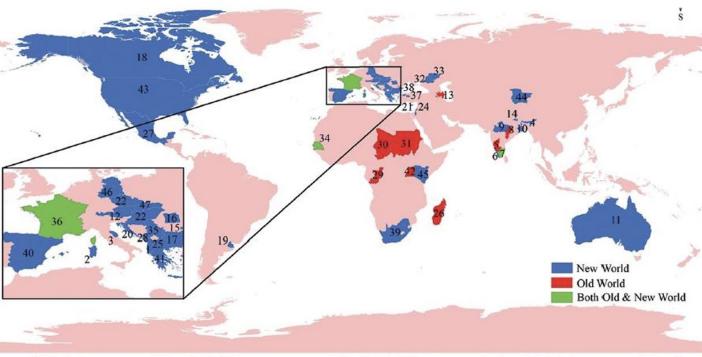
WNND: West-Nile Neuroinvasive Disease

10 Kramer et al, Lancet, 2007

Diagnostic of WNV infection



(adapted from Goncalves A. et al., 2017)



"One health" approach for WNV surveillance in Europe

West Nile virus (WNV) infection is notifiable in humans, equids and birds in the European Union

WNV in Asia and Pacific regions

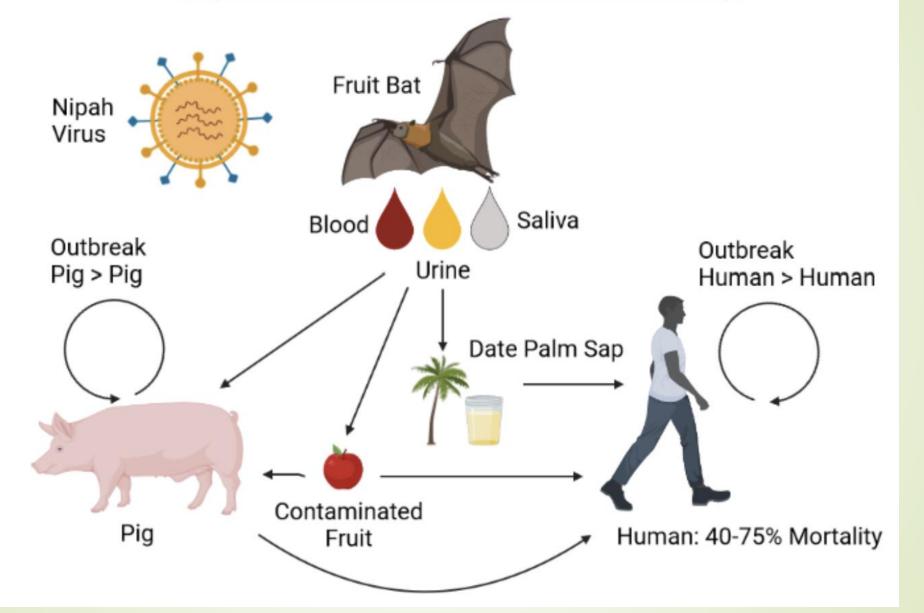
- WNV detected in humans in Asia and Pacific regions
- Need to implement an integrative surveillance system

SINo.	Country	Lineage	SINo.	Country	Lineage	SINo.	Country	Lineage	SINo.	Country	Lineage
1	Albania	II	13	Azerbaijan	I	25	Macedonia	11	37	Turkey (Eskisehir)	1
2	italy (Sardinia)	Ш	14	Nepal (Bharatpur & Kathmandu)	1	26	Madagascar	11	38	Turkey (Bursa region)	11
6	Italy (Ancona)	II	15	Romania (Bucharest)	1	27	Mexico	II	39	South Africa	11
4	India (Assam)	V	16	Romania (Transylvania)	II	28	Montenegro	11	40	Spain	1& VI
5	India (Karnataka)	V	17	Bulgaria	П	29	Republic of the Congo	П	41	Greece	11
6	India (Kerala)	1	18	Canada	I	30	Chad	Ш	42	Uganda	II
7	India (Tamil Nadu)	& V	19	Argentina (Chaco)	I	31	Sudan	II	43	United States	1
8	India (Chhattisgarh)	1	20	Croatia	П	32	Russia (Rostov Oblast)	Ш	44	China (Xinjiang)	1
9	India (Madhya Pradesh)	L	21	Cyprus	II	33	Russia (Volgograd)	Ш	45	Kenya	-
10	India (West Bengal)	1	22	Czech Republic	11.&11	34	Senegal	VII,VIII & I	46	Germany (Eastern Part)	II
11	Australia	I	23	Hungary	II	35	Serbia	Ш	47	Slovakia	11
12	Austria	1X & 11	24	Israel	1	36	France	11		1	

24

Chowdhury et al, 2021

Nipah virus encephalitis


https://rr-asia.woah.org/app/uploads/2024/01/5-kim_-hendra-andnipah-ref-lab.pdf

Facts about the disease

- Non-notifiable disease (except for pigs) amplifying host is the pig
- In pigs known as porcine respiratory and neurologic syndrome, porcine respiratory and encephalitic syndrome (PRES) or barking pig syndrome (BPS)
- Zoonotic disease!!! Infection in humans
- Natural reservoir host is the flying fox /fruit bats enzootic circulation of the virus
- RNA virus from the family Paramyxo virus
- First observerd in pigs in Malaysia and Singapore in 1998-1999; 2001 in Bangladesh and India, 2014 in Philippines
- Infection through ingestion of contaminated feed or contact with contaminated aerosols
- most of Southeast Asia, China, Madagascar, Australia, and parts of Africa are considered at-risk for NiV outbreaks
- Clinical signs: respiratory and neurological

Nipah Virus Transmission and Mortality

Clinical signs in horses

- sudden death
 - acute-onset illness with rapid deterioration
- increased body temperature and heart rate
- respiratory sighs: pulmonary oedema and congestion, dyspnoea, nasal discharge
- neurological signs: ataxia, altered consciousness, head tilt, circling, muscle spasms, seizures, recumbency
- colic-like signs

Transmission

WOAH Manual, Chapter 3.1.16

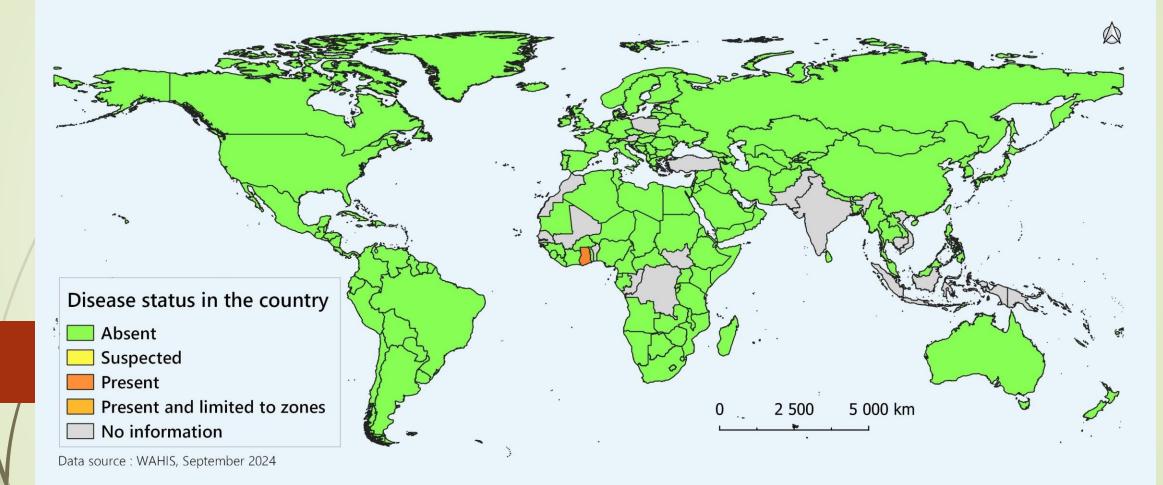
B. DIAGNOSTIC TECHNIQUES

Table 1. Test methods available for diagnosis of henipaviruses and their purpose

	Purpose									
Method	Population freedom from infection	Individual animal freedom from infection prior to movement	Contribution to eradication policies	Confirmation of clinical cases	Prevalence of infection – surveillance	Immune status in individual animals or populations post- vaccination				
Detection of the agent ^(a)										
Virus isolation	-	_	_	+++	_	-				
RT-PCR & real-time RT-PCR	+	+	++	+++	+	-				
IHC	-	-	-	++	-	-				
IFA	-	_	_	++	_	-				
Detection of immune response ^(b)										
ELISA	+++	+++	+++	+	+++	+++				
VNT	+++	+++	+++	+	+++	+++				
Bead assays	+++	+++	+++	+	+++	+++				

Key: +++ = recommended for this purpose; ++ recommended but has limitations;

+ = suitable in very limited circumstances; - = not appropriate for this purpose.

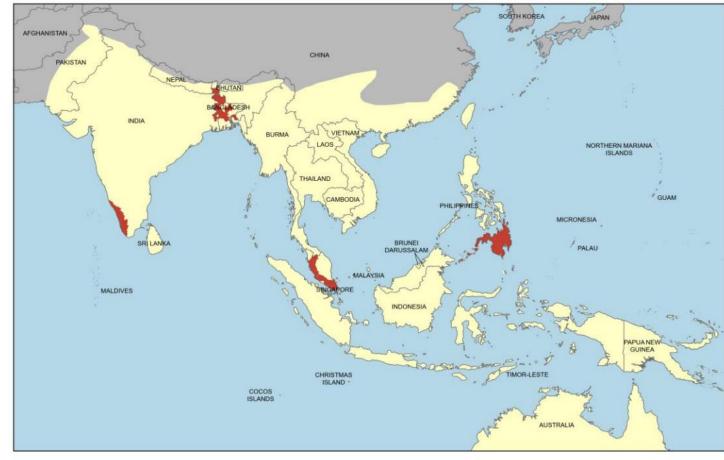

RT-PCR = reverse-transcription polymerase chain reaction; IHC = Immunohistochemistry;

IFA = Indirect fluorescent antibody; ELISA = enzyme-linked immunosorbent assay; VNT = virus neutralisation test.

^(a)A combination of agent identification methods applied on the same clinical specimen is recommended.

^(b)Positive ELISA and bead-based assay results should be confirmed by the VNT unless the assay is validated for the purpose.

Global distribution of Nipah virus encephalitis (2014-2023)



Where are they?

Regional and temporal distribution of Nipah virus

Courtesy of Kim Halpin, CISRO

0 375 750 1,500 W

- Nipah virus infections in people
- Known or likely presence of Pteropus bats in the Asia, South Pacific, and Australia region

https://www.cdc.gov/vhf/nipah/outbreaks/distribution-map.html

Thank you for your attention

Vaccines and recommended vaccination schedules to prevent equine influenza (EI)

Manabu Nemoto

Equine Research Institute, Japan Racing Association (JRA) WOAH Reference Laboratory for Equine Influenza

Equine influenza (EI)

- Equine influenza virus (EIV): Influenza A virus, H3N8
- Respiratory diseases: fever, cough, nasal discharge
- Significant economic losses to the horse industry
- Vaccination is an important measure to control EI

Representative examples of commercially available vaccine technologies

Vaccine type	Feature	Product
Whole inactivated	Inactivated viruses	Duvaxyn (Elanco)
Subunit vaccine	Only antigenic fragments (HA/NA)	Equip F (Pfizer)
Live-attenuated	Attenuated, cold-adapted virus	Flu Avert (Merck)
Canary pox vectored	Vector with HA gene	PROTEQ FLU (Boehringer)

(Paillot, Vaccines 2014; Oladunni et al., Viruses 2021)

WOAH Expert Surveillance Panel on Equine Influenza Vaccine Composition

- The panel started about 30 years ago
- To avoid vaccine breakdown, the meeting reviews annually the epidemiological and virological information
- The panel recommends proper vaccine strains every year

(WOAH bulletin, 2017)

WOAH releases recommendations related to vaccine strains!

Expert surveillance panel on equine influenza vaccine composition

8th July 2021 and 7th July 2022 by Videoconference

Conclusions and Recommendations

However, many vaccine products are not updated and still use old vaccine strains...

Committee of selection on animal influenza vaccine strains in Japan

- Organized by National Veterinary Assay Laboratory, MAFF
- Reviewing avian and equine influenza vaccine strains
- If needed, the committee changes vaccine strains
 - The latest changes were in 2016

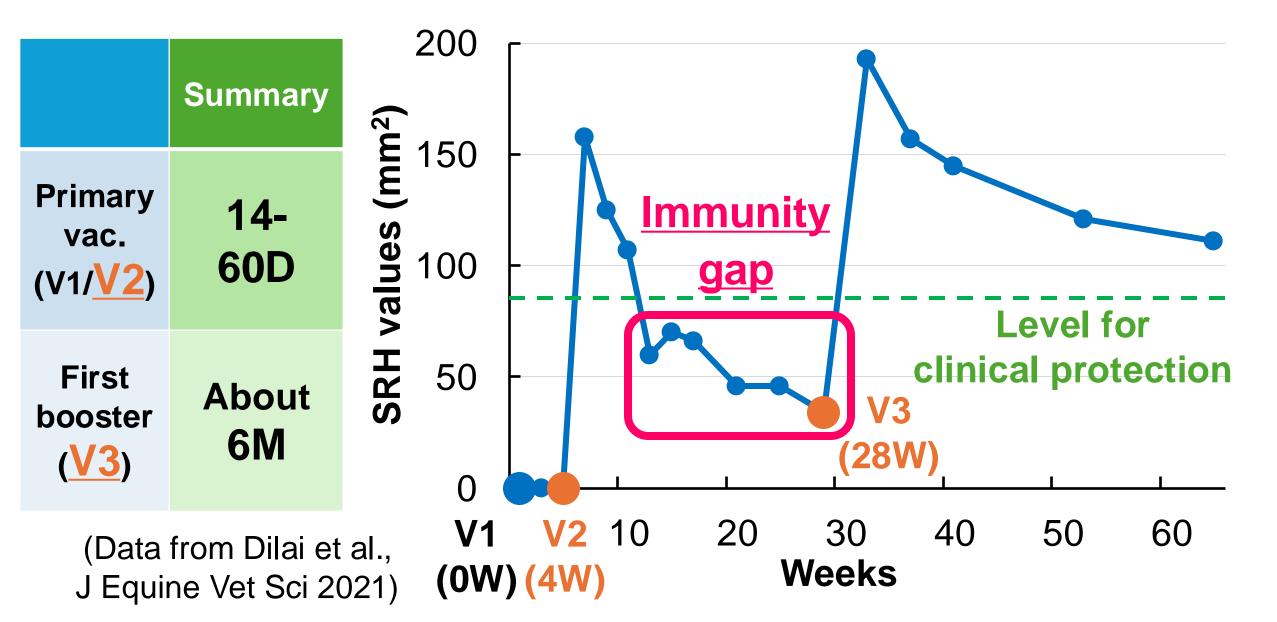
according to WOAH recommendations

(Photo from NVAL, MAFF HP)

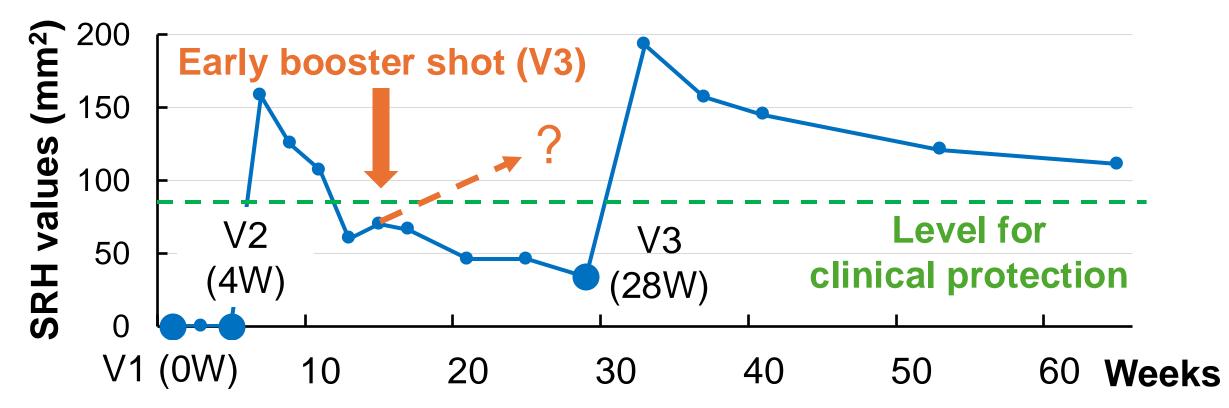
Vaccine schedules

Vaccination requirements of equestrian/horse racing authorities

	FEI	BHA (UK)	Japan	Summary
Primary vac. (V1 and V2)	21-60D	21-60D	14-60D	14-60D
First booster (V3)	Within 6M +21D	120-180D	Within 7M	About 6M
Booster (V4, V5)	Within 1 yr (Minimum)	Within 6M	Within 1 yr (Minimum)	Within 1 yr
Booster (Competition)	Within 6M +21D	Within 6M	Within 7M	About 6M


Vaccination requirements of equestrian/horse racing authorities

		FEI	BHA (UK)	Japan	Summary	
Primary (V1 and		21-60D	21-60D	14-60D	14-60D	
 V1 should start after 5-6 months of age 						
Boos (After	 Interference by maternal antibody Maturation of foal's immune response 				Vithin 1 yr	
Boos		(Paillot, Vaccines 2014)				
(Competer	tition)	+21D	6M		6M	


Vaccination requirements of equestrian/horse racing authorities

Example of SRH antibody level after vaccinations

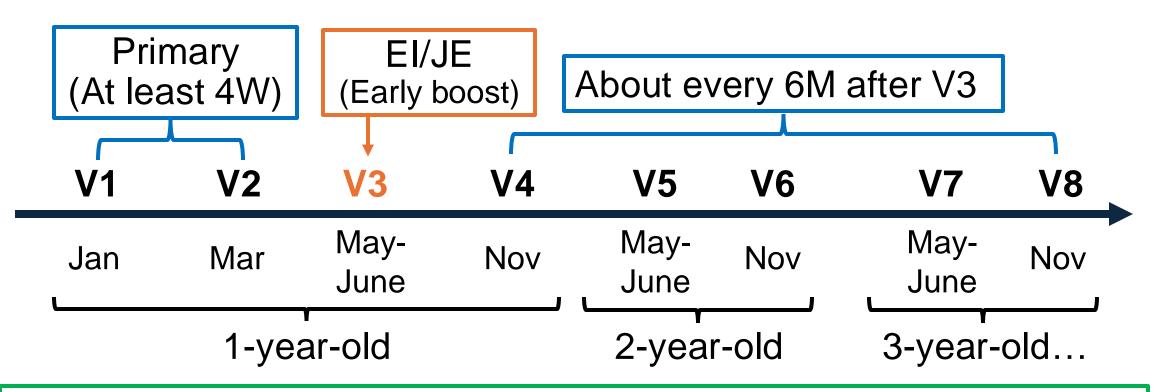
Is early booster shot beneficial to shorten the gap?

- **Beneficial**: Cullinane et al., Vet J 2001; El-Hage et al., Equine Vet J 2013
- **Not beneficial**: Heldens et al., Vet J 2007

→ There is no clear solution for the immunity gap...

Two training centers (TC) of JRA

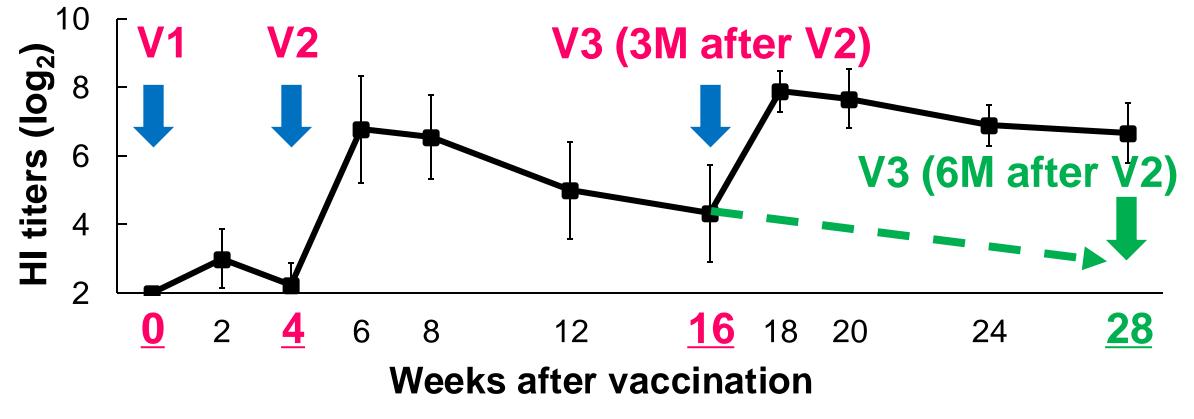
- They are in Miho (Ibaraki Pref.) and Ritto (Shiga Pref.)
- About 2,000 horses are at each TC
- Once an outbreak occurs, virus spreads quickly
 - \rightarrow It is important to control by vaccination



Miho TC: 2,240,000 m²

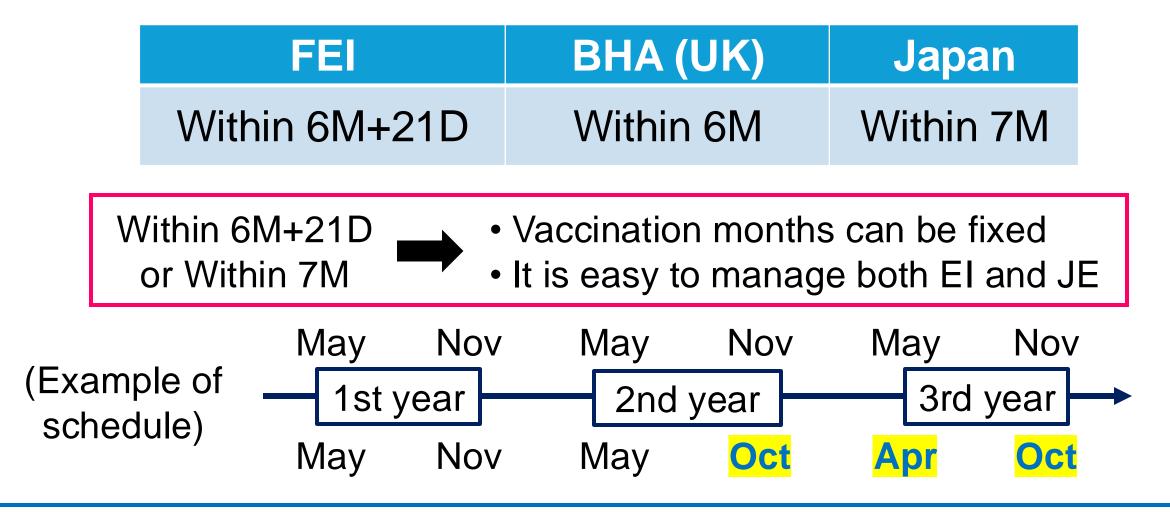
Ritto TC: 1,522,000 m²

Recommended El vaccination schedule in Japan



Subsidies: To increase the vaccination coverage

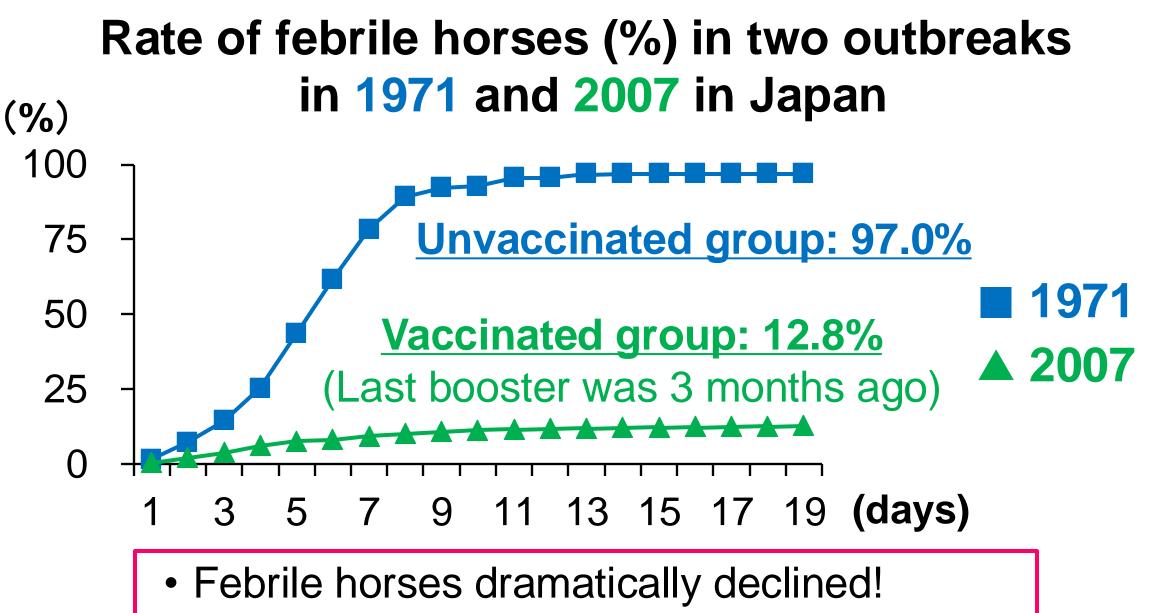
- 1- and 2-yr-old horses before entering TC: <u>50% (JLIA)</u>
- Racehorses kept at TC: 100% (JRA)


Immunity gap between V2 and V3 is shortened by recommended schedule in Japan

- An inactivated vaccine without adjuvant (Nisseiken, Tokyo) was inoculated into nine 1-year-old horses three times

(Data from Ohta et al., J Equine Vet Sci 2022)

Intervals of booster vaccination for competition horses



Within $6M \rightarrow Vaccination$ months can change from year to year

Booster shot: Within 6 or 7 months?

Age	Post vaccination months	Vaccination numbers	HI titer	
2	5-6 months: n=34	4	92 _¬	No significant difference
2	6-7 months: n=34	4	75	difference
3	5-6 months: n=36	6	ר 78	No significant difference
3	6-7 months: n=36	6	59 -	difference

 Although HI titers were lower in the group 6-7 months, there was no significant difference
 Within 7 months should be practical to manage many horses

Vaccination minimized damage to industry

Conclusions

- It is important to change vaccine strains quickly according to the recommendations
- After primary vaccination, booster vaccination every about 6 months is recommended
- At a site with many horses, high coverage and systematic vaccination are important to minimize outbreaks

World

Health

for Animal

Oraanisation Organización Organisation Mundial mondiale de la santé de Sanidad animale Animal

WOAH Regional Workshop on "Laboratory capacity to diagnose equine diseases"

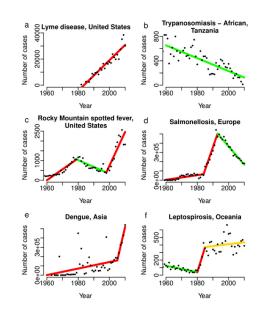
in Asia and the Pacific

17-18 September 2024- Tokyo, JAPAN

General Guidance on Disease surveillance

Paolo Tizzani Veterinary epidemiologist Data Integration Department

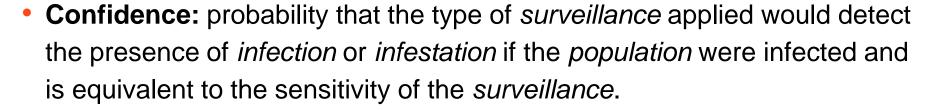
World



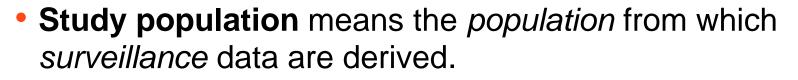
Organisation Organización Organisation mondiale Mundial for Animal de Sanidad de la santé Health Animal animale

Mauro Meske Project Liason Officer WOAH-IHSC **Disease Status Department**

Surveillance introduction and objectives



- Disease surveillance is aimed at demonstrating the absence of infection or infestation, determining the presence or distribution of infection or infestation or detecting as early as possible exotic diseases or emerging diseases
- Tool to monitor disease trends, to facilitate the control of infection or infestation, to provide data for use in risk analysis, for animal or public health purposes, to substantiate the rationale for sanitary measures
- The type of surveillance applied depends on the objectives of the surveillance, the available data sources and the outputs needed to support decision-making.


Surveillance definitions

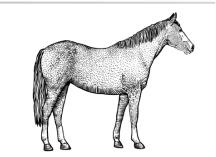
- **Sample:** group of elements (sampling *units*) drawn from a *population*, on which tests are performed or parameters measured to provide *surveillance* information.
- **Sampling unit:** means the *unit* that is sampled. This may be an individual or a group, such as an *epidemiological unit*.
- **Sensitivity** means the proportion of infected sampling *units* that are correctly identified as positive.
- **Specificity** means the proportion of uninfected sampling *units* that are correctly identified as negative.

Surveillance definitions

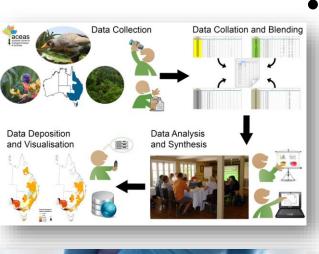
 Surveillance system means the use of one or more surveillance components to generate information on the health status of a populations.

- **Target population** means the *population* to which conclusions are to be inferred.
- **Test** means a procedure used to classify a *unit* as either positive, negative or suspect with respect to an *infection* or *infestation*.

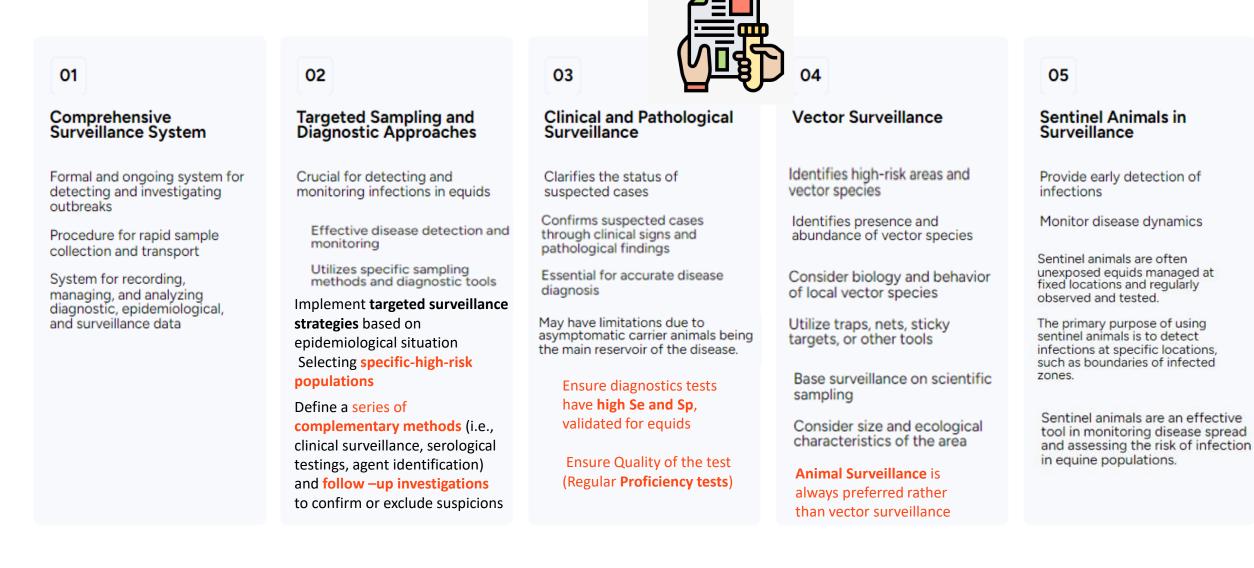
Surveillance systems



Design of the surveillance system


- Definitions of appropriate populations
- Timing and temporal validity of surveillance data
- Case definition
- Epidemiological unit
- Clustering
- Diagnostic tests
- Analytical methodologies
- Scope of the surveillance system
- Follow up actions

Surveillance systems • Implementation of the surveillance system


- Diagnostic tests (Key):
 - ✓ Confirmation of suspicions by lab test
 - ✓ Diagnostic capabilities in National Labs
 - ✓ Agreements with Regional Labs to send samples
 - ✓ Referral to WOAH Reference Labs
 - ✓ Regular Proficiency tests to ensure quality
- Data collection and management

WOAH Reference Laboratories for Equine Diseases

Comprehensive Surveillance System for Equine Diseases

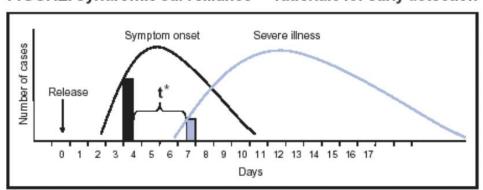
Surveillance systems

Quality assurance

• Surveillance systems should be subjected to **periodic auditing** to ensure that **all components function** and provide **verifiable documentation of procedures** and basic checks to detect deviations of procedures from those specified in the design, in order to **implement appropriate corrective actions**.

Surveillance methods

An early warning system is essential for the timely detection, reporting and communication of occurrence, incursion or emergence of diseases, infections or infestations and is an integral component of emergency preparedness. It should include the following:


- appropriate access to the target populations
- access to laboratories capable of diagnosing and differentiating relevant infections or infestations;
- training and awareness programmes for detecting and reporting unusual health incidents;
- legal obligation to report
- epidemiological investigations of cases to acquire accurate knowledge of the situation for further action.
- effective systems of communication between the Health Authority and relevant stakeholders;
- a national chain of command.

Surveillance methods

Early warning for Early detection Syndromic surveillance.

Provides a timely system for detecting, understanding, and monitoring health events. By **tracking symptoms** of patients in emergency departments—**before a diagnosis is confirmed**—public health can detect unusual levels of illness to determine whether a response is warranted.

* t = time between detection by syndromic (prediagnostic) surveillance and detection by traditional (diagnosis-based) surveillance.

Henning 2004 MMWR

ONE Surveillance provisions by Disease-Code Chapter

General Principles of Surveillance (AHS, Equine Piroplamosis, Surra and Glanders)

Surveillance for these equine diseases requires:

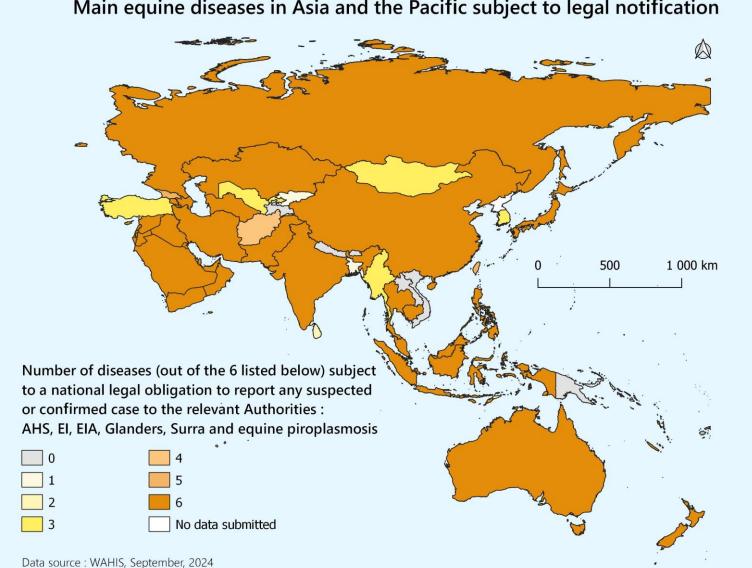
- A formal and ongoing system for detecting and investigating outbreaks;
- Appropriate **tools**, for collection, recording, managing and **analysis of data**; reporting and dissemination for decision making.
- All suspected <u>cases</u> to be investigated by lab tests (no pathognomonic clinical signs)
- The target population should include **domestic and wild** susceptible animals
- An active programme of surveillance of susceptible populations to detect evidence of disease is essential to establish the animal health status of a country, zone
- In a free country or zone, the surveillance programme should include an early warning system for reporting suspected cases

	AHS	Equine	Surra	Glanders
		Piroplasmosis		
Surveillance (passive)	-For horses (likely to show clinical signs), not for asymptomatic carriers (donkey, zebras) -Suspicions should be always confirmed by lab	Surveillance aims at detecting clinical signs, lab confirmation required	Yes, but all suspicions should be always confirmed by lab	Clinical: Aims at detecting clinical signs but of limited use only, as asymptomatic carrier are the main reservoir. Systematic pathological surveillance is useful on deceased equids
Serological Surveillance	-For species that don't show clinical signs -Reliable evidence of absence of AHS in a country or zone	Active surveillance programme required to establish the status of a country or zone (role of asymptomatic carriers) -Surveillance in high-risk areas	-Aims at demonstrating individual or population freedom; detect subclinical or latent infection; determine prevalence- cross reactions /!\ (i.e. dourine)	 The preferred strategy to establish the status of a country or zone. Animal identification and repeated testing of the population are necessary
	Virological surveillance to confirm clinical cases and follow up serological reactors -to determine the serotype	Together with serological or agent identification testing with molecular techniques to establish the status of a country or zone	Parasitological surveillance and molecular techniques: -To confirm clinical suspicions and serological results (active infection), identify parasites and subgenus	PCR/Culture: suitable in very limited circumstances to confirm clinical cases Malleinisation: Demonstrates hypersensitivity to antigens of B. mallei. However, this method has shortcomings, such as low sensitivity, interference with other tests and animal welfare concerns.

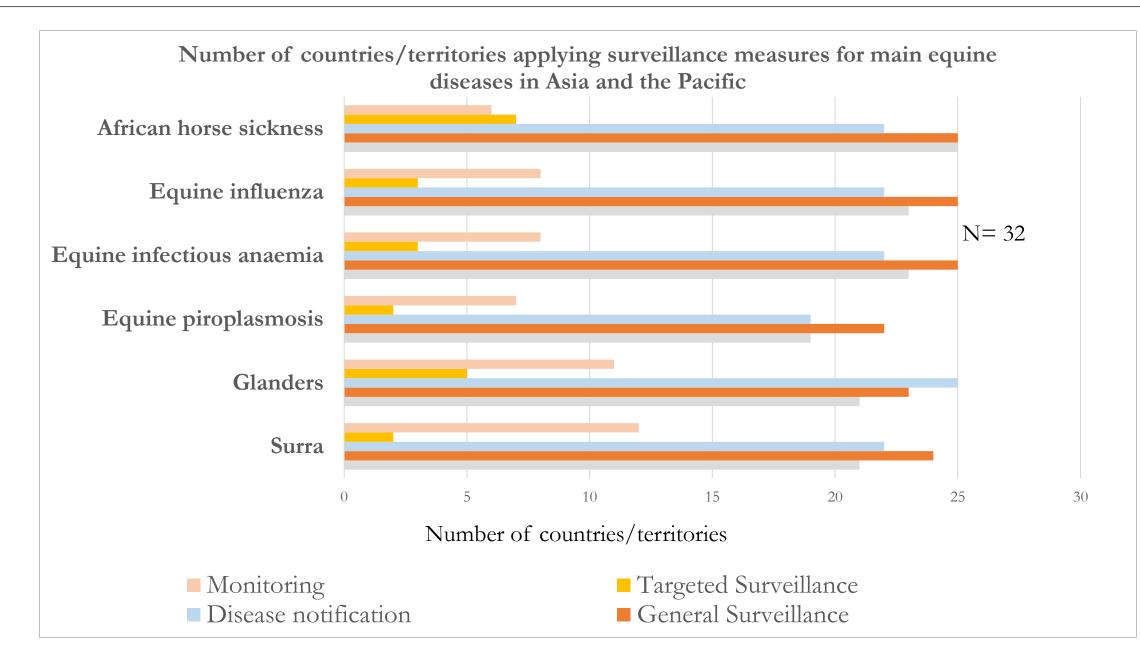
	AHS	Equine Piroplasmosis (T.	Surra (<i>T. evansi</i>)	Glanders
		equi or B. caballi)		
Sentinel	-To detect infections with AHSV	NA	-May contribute to provide evidence of	NA
equids	at a particular place (groups		freedom or provide data on prevalence and	
1	located on the boundaries of		distribution of the infection	
	infected zones)		- Targeting highly susceptible animals	
			such as dogs (hunting dogs and dogs living	
			around slaughterhouses/abattoirs), camels,	
			donkeys or horses.	
Vector	- Aims at determining different	-Aims at determining different	- Aims at determining different levels of risk	NA
Surveillance	levels of risk by identifying the	levels of risk by identifying the	by identifying the presence and	
	presence and abundance of	presence and abundance of	abundance of various vector species	
	various vector species	various vector species	(biting flies) in an area	
	(Culicoides) in an area	(competent ticks) in an area.		
			2024	32nd Edition

Animal-based surveillance strategies are preferred to detect AHSV, *T. evansi, T. equi or B. caballi*

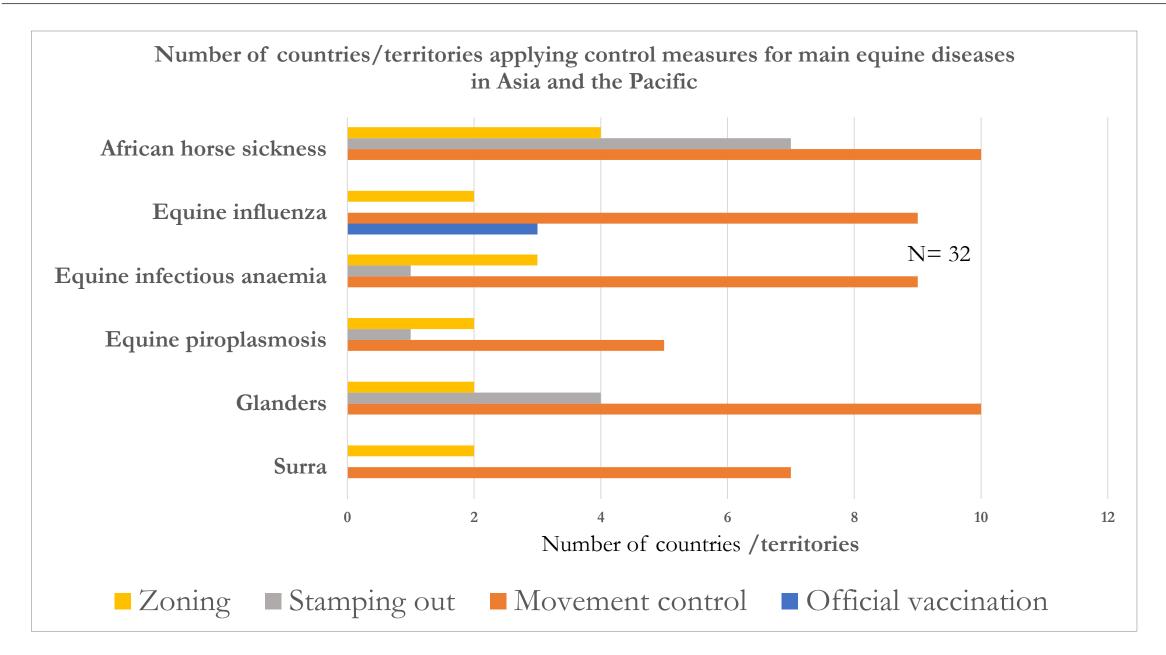
Terrestrial Animal


Health Code

Vorld Organ


EIA, EHV, EI, JE : no specific provisions on surveillance but provisions on Code Chapter 1.4 (animal Health Surveillance) applies

Surveillance measures in the region: Notifiable diseases (2019-2023)



Main equine diseases in Asia and the Pacific subject to legal notification

Surveillance measures in the region (2019-2023)

Control measures in the region (2019-2023)

- Effective surveillance strategies for equine diseases require coordinated efforts, adaptable methods, **strong laboratory capabilities** and robust data management.
- Collaboration between Vet. Authorities, and sharing of surveillance data.
- **Timely reporting** of suspected cases- **follow up** on suspicions or positive reactors
- **Continuous monitoring and timely response** are key to controlling and preventing the spread of infections.

2024	32ni Edit
	Vot
Health C	ial Animal ode

Useful Code Chapters on Surveillance and trade:

Chapter 4.1.

Chapter 2.1.

Chapter 1.4. Animal health surveillance

<u>Chapter 1.5.</u> Surveillance for arthropod vectors of animal diseases

Introduction to recommendations for the prevention and control of transmissible animal diseases

Import risk analysis

Questions?

Thank you!

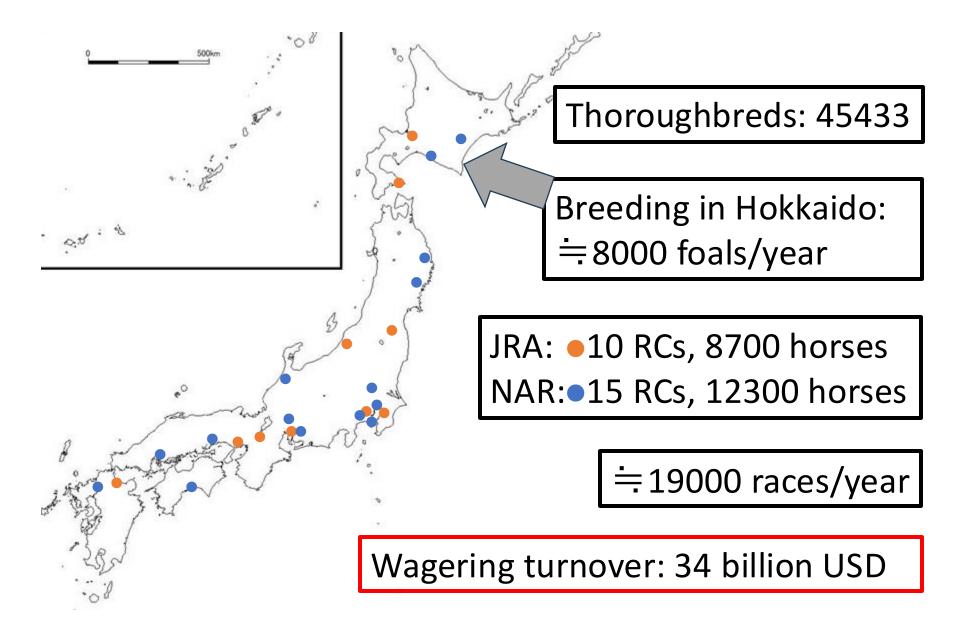
12, rue de Prony, 75017 Paris, France T. +33 (0)1 44 15 19 49 F. +33 (0)1 42 67 09 87

woah@woah.int www.woah.org

Facebo	<u>ook</u>
<u>Twitter</u>	
Instagra	<u>am</u>
<u>Linked</u>	<u>n</u>
<u>YouTuk</u>	<u>be</u>
Flickr	

WorldOrganisationOrganisationmondialefor Animalde la santéHealthanimale

on Organización Mundial de Sanidad Animal


WOAH Regional Workshop on Laboratory Capacity to Diagnose Equine Diseases Tokyo, Japan, Sep 17-18 2024

Overview of surveillance programs of equine infectious diseases in Japan

Hiroshi Bannai, DVM, PhD

Equine Research Institute, Japan Racing Association

Racing industry in Japan

Equine disease surveillance in Japan

Passive surveillance (notifiable diseases)

-Case detection -Reported to local government

Active surveillance (not limited to ND)

- -Case detection
- -Investigation of endemic situation
- -Confirmation of free status
- -Operated by industrial organization or PPP

Organizing body of active surveillance

-Japan Racing Association

→Racing authority

-Japan Bloodhorse Breeders' Association →Breeding authority

-Japanese Council on Disease Prevention of Bloodhorse

-Hidaka District Council on Livestock Hygiene and Disease Prevention

→Public-private partnership

MAFF, AQS, Livestock Hygiene JRA, National Vet Lab. Centers (local gov.) NAR and more organizations...

Notifiable diseases in horses in Japan

Viral encephalitis (WN, JE, VEE, WEE, EEE) Rabies Vesicular stomatitis Anthrax Equine piroplasmosis Glanders Equine infectious anemia African horse sickness Equine rhinopneumonitis Equine influenza Equine viral arteritis

Melioidosis Tetanus Surra Dourine Nipa virus infection Hendra virus infection Horse pox Tularemia Contagious equine metritis Equine paratyphoid Pseudofarcy

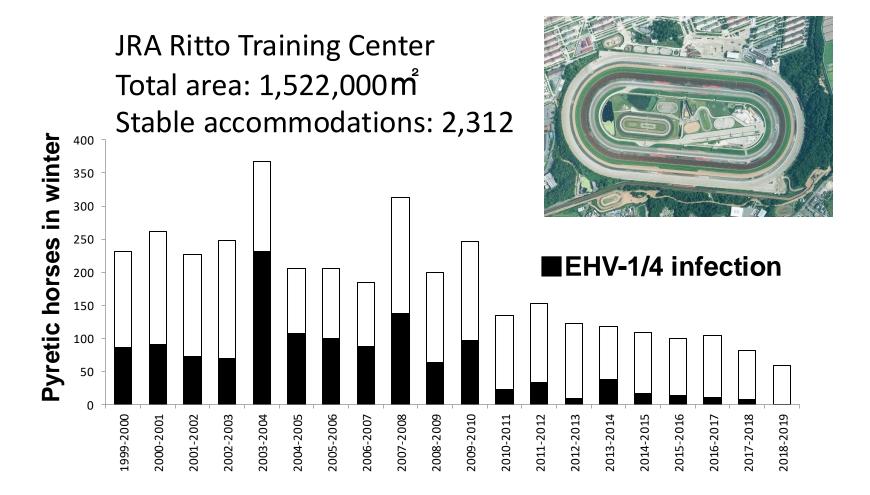
Active surveillance targeting...

Viral diseases: Equine rhinopneumonitis (respiratory, abortion) Getah virus infection Rotavirus infection Equine influenza Equine infectious anemia Equine viral arteritis

Bacterial diseases:

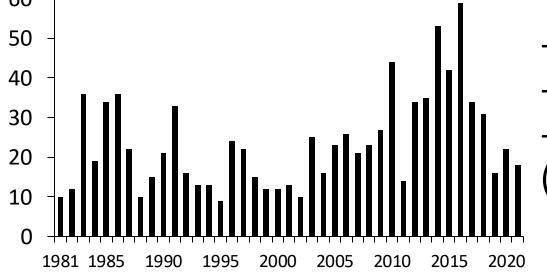
Equine proliferative enteropathy *Rhodococcus equi* infection Salmonellosis Contagious equine metritis

Active surveillance targeting...


Viral diseases:

Equine rhinopneumonitis (respiratory, abortion) Getah virus infection Rotavirus infection Equine influenza Equine infectious anemia Equine viral arteritis

Bacterial diseases:


Equine proliferative enteropathy *Rhodococcus equi* infection Salmonellosis Contagious equine metritis

Active racehorses Equine rhinopneumonitis (respiratory form)

-evaluation of vaccine efficacy for a better control

Breeding mares Equine rhinopneumonitis (abortion)

-Hidaka district, Hokkaido
-case detection
-genotyping
(ORF30 polymorphism)

 Number of isolates from 2010-2021

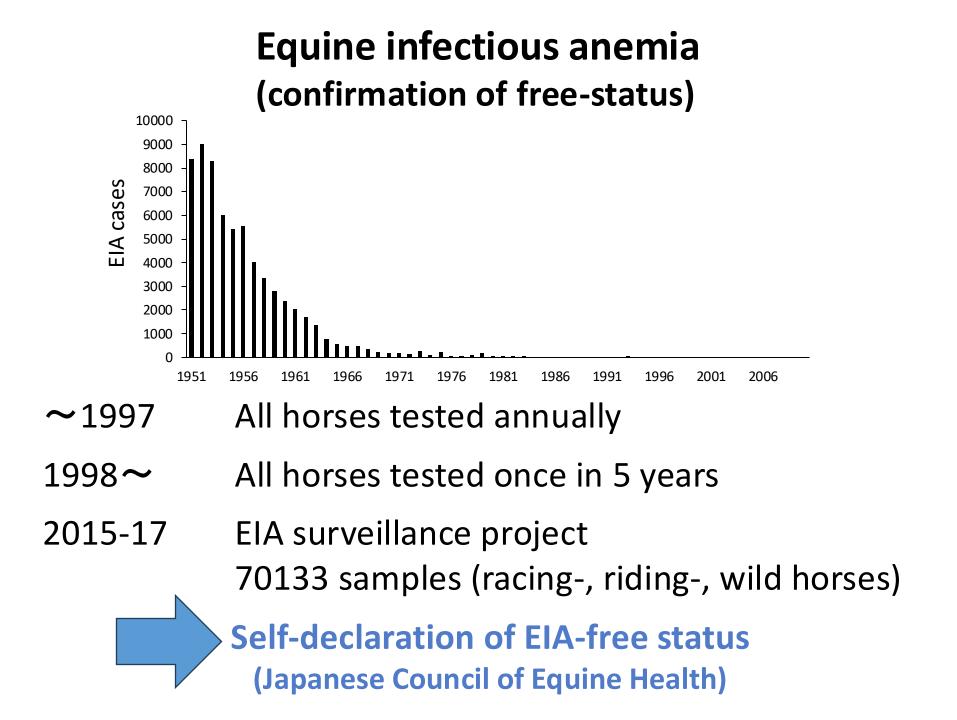
 Normal strain (A2254)
 179 (97.8%)

 Neuropathogenic strain (G2254)
 4 (2.2%)

-isolation of G2254 virus have been rare in Japan

Foals

Rhodococcus equi infection (case detection, antimicrobial resistance)


-prevalent in foals (1-3 month old)
-incursion of macrolide and rifampicin resistant strain in the USA
→detected for the first time in Japan in 2022

Bacterial detection: culture, PCR Area: Hidaka district, Hokkaido -tracheal wash

>150 cases/year including 20 deaths

2020-present, annual EIA surveillance (random sampling)

Confirmation of free status

(less than 5% prevalence with 95% confidence level)

- **2 JRA training centers**
- **13 NAR racecourses**

(≥58 horses each)

International Collating Centre: Summary Report (1 October to 31 December 2022)

Active surveillance of equine infectious anemia among racehorses in Japan Chihiro Fujisawa, DVM. Administrator of Japanese Council of Equine Health

Table 1 shows the rest	ults of EIA surveillance using /	AGID testing in	2022.
Training center (TC)	JRA/municipal government	Sampling size	Positive horses
/Racecourse (RC)			
Miho TC	JRA	60	0
Ritto TC	JRA	60	0
Obihiro RC	Hokkaido	60	0
Monbetsu RC	Hokkaido	60	0
Morioka RC	Iwate	60	0
Mizusawa RC	Iwate	60	0
Oi RC	Tokyo	60	0
Urawa RC	Saitama	59	0
Funabashi RC	Chiba	60	0
Kawasaki RC	Kanagawa	60	0
Kanazawa RC	Ishikawa	60	0
Kasamatsu RC	Gifu	60	0
Nagoya RC	Aichi	60	0
Sonoda RC	Hyogo	60	0
Kochi RC	Kochi	60	0

To keep the ball rolling

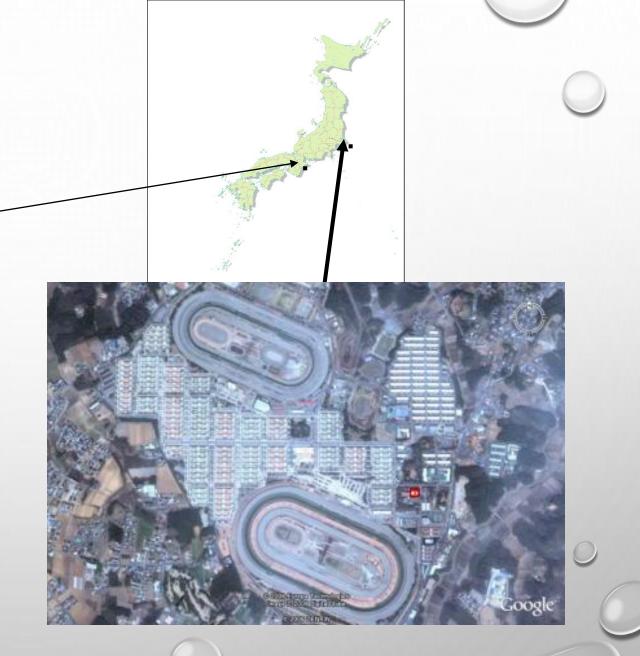
Purpose

Funding

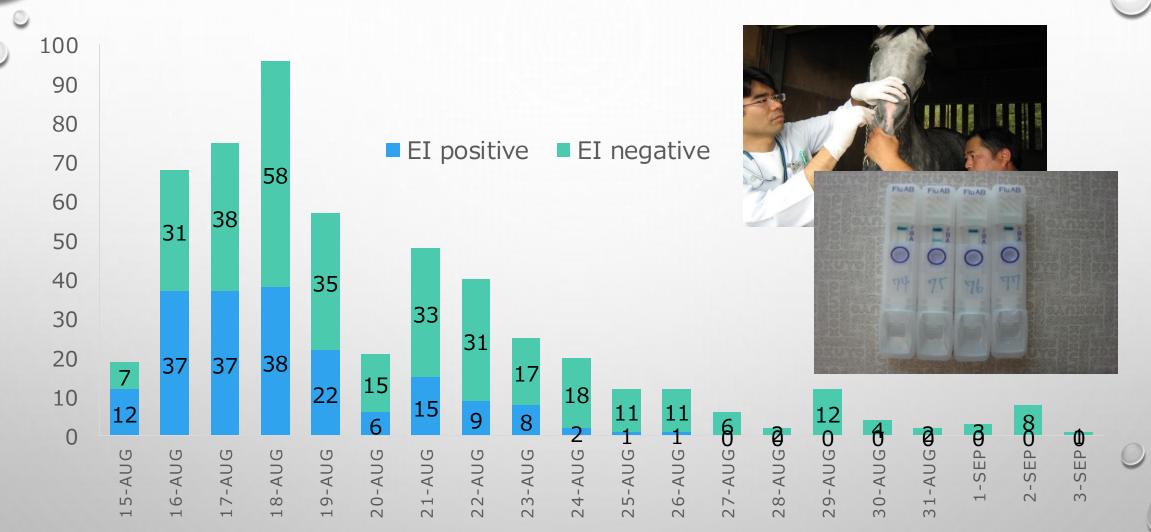
Collaboration

Capacity

Application


SURVEILLANCE OF EI FOR SELF-DECLARATION OF FREEDOM

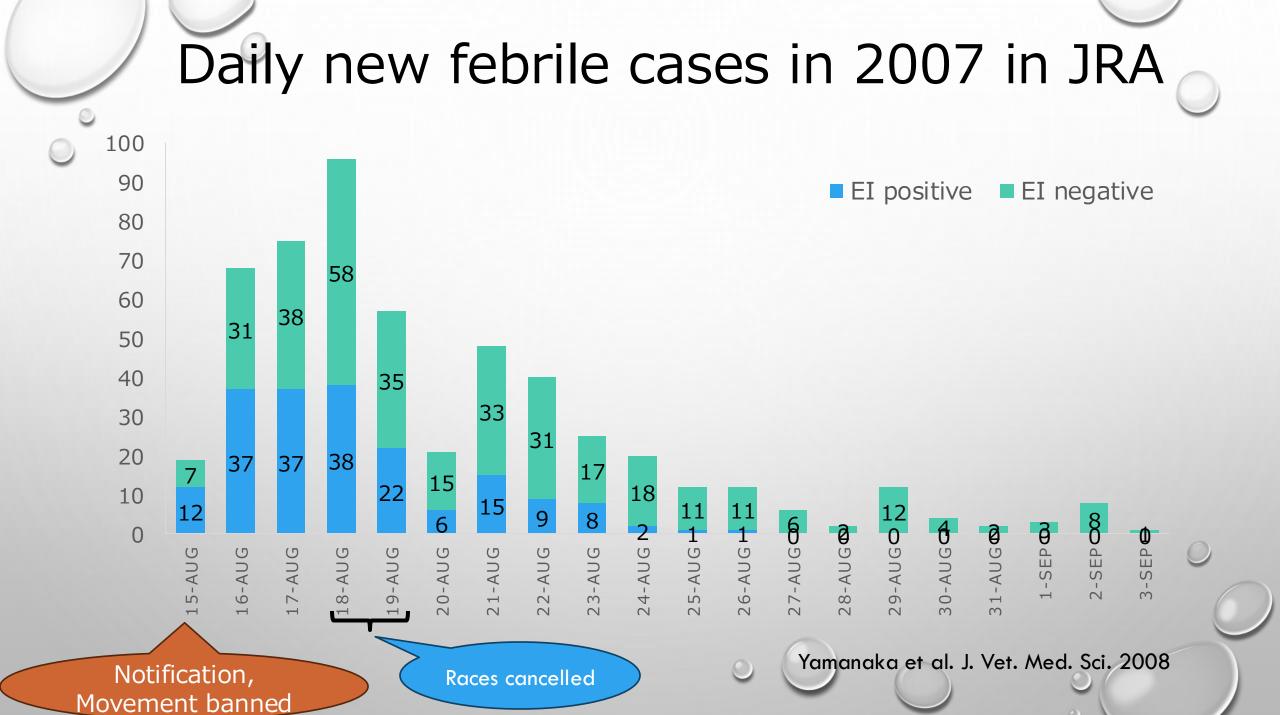
TAKASHI YAMANAKA, JRA


Ritto training center (Shiga)

Each training center kept about two thousands horses each.

Miho training center (Ibaraki)

Daily new febrile cases in 2007 in JRA


Yamanaka et al. J. Vet. Med. Sci. 2008

NOTIFICATION ON LEGAL BASIS

(Obligation to Notify Concerning Infectious Diseases)

- 第四条 家畜が家畜伝染病以外の伝染性疾病(農林水産省令で定めるものに限る。以下「届出伝染病」という。) にかかり、又はかかつている疑いがあることを発見したときは、当該家畜を診断し、又はその死体を検案した獣 医師は、農林水産省令で定める手続に従い、遅滞なく、当該家畜又はその死体の所在地を管轄する都道府県知 事にその旨を届け出なければならない。
- Article 4 (1) On discovering that livestock has contracted or is suspected of having contracted an infectious disease that is one other than a livestock infectious diseases (limited to those prescribed by Order of the Ministry of Agriculture, Forestry and Fisheries; hereinafter referred to as "notifiable infectious diseases"), the veterinarian who diagnosed the relevant livestock or conducted examination on its carcass must notify the prefectural governor who has jurisdiction over the location of the relevant livestock or its carcass to that effect without delay, in accordance with procedures prescribed by Order of the Ministry of Agriculture, Forestry and Fisheries.

Act on Domestic Animal Infectious Diseases Control

NOTE Virology

Evaluation of Antigen Detection Kits for Diagnosis of Equine Influenza

Takashi YAMANAKA¹, Koji TSUJIMURA¹, Takashi KONDO¹ and Tomio MATSUMURA¹

^bEpizootic Research Center, Equine Research Institute, Japan Racing Association, 1400–4 Shiba, Shimotsuke, Tochig

Received 5 July 2007/Accepted 27 September 2007)

ABSTRACT. In study, we evaluated whether five rapid antigen detection kits for human influenza could be used equine influence influence influence in the study of the study of

— J. Vet. Med. Sci. 7

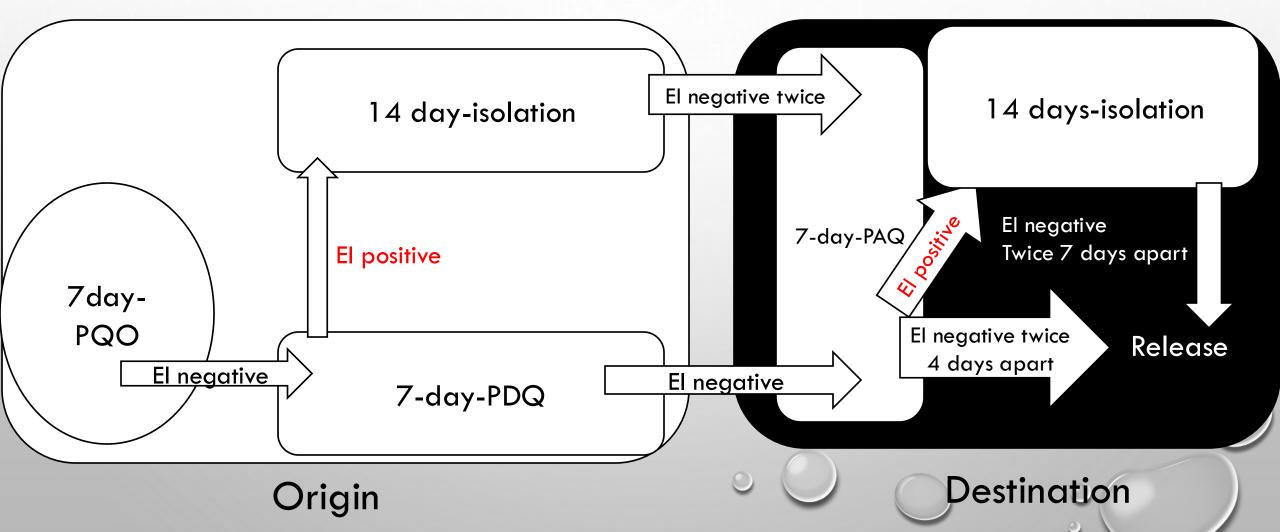
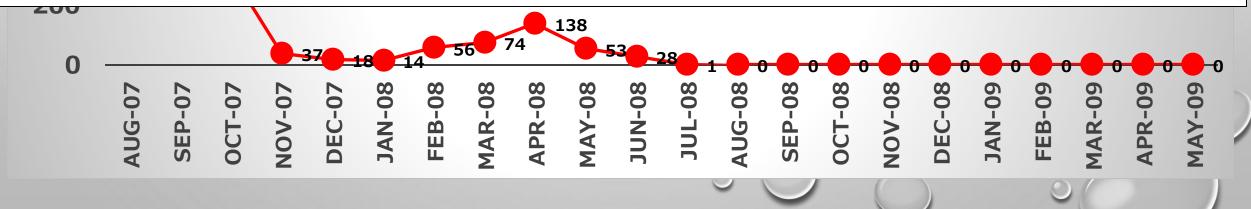


Table 4. Detection of virus by isolation, RAD kits and RT-F infected experimentally with A/equine/South Africa/4/03

Horse and day post-infection	Virus isolation	Titer ^{a)}	ESPLINE INFLUENZA A&B-N	
Horse 1				
0	-		—	
1	+	≤1.3	-	
1 2 3 4 5	+	3.0	+	
3	+	1.7	+	
4	+	2.0	+	
5	+	1.5	+	
6	+	≤1.5	-	
7	+	≤0.7	-	
8 –			_	
Horse 2				
0	-		-	
1	+	1.5	-	
2 3	+	3.2	+	
3	+	1.7	+	
4 5	+	1.7	+	
5	+	2.0	+	
6	+	2.0	+	
7	+	1.5	+	
8	-		_	
Horse 3				
0	-		—	
1			—	
2	+	2.3	+	
2 3 4 5 6	+	2.3	+	
4	+	≤1.5	+	
5	+	2.0	+	
6	+	1.7	—	
7	_		_	
8	-		-	

a) Log EID₅₀/200 µl.

GUIDELINES FOR CONTROL MEASURES AGAINST EQUINE INFLUENZA (STIPULATED ON 3RD SEP)



Monthly change of new EI cases

Article 12.6.5

Recovery of free status

If a case of infection with EIV occurs in a previously free country, zone or compartment, free status can be regained 12 months after the last case, provided that outbreaks were managed in accordance with Chapter 4.19. and that surveillance, in accordance with Article 12.6.4., has been carried out during that 12-month period, with negative results.

Self-declaration of freedom from infection with Equine Influenza viruses (EI) in horses by Japan

Self-Declaration sent to the World Organisation for Animal Health (WOAH, founded as OIE) on 31 January 2024 by Dr OKITA Masatsugu, the Delegate of Japan to WOAH, Director of Animal Health Division, Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan. This self-declaration, initially established on 1 July 2009, is reiterated to reflect updates in the Terrestrial Code.

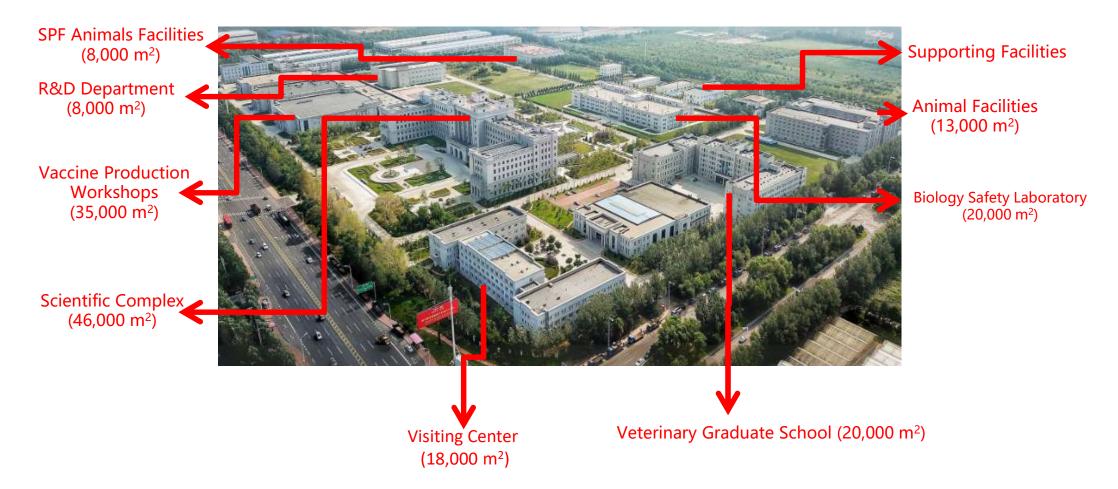
1. Introduction

Japan's previous self-declaration on the recovery of freedom from infection with equine influenza viruses was published by WOAH on 01 July 20091 and has continued to maintain an active status ever since. Japan's self-declaration of disease freedom is hereby resubmitted to reflect the adopted amendments to Chapter 12.6. and evolutions in the standard operating procedure for self-declarations in the intervening period.

SUMMARY

• EQUINE H3N8 IS NOT LONG PERSISTENT IN HORSES

- PUBLIC (AUTHORITY)-PRIVATE (INDUSTRY) PARTNERSHIP PLAYED A KEY ROLE
- MOVEMENT PROTOCOL BASED ON THE RAPID ANTIGEN
 DETECTION TESTS WORKED


Public-Private-Academic partnership is a key role!!

Response to emergence of *Salmonella* Abortusequi Infection in Asia ----surveillance approaches and diagnostic tests

Xiaojun Wang

WOAH reference laboratory on equine infectious aneamia Harbin Veterinary Research Institute The Chinese Academy of Agricultural Sciences

中国农业科学院哈尔滨兽医研究所 Harbin Veterinary Research institute, CAAS

马传染病与慢病毒病研究团队 Equine Disease Group in HVRI

- 70+ years research on equine infectious diseases
- State Key Laboratory for Animal Disease Control and Prevention
- National Reference Laboratory for Glanders
 - National Reference Laboratory for Equine Infectious Anemia
- WOAH Reference Laboratory for Equine Infectious Anemia


Research Interests

- The mechanism of virus-host interaction 1 Lentiviruses, Influenza virus
- 2. Epidemiology, pathogenesis, immunology of equine infectious diseases EIA, EHV, EI, Glanders, Strangles, Equine paratyphoid...
- 3. Diagnostic methods and vaccine development
 - EI, EHV, Strangles, Equine paratyphoid

Liuke SUN

李继伟

Jiwei Li

王晓钧 Xiaojun WANG

Wei GUO

胡哲 Xuefeng WANG Zhe HU

刘荻萩 Cheng DU Digiu LIU

任会玲 Huiling Ren Mengmeng YU

郭兴 Guo Xing

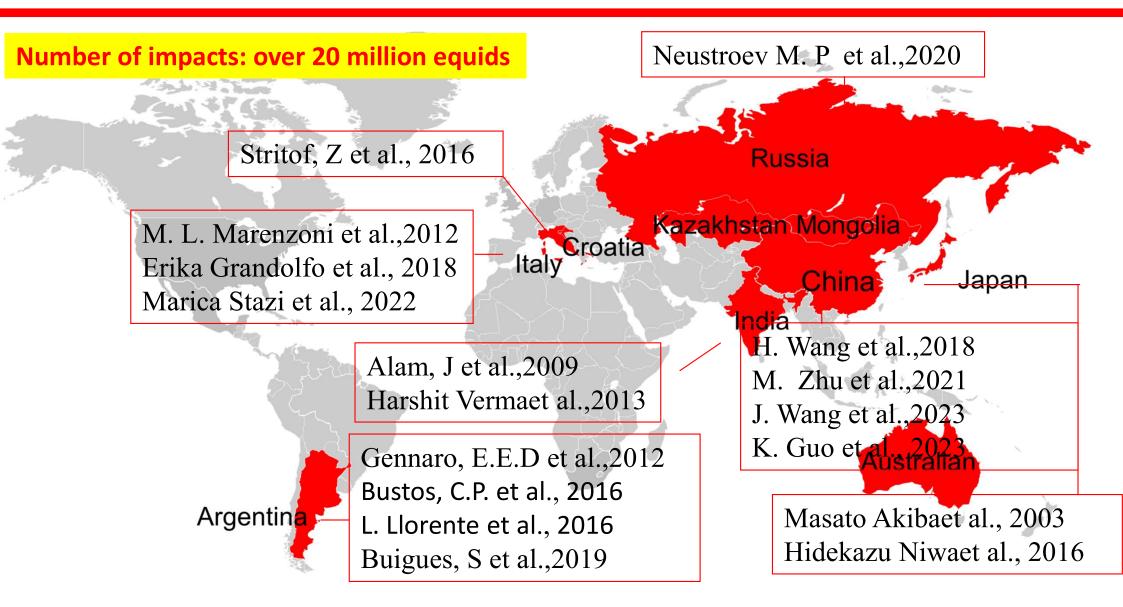
Professors

Associate Professors

Post doctoral

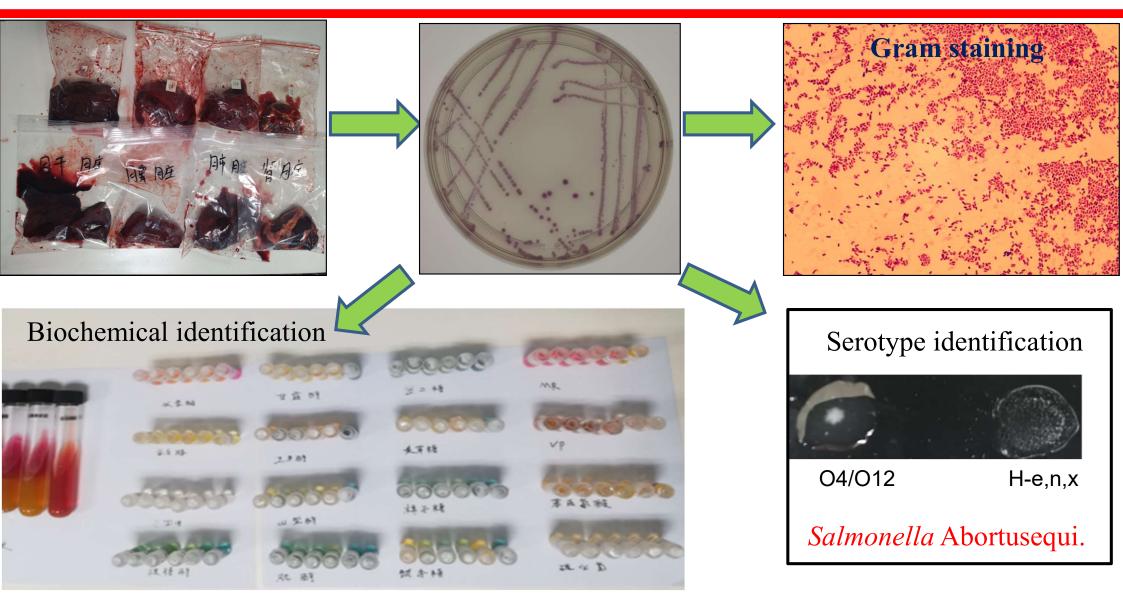
于萌萌

Equine paratyphoid (Salmonella Abortusequi infection)


Salmonella Abortusequi (S. Abortusequi)

is the causative agent of equine abortus salmonellosis (**Equine paratyphoid)**,

- abortion in the late stages of pregnant equids
- death in newborn foals
- arthritis in young foals.

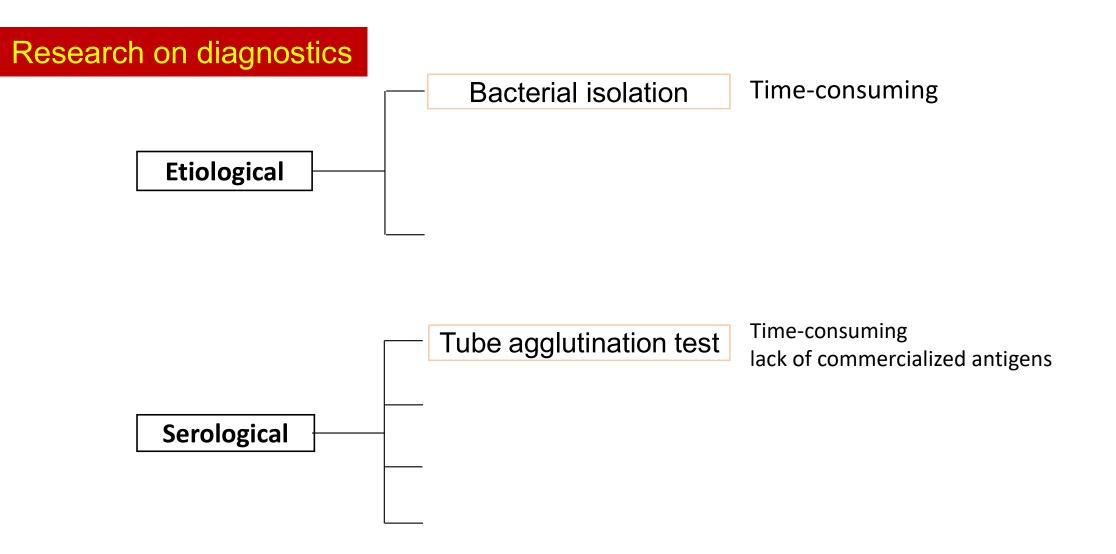

Prevalence of equine paratyphoid in countries in the last decade

Species	Year	Area	No. of	No. of	Abortion
Species	Tear	Inca	pregnancies	abortions	rates
Horse	2014	120	80	66.7%	
	2017		48	40	83.3%
	2018	B IM	1051	751	71.5%
	2018		64	64	100.0%
	2024		150	75	50%
	2024		200	104	52%
	2024	HLJ	300	90	30%
	2024	LN	1000		20%
	2017		345	93	27.0%
	2018		322	69	21.4%
	2019	SD	300	60	20.0%
	2019	40	20	50.0%	
Donkey	y 2020	619	417	65.7%	
	2021	HB IM	242	102	36.3%
	2021		2500	733	29.3%
	2023	XJ	460	150	32.6%
	2024	JL	50	15	30%
	2024	HLJ	2000		20%

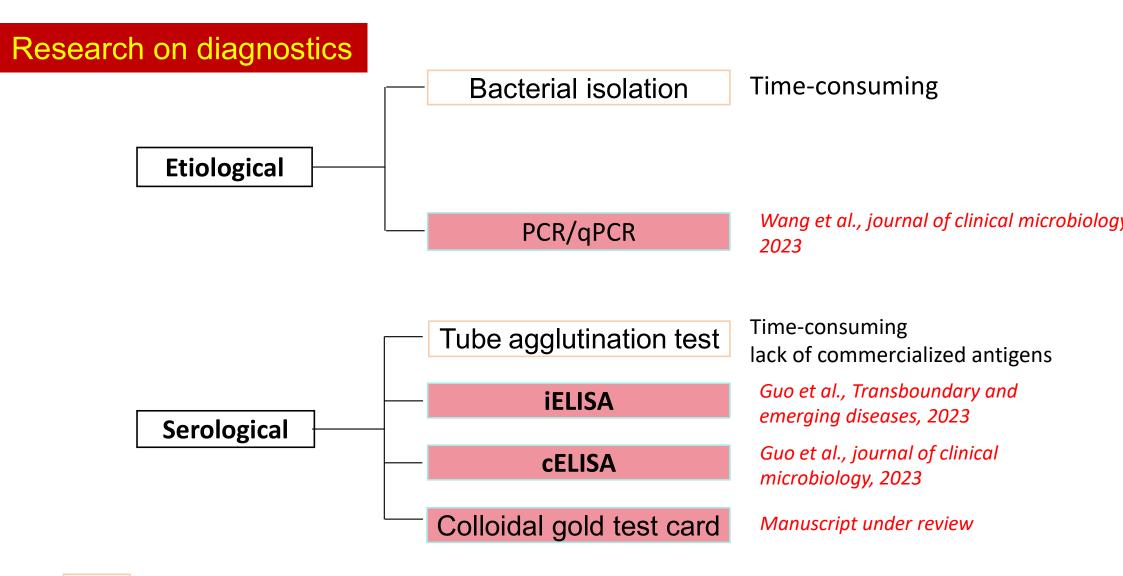
Domestic outbreak confirmed by our lab (Partial statistics)

Isolation and identification of pathogens: Salmonella Abortusequi

Research progress of inactivated vaccines									
Year	Country/ person	efficacy	Exist problems						
1950s	Mohler / Traum	Low efficacy							
1950s	Mgood / Dimock	Effective (The details are Unknown)	Multiple injections of each vaccination (Twice a year, three injections each time)						
1962	China	Effective (The details	Not promoted and applied						
1966	China	are Unknown)	Large immune dose, frequent, and heave side effects.						
2015	China	Low efficacy							
2020	Russia	Low efficacy							


Attanuated vaccines

Year	Country	Mode of attenuation	Characteristics of strains	Immune dose	Current situation and existing problems
2013	India	Gene deletion	Not completely attenuated	420 billion	Not commercialized
1970s	China	Passage in non- susceptible (C39)	effective	5 billion	Not available
1970s	China	Chemical (C355)	effective	10 billion	Available since 2019



Challenging for disease prevention and control

- Persistent infection with long latency period
- Low efficacy of antibiotics treatment
- No accurate method for diagnosis and surveillance

Traditional detection methods used globally

Traditional detection	າ methods ເ	used globally
-----------------------	-------------	---------------

Newly developed methods by our lab

Development and Application of Real-Time PCR Assay for Detection of Salmonella Abortusequi

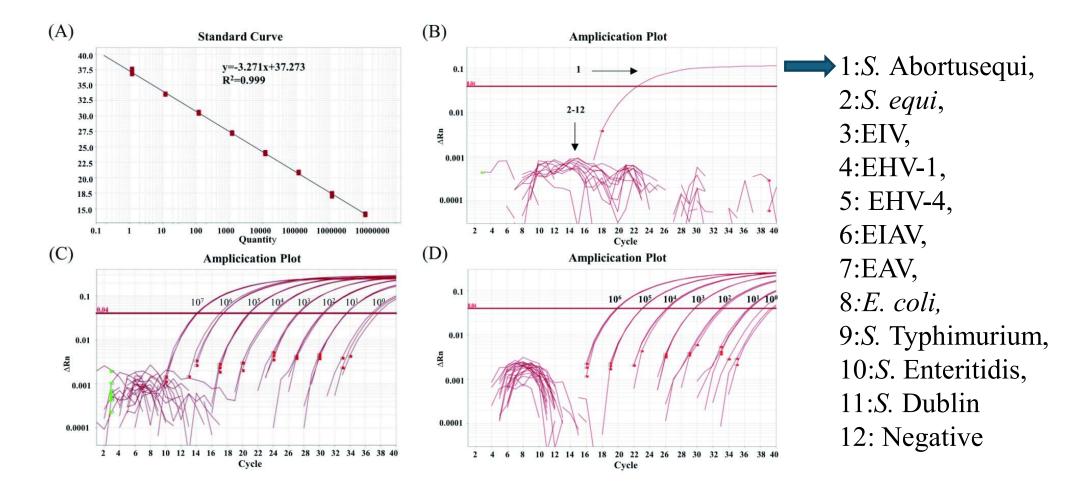
Jinhui Wang, 😳 Kui Guo, Shuaijie Li, Diqiu Liu, Xiaoyu Chu, Yaoxin Wang, Wei Guo, 😳 Cheng Du, 😳 Xiaojun Wang, Zhe Hu

*State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China

Jinhui Wang, Kui Guo, and Shuaijie Li contributed equally to this work. Author order was determined by drawing straws.

1.1 Design of the primers and probe for real time PCR based on FIJB gene of S.

			Forward primer	FA	M Pr	obe	BHQ1 Quencher	
				I				
		Ň		1			//	1
			625 647	70	10		725	776
				-				Reverse primer
		S. Abortusegui FliB-AY353319.1	GCATTAGGCAACCCGACAGTAAC	A	CTGTAAGTGGTTA	T AC (GATGCGGG	GGGCTGTATCATTCGGTGCTACCCCA
		S. Abortusegui FliB-D13690.1	G C A T T A G G C A A C C C G A C A G T A A C	A	CTGTAAGTGGTTAT	T A C C	GATGCGGG	GGGCTGTATCATTCGGTGCTACCCCA
		S. Abortusegui FliB-HE801470.1	G C A T T A G G C A A C C C G A C A G T A A C		CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
		S. Abortusegui FljB-HE801471.1	G C A T T A G G C A A C C C G A C A G T A A C		CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
Salmonella	0 0	S. Abortusegui FljB-HE801472.1	G C A T T A G G C A A C C C G A C A G T A A C		CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
Abortusegui	Group B	S. Abortusequi FljB-HE801473.1	G C A T T A G G C A A C C C G A C A G T A A C	11.25	CTGTAAGTGGTTA		CASES IN THE REPORT DOWN-THE REPORT	GGGCTGTATCATTCGGTGCTACCCCA
ribertueequi		S. Abortusequi FljB-HE801474.1	G C A T T A G G C A A C C C G A C A G T A A C	1.488	CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
		S. Abortusequi FljB-HE801475.1	G C A T T A G G C A A C C C G A C A G T A A C		CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
		S. Abortusequi FljB-HE801476.1	G C A T T A G G C A A C C C G A C A G T A A C	A	CTGTAAGTGGTTA	T AC (GATGCGGG	GGGCTGTATCATTCGGTGCTACCCCA
		S. Paratyphi A FljB-CCNW01000001.1	CCATTATCGGCATAAGC	Δ	CGTTCAGTGAATCO	C	GGCCCAGG	TCGTTGGCACCAACCTG
	Group A	S. Abony FliB-HE801458.1	GCATTAGGCAACCCGACAGTAAC	-	CTGTAAGTGGTTA		Contraction of Market	GGGCTGTATCATTCGGTGCTACCCCA
		S. Chester FliB-AJ292279.1	GCATTAGGCAACCCGACAGTAAC	100	CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
	Crown D	S. Bonariensis FljB-HE801449.1	GCATTAGGCAACCCGACAGTAAC		CTGTAAGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
	Group B	S. Typhimurium FliC-JN587177.1	GCAAACGGTCAGTTGACAAC		- TGGTAC CGATGA		and the second	AGG-TGTGTCTTTTACTATTGAT
		S. Typhimurium FliB-AF045151.1	G C T A C G G G T G G T A C G A A T G G T A C G G C T T C T G T A A C		CTATTGGTGGCTT			GTACAGTAACCCTTGCGGCTGGCGCA
		S. Paratyphi C FliC-D Q838217.1	AAAATTGGTGCAGCAAC		CTGTCAGTGGATAG	16		GAGCAGTTACTTTTGCGACTACACCA
Other		S. Choleraesuis FliC-X03394.1	AAAATT GGTGCAGCAAC		CTGTCAGTGGATA			GAGCAGTTACTTTTGCGACTAGACCA
Salmonella	Group C	S. Choleraesuis FljB-EU443199.1	G C T A T A G G T G G T A C G A C T G G T A C G G C T G C T G T A A C		CTATTGG TGGCTT			GTACAGTAACCCTTGCGGCTGGCGCA
	Group C	S.Potsdam FIjB-HE801490.1	GCATTAGGCAACCCGACAGTAAC		CTGTAGGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
serovars		S. Mikawasima FljB-HE801503.1	GCATTAGGCAACCCGACAGTAAC		CTGTAGGTGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
		S. Gatuni FljB-AY353322.1	GCATTAGGCAACCCGACAGTAAC	1.05	CTGTAAG TGGTTA			GGGCTGTATCATTCGGTGCTACCCCA
		S. Enteritidis FliC-M84974.1	GCAAACGGTCAGTTAA	G	GTACCGCTGAA	<mark>G</mark> CC	AAAGCGAT	AGGC-GTGACTTTTACTATTGATACA
	Group D	S. Enteritidis FljB-AM933172.1	GCA <mark>AAC</mark> GG <mark>TC</mark> A <mark>GTTA</mark> A	G	GTACCGCTGAA	<mark>g</mark> cc	AAAGCGAT	AGGC-GT <mark>GACT</mark> TT <mark>TAC</mark> TA <mark>T</mark> TGATACA
	Croup D	S. Dublin FliC-AY649712.1	GCAAACGGTCAGTTAACAAC	G	GTACCGCTGAAGCO	C AAA	GCGATAGC	AGGC-GTGACTTTTACTATTGAT
		S.Gallinarum-Pullorum FljB-CP003047.1	GCAAACGGTCAGTTAACAAC	G	GTACCGCTGAA		AAAGCGAT	AGGC-GT <mark>GACT</mark> TT <mark>TACTA</mark> TTGATACA
	Group E	S.Anatum FliC DQ095538.1	G C <mark>G T T G G G A A A T C C C</mark> A C <mark>G G C</mark> A A C	A	CTGTTGCAGGGTA	T A C G	AATGCTGC	GTGCGGTAACTTTCAATGCAGCACCA
	Group F	S.Aberdeen FliC- AY429610.1	AC	A	AAGT	T AC 0	GTTACGGG	G <mark>T G A G G T G A C T C T T G C T G G C G G T G C G A C T T</mark> C C C C <mark>G</mark>
	Group I	S.Rubislaw FIjB-HE801452.1	G C A T T A G G C A A C C C G A C A G T A A C	A	CTGTAAGTGGTTA	T A C C	GATGCGGG	GGGCTGTATCATTCGGTGCTACTCCA
								L
	1	E. Coli FliC- JX847136.1	6 C T C A A C T C T C T 6 C A C C	Δ	C T G T <mark>C</mark> A G <mark>T G C</mark> T G G T T A T	AAAGAATCCACT	GCTGCAGA	GTGCGCTGACTTCCAATGACTATACTTATGACCCA
Other		K. Pneumoniae FliC-CABEI Z010000064.1			AG <mark>CA</mark> GTT			AGATGGTAAGACTCAGTATATCGCCTAT
enterobacteral		P. Carotovorum FliC-FJ210935.1	GCATCAAC		TTCTGGCTAGTTAT			GTGCCTGTCTCT
enterobacteral	63	Y.Enterocolitica FliC-GU345827.1	CTGATAC		CGCAAAC TGACTAT			
				-	and the second s		ana ana ang tang tang tang tang tang tan	


The primers and probe sequences used in our assay could distinguish *S*. Abortusequi from *S*. Typhimurium, *S*. Enteritidis, *S*. Dublin, and most *Salmonella* serotypes from Group A to Group F

1.2 Analysis specificity and sensitivity of the PCR

Detection limit:

3 copies/ μ L of the standard plasmid

10 CFU/ μ L of bacterial DNA

Real-time PCR showed better detection rate than bacteria isolation

Truess	Real time PCR –	Culture		Detection rate	PAP	NAP	
Types	Real time PCR –	Positive	Negative	(%)	(95% CI)	(95% CI)	
Tissue	Positive	102	34		100.00	12.22	
	Negative	0	26	83.95	100.00 (96.37-100.00)	43.33 (31.57-55.90)	
Plasma	Positive	Positive 2 0			100.00	100.00	
	Negative	0	190	1.04	(17.77-100.00)	(98.02-100.00)	
Vaginal swab	Positive	7	41		100.00	77.09 (70.41-82.64)	
	Negative	0	138	25.81	(64.57-100.00)		

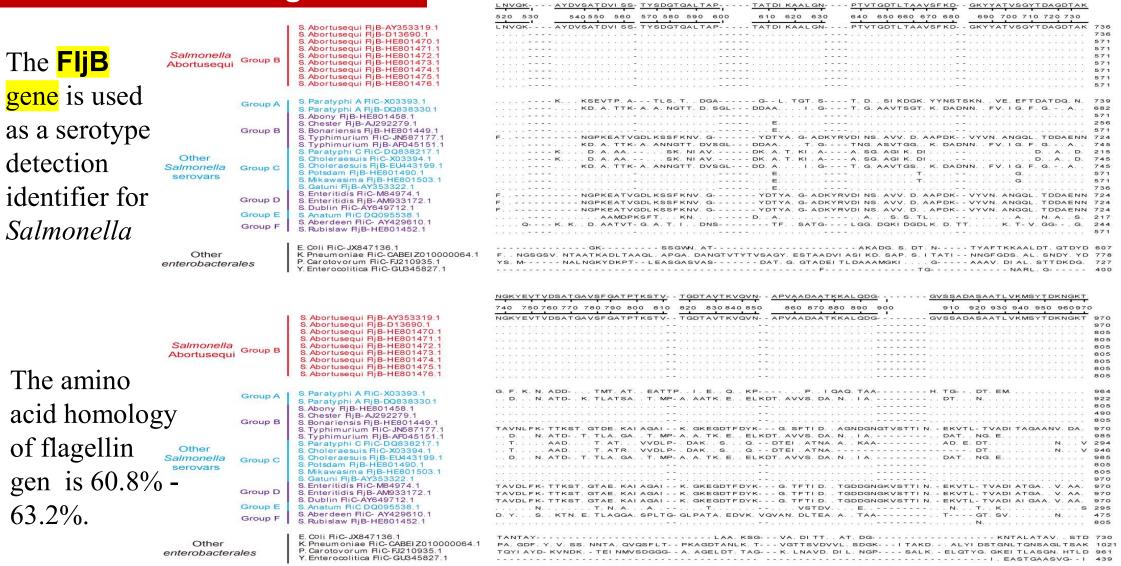
2. *Salmonella* Abortusequi iELISA antibody test

Hindawi Transboundary and Emerging Diseases Volume 2023, Article ID 1403180, 11 pages https://doi.org/10.1155/2023/1403180

Research Article

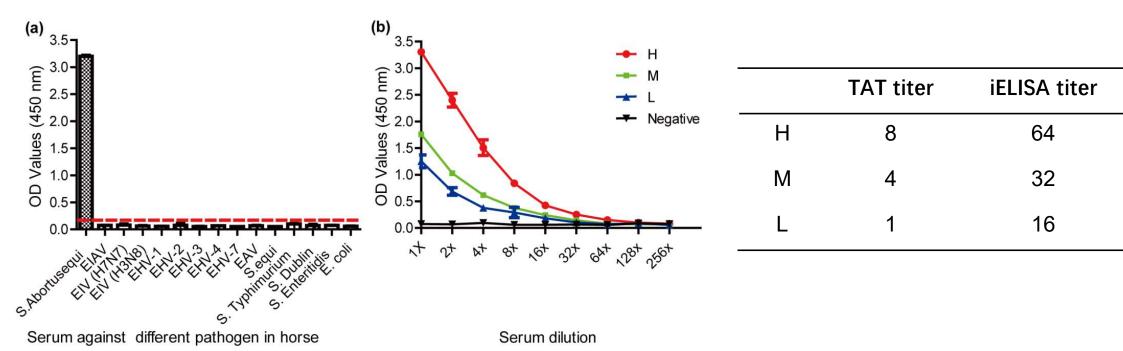
Development and Application of an iELISA for the Detection of Antibody against Salmonella Abortusequi

Kui Guo (), Zenan Zhang, Yan Yang, Weiguo Zhang, Jinhui Wang, Shuaijie Li, Xiaoyu Chu, Wei Guo, Diqiu Liu, Yaoxin Wang, Zhe Hu (), and Xiaojun Wang ()

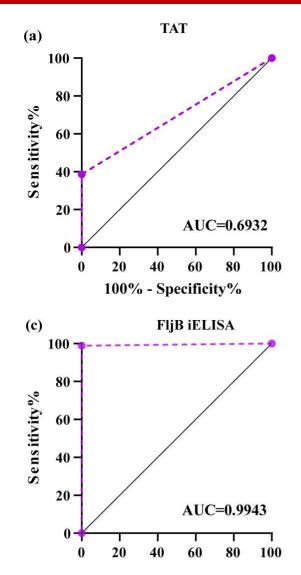

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China

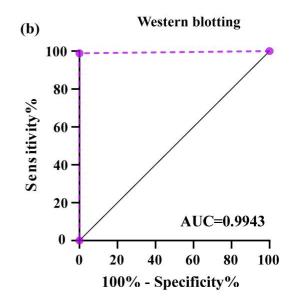
Correspondence should be addressed to Zhe Hu; huzher@126.com and Xiaojun Wang; wangxiaojun@caas.cn

Received 27 December 2022; Revised 2 May 2023; Accepted 3 May 2023; Published 15 May 2023



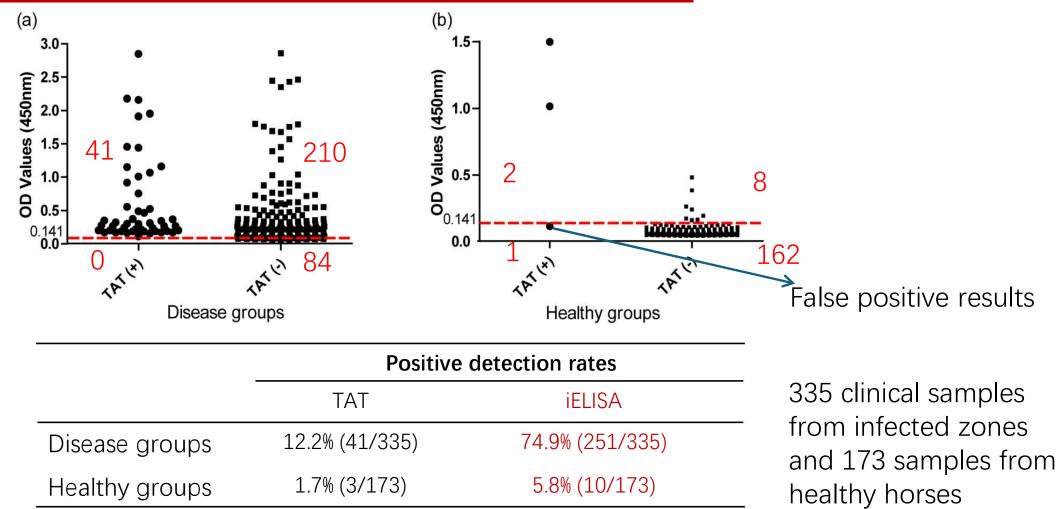
2. 1Selection of target




2.1 Specificity and sensitivity of antibody detection by the FIjB iELISA

iELISA showed high specificity and 8-16 times higher sensitivity than TAT

2.2 Comparison of diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of iELISA, TAT and Western blotting

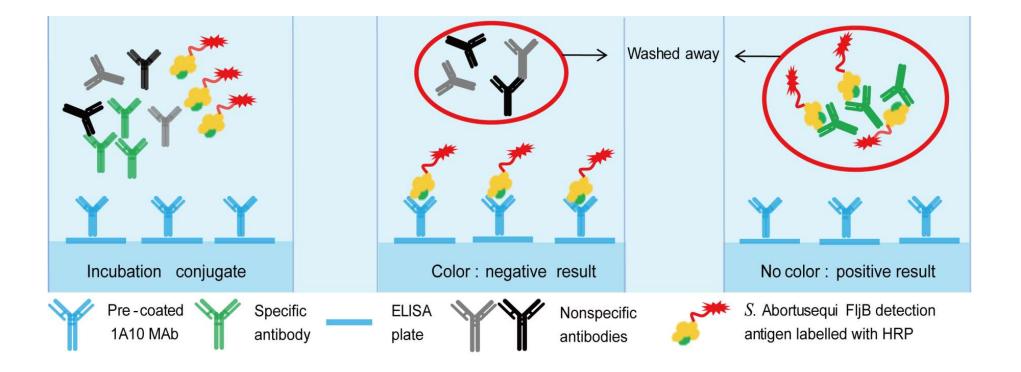


The diagnostic sensitivity (DSe) and diagnostic specificity (DSp) of iELISA are all comparable with western blot, wich is consider as the best assay.

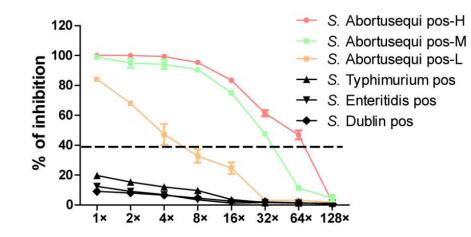
	Accuracy	Sensitivity	Specificity
TAT	69.32%	38.6% (34/88)	100% (88/88)
iELISA	99.43%	98.86% (87/88)	100% (88/88)
Western blot	99.43%	98.86%(87/88)	100% (88/88)

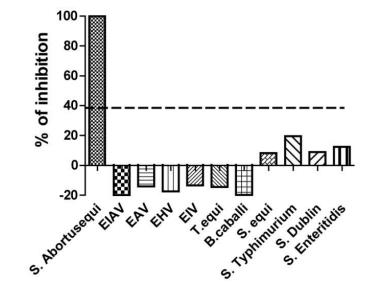
3. *Salmonella* Abortusequi cELISA antibody test kit

AMERICAN SOCIETY FOR MICROBIOLOGY

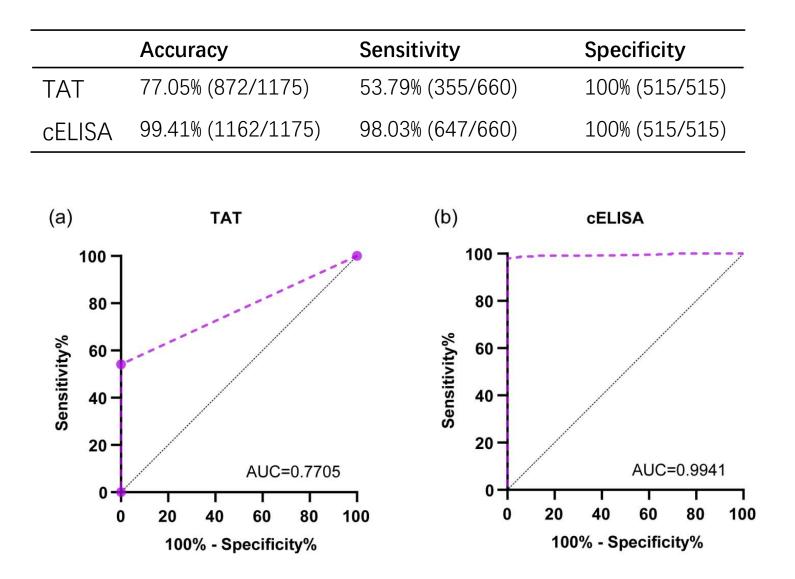


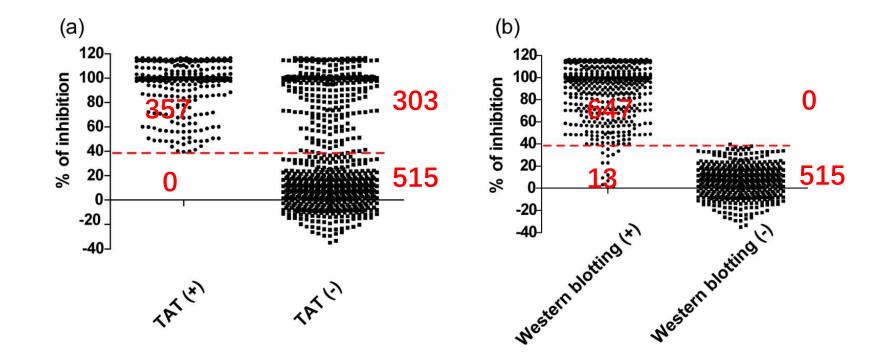
8 Bacteriology | Full-Length Text


Development and application of a competitive ELISA for the detection of antibodies against *Salmonella* Abortusequi in equids

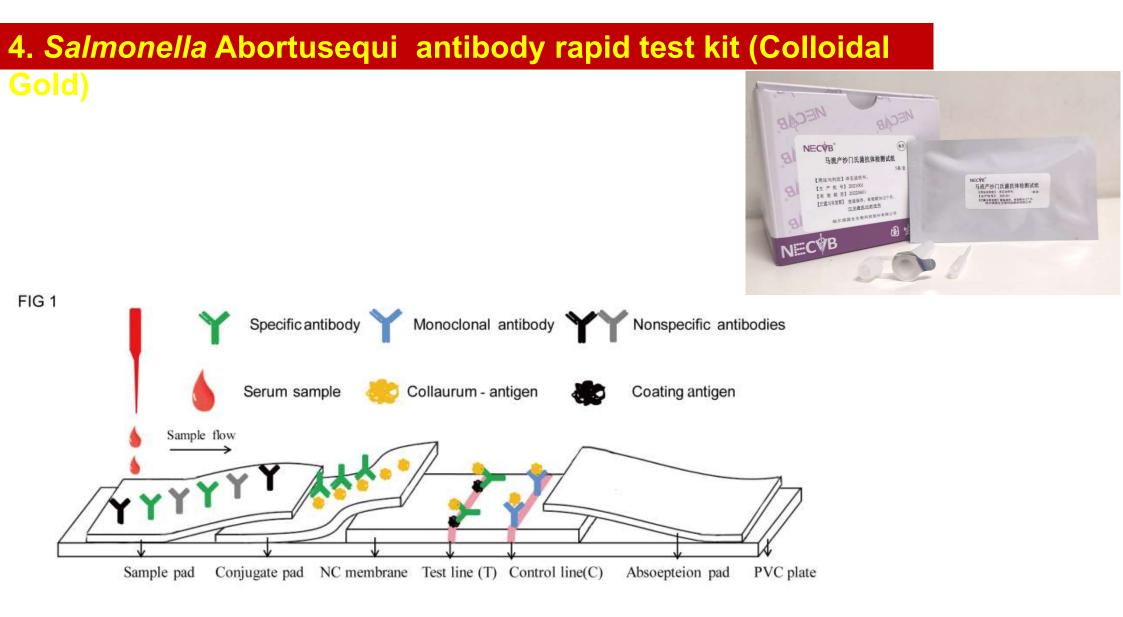

Kui Guo,¹ Wei Guo,¹ Diqiu Liu,¹ Weiguo Zhang,¹ Yan Yang,¹ Zenan Zhang,¹ Shuaijie Li,¹ Jinhui Wang,¹ Xiaoyu Chu,¹ Yaoxin Wang,¹ Zhe Hu,¹ Xiaojun Wang¹

3.1 Schematic diagram of solid phase competition ELISA

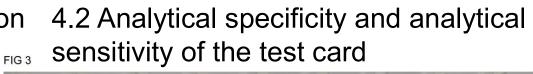

3.2 Analytical sensitivity and specificity of the cELISA

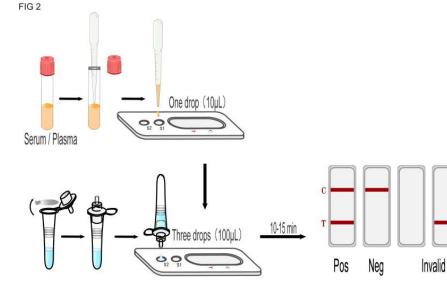


	TAT titer	ELISA titer
H	32	64
Μ	2	4
L	1	32

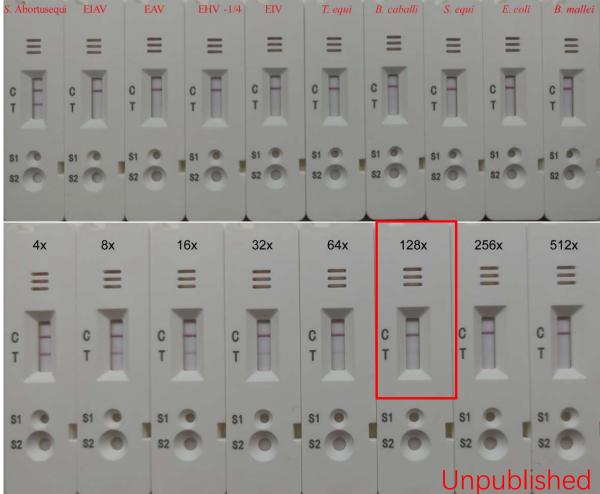

3.3 ROC curve analysis

3.4 Clinical detection performances of the cELISA

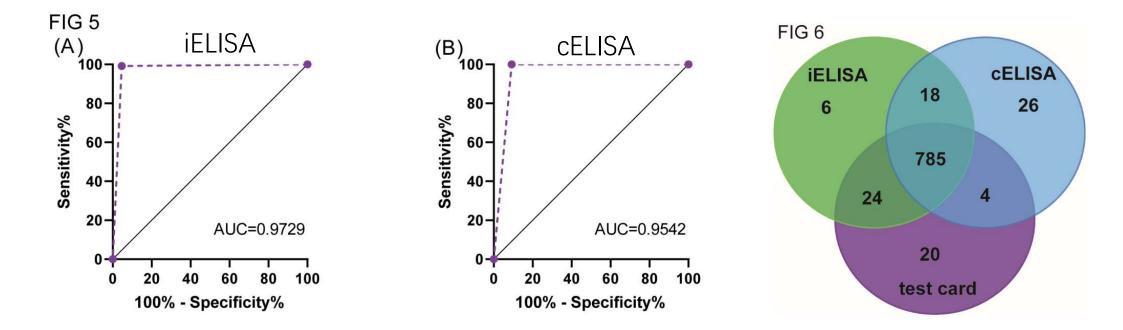

- 1. The coincidence rate of cELISA and TAT is 75.1% (357+515) /1175)
- 2. The coincidence rate of cELISA and Western blot is 98.9% ((660+515) /1175)



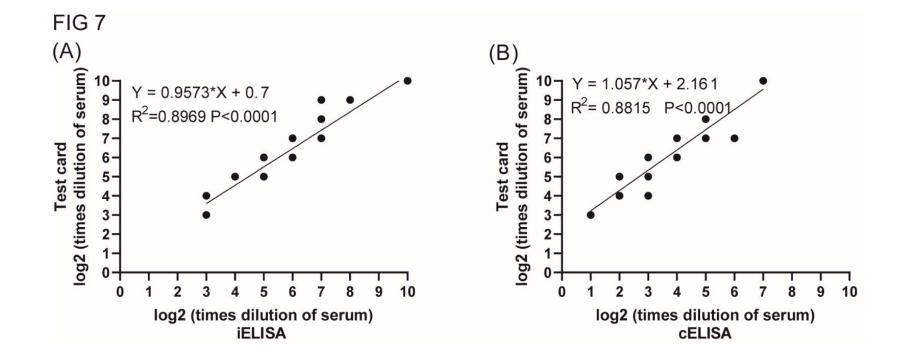
Unpublished


4. Salmonella Abortusequi antibody rapid test kit (Colloidal

4.1 Schematic diagram of clinical operation of the colloidal gold test card



	Titer
iELISA	32
cELISA	32
Test card	128


4.3Comparison of sensitivity and specificity of the test card, iELISA, and cELISA

The coincidence rate of the test card with iELISA (97.12 % [809/833]) was similar to that of the test card with cELISA (94.72 % [789/833]).

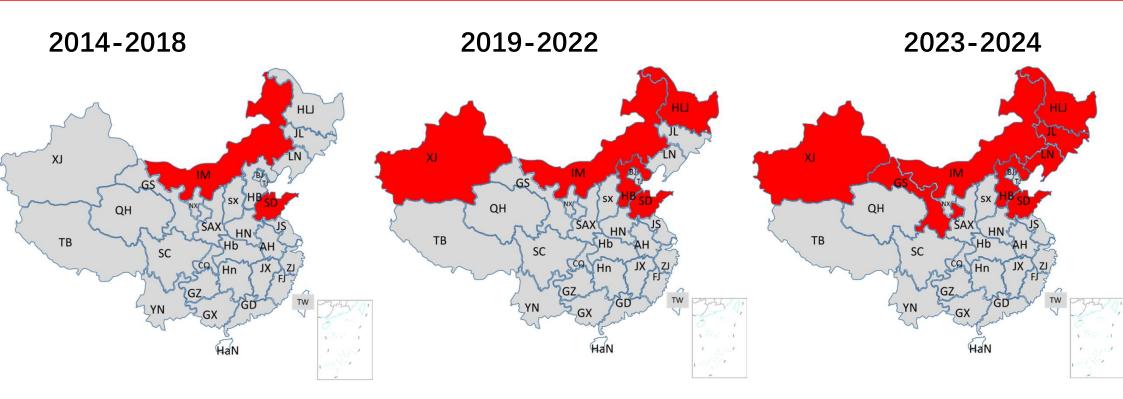
Unpublished

4.4 Correlation analysis of rapid test cards with iELISA and cELISA

Unpublished

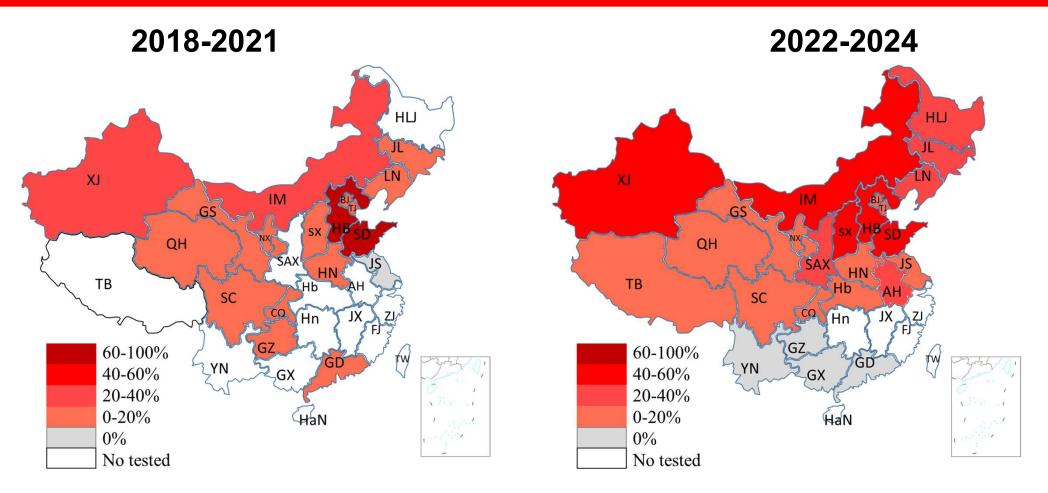
Commercial kits for the detection of *Salmonella* Abortusequi

Real time PCR


iELISA antibodies detection kit

cELISA antibodies detection kit

Colloidal Gold card for antibody detection


1 High sensitivity	/ 2 High specificity	3 Throughput	4 Field fast test
 1.Fast 2.High sensitivity (3 copies/µL of the standard plasmid) 3.High specificity 	 1.Fast: finish in 85 min (TAT ,24h) 2.High sensitivity: 8-16x higher 3.Highly specific detection of <i>S</i>. Abortusequi 	 1.Fast: finish in 40 min 2.Highly specific detection of S. Abortusequi 3. Only one step response 4.Throughout: no need for dilution 	1.Fast: in 10 min2.More sensitive thanTAT,iELISA and cELISA3.Easy to use: no needof instrument.

Geographical distribution of Salmonella Abortusequi identified by our lab

Salmonella Abortusequi spreads epidemically and frequently causes up to 90 percent of abortions wherever it occurs.

Active serological monitoring

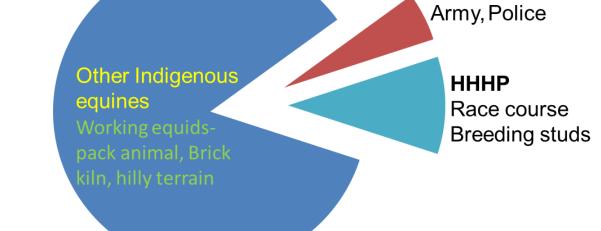
Positive rate :32.6% (480/1472, 51 farms) Samples from HB and SD were mainly from infected farms (Guo et al., 2023) Positive rate :18.31% (360/1966,138 farms) (Random salmpling) Unpublished

Thank you!

National control programme for glanders in India

Praveen Malik

Principal Scientist, ICAR and CEO, Agrinnovate India Limited, New Delhi (India)


Regional Workshop on laboratory expertise for equine diseases in Asia and the Pacific, 17 – 18 September 2024, Tokyo, Japan

Distribution of equine population in India

(Livestock Census 2019)

0.55 million

Indigenous - ~95%; Mainly unorganized No glanders in Organized sector Affected states – Mainly northern States (12)

Glanders outbreak status in India (Last 3 yrs WAHIS Reports)

State	Year 2021			Ye	Year 2022		Year 2023			
	No. of	Cases	Death	No. of	Cases	Death	No. of	Cases	Death	OUTLINE MAP
	Outbreaks			Outbreaks			Outbreaks			
Haryana	2	3	1	3	9	4				And a star
Maharashtra	2	2		1	1	1	3	4	3	C. S. S. S. S. A.
Uttar Pradesh	1	9		-	-	-	-	-	-	Crisso Harris
Andhra Pradesh	-	-	-	1	1	-	-	-	-	Forman Contraction of
Himachal Pradesh	-	-	-	2	5	4	2	7	5	Arabian market and a start Bay of Bengal
Gujarat	-	-	-	5	6	4	2	7	0	Sea for the sea
Rajasthan	-	-	-	3	4	3	5	11	4	International Boundary
Jharkhand	-	-	-	1	7	3	-	-	-	
Punjab	-	-	-	-	-	-	5	6	5	INDIAN OCEAN
Total	5	14	1	16	33	19	17	35	17	

- Glanders is a notifiable equine disease (since 1899) under the Prevention and Control of Infectious and Contagious Diseases in Animals Act, 2009 of Government of India
- Being a notifiable disease, DAHD issued a set of guidelines (vide letter no F. No. K-50/1/2017/LH dated 18/01/2017) that was binding on the States
- To control the outbreak of Glanders in the infected states and prevent spread of the disease to non-infected states/zones, the existing guidelines have been updated in 2019
- The National Action Plan has been framed for entire population of equids reared in different management and animal husbandry practices in India under the overall conceptual framework of the WOAH Terrestrial Code and the WOAH Terrestrial Manual 2018 (Chapters 1.4, 4.3, 12.10 and 3.5.11 respectively)
- Overall objective is surveillance, control and eradication of Glanders in equines in India

National Action Plan for Control and Eradication of Glanders in India (May 2016, Revised 2019)

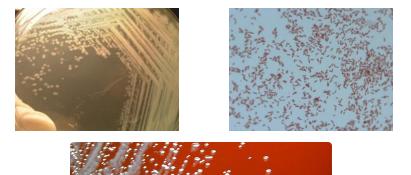
- Legislative provision
- Diagnostic test, designated laboratory and National Reference laboratory
- Disease surveillance, control and eradication
- Responsibilities of State Animal Husbandry Department in the event of incidence of disease
- De-notification
- Glanders-free State/Zone/Compartment
 - Zones historically free from Glanders
 - Criteria for defining/auditing compartment
 - Criteria for attaining Glanders-free compartment
 - Movement of horses/equines between compartments for various activities
- Equine fairs/congregation/events/shows in unorganized sector
- Guidelines for pharmaceuticals, animal house, experimentation facilities, etc.
- Inter-state movement of equids
- Human Surveillance
- Compensation
- Research Priorities
- Training and Capacity Building
- Public awareness
- Surveillance Plan

Legislative provision

- Prevention and Control of Infectious and Contagious Diseases in Animals Act, 2009
 - All States have framed rules under Section 43 of the Act for Quarantine Camps and check-posts, manner of inspection etc.
- State/ UT Animal Husbandry Department are bound to report any suspected or confirmed cases of Glanders

Diagnostic test, designated laboratory and National Reference Laboratory

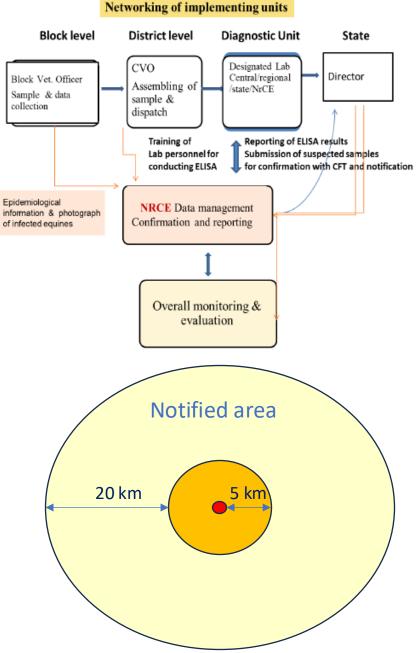
Two-tier sero-diagnosis approach

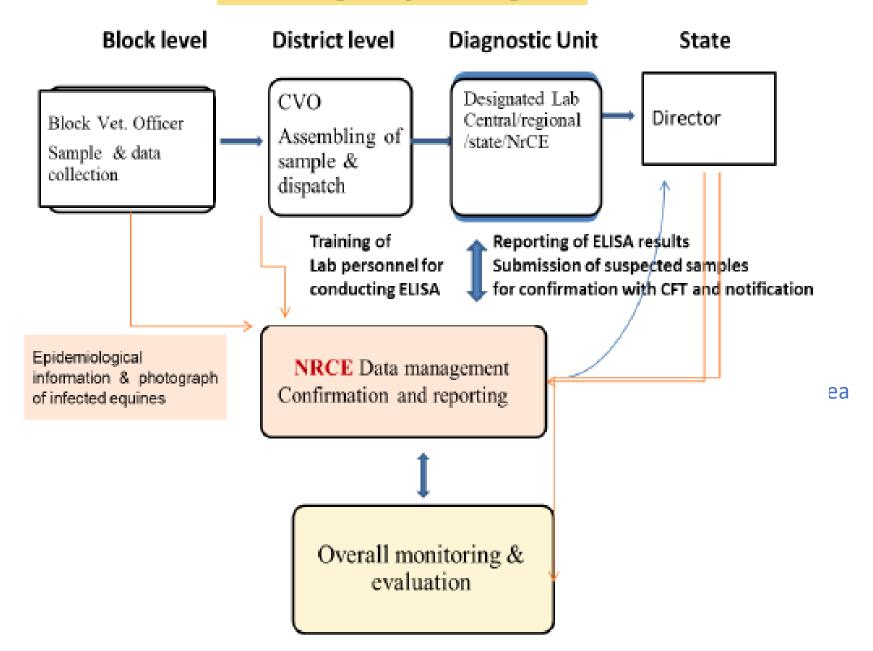

- Recombinant ELISA screening
- Confirmation of positive case CFT
- Others Bacterial isolation, antigen and genome demonstration (PCRs)

> National Reference Laboratory (NRL)

- ICAR National Research Centre on Equines, Hisar
- Central Military Veterinary Laboratory (CMVL), Meerut recognized laboratory for testing of equids from the defence services and those coming in contact with their animals

> Development of Network of Diagnostic Laboratories (DL) for glanders


- RDDLs/CDDL/State Diagnostic Laboratories
- Notification of recognized/designated laboratories by DAHD on the recommendations of a Committee and technical validation by NRL
 - Capacity building of laboratory personnel and supply of reagents
 - · Verified for repeatability and reproducibility of their test results
- All positive cases tested by the designated laboratories (DLs) and CMVL to be confirmed by the NRL



Disease surveillance, control and eradication

- Glanders surveillance programme which shall include clinical/physical, pathological and serological surveillance
- This surveillance plan is applicable to all the states in India
- Continuous, and random surveillance strategy 10 20% equine population in a year
- In case of positive report 25 km radius surrounding core infection zone is notified area
- Animal movement and equestrian events are prohibited
 - Three times surveillance around 25 km radius of the infected zone
 - 100% surveillance around 0-5 km (and epidemiologically linked area)
 - 25% surveillance around 5-25 km
 - Negative results allow denotification
- Zoos to submit biological samples from all susceptible captive wildlife species

Networking of implementing units

Responsibilities of State Animal Husbandry Department in the event of incidence of disease

- Notification
- Restrictions on movement of equines
- Screening of equines for glanders (physical / sero- surveillance based on risk assessment)
- Destruction of positive cases
- Disinfection of notified areas
- Sample collection and submission to designated laboratories
- Communication of status with relevant stakeholders
- Awareness and community engagement

De-notification

- By State government following post-outbreak surveillance (three tests in first three months, at minimum 21 days apart)
- Regulated equine movement to be withdrawn for restoring equine activities
- Surveillance to continue for another 9 months, with another sample being taken within 3 months of denotification

Glanders free State / Zone / Compartment

- Historical freedom no reports for at least 10 years
 - All equids in the zone/region shall have identification system, movement records and health card
- Eradication has been achieved by active surveillance in past 3 years
- Infection is not known to be established in wildlife within the state or zone
- Glanders / B.mallei infection surveillance for at least past 3 years
- Appropriate bio-security and sanitary measures

Defining/auditing compartment

- Existence of an animal idⁿ system, bio-security and surveillance mechanism
- To be certified by the attending veterinarian/District Chief Veterinary Officer /Director General, RVS and notified by DAHD
- To be reviewed every 5 years by an expert team constituted by DAHD

The term "infected" shall be defined as the infection of B. mallei confirmed either bacterial isolation bv or demonstration of antigen/genomic DNA or antibody to В. mallei demonstration and epidemiologically linked to a confirmed or suspected case of infection with *B. mallei*, or giving cause for suspicion of previous contact with *B. mallei*

Glanders-free compartment

- •Naturally or artificially separated premises/areas with restricted entry of man, materials and animal
- •Management of animals/stud under the supervision of qualified veterinarian
- Proper documentation, including records of treatment, vaccination, testing for various diseases, movement records
- •Epidemiological separation of the compartment from other equids (unorganized sector)
- •Any other factors preventing risk of *B. mallei* infection

Criteria for attaining and maintaining

- •Evidence of absence of Glanders / B.mallei infection either historically or based on past and ongoing Glanders surveillance
- •Equids in the compartment have not shown clinical signs & pathology consistent with Glanders during last 10 years
- •Evaluation of risk management
- •Newly inducted equids to be quarantined (21 days minimum) and tested
- •Appropriate biosecurity and sanitary measures
- Physical screening
- •A testing program for demonstration of infection (bacterial culture) or DNA / antibody to B. mallei at least during last three years has been established
- •Mixing of animals of other compartments having similar management practices shall be permitted.
- •Restricted contact with personnel having attended equids of different immune status and management practices.
- Private establishments to be registered with DAHD

• State Veterinary Authority to carry out documented periodic inspection of facilities, biosecurity, records and surveillance procedure

Movement of horses/equines between compartments for various activities

- Movement of equines shall be permitted between various Glanders-free compartments
- Any equestrian event (horse shows, race, polo, etc.) can be organized for participating horses from disease free compartments; even if it falls in the notified areas, following all biosecurity measures
- Equids have been tested negative
 - within 30 days of moving out of the compartment
 - within 21 days of the return to the original compartment

- Equine fairs/congregation/events/shows in un-organized sector
- Equine fairs, congregation, shows, or any equestrian events in which equids from unorganized sector take part shall not be permitted to be held in 25 Km of radius of the notified area/focus of infection
- Veterinary authority to take decision not to permit any events of equines in unorganized sector where adjoining districts have reported Glanders
- Equestrian events shall be permitted provided:
 - No case of Glanders during the past one year and ongoing surveillance is in place
 - Equines from notified area/district/zone which fall within 25 km radius from infection source shall NOT be permitted to participate
 - A certificate of a Glanders' test with negative results within 30 days
 - In equine fairs, blood samples from at least 30% population of participating equines shall be collected randomly for testing
 - In such events, common watering and feeding not to be permitted
 - Equine owners to be encouraged to get their animals physically and serologically examined within one month of return

For pharmaceuticals, animals house, experimentation facilities holding equines

- To be free from Glanders/ B. mallei infection equines should be tested twice every year
- Any new incumbent should be quarantined and
 - tested negative once, if introduced from non-infected states/zones
 - twice within three months with second test carried out within 21 days before entrance into the facility
- DAHD may arrange inspection of these facilities for compliance of guidelines

Inter-state movement of equids

- To be regulated by State Veterinary Authority
- Equids with prescribed "Health Card" only be permitted to move between states.
- Animals from infected states (having incidence of Glanders during the last 3 years) shall be permitted to enter in non-infected states by the State Veterinary Authority upon verification of the certificate of a Glanders" test carried out within 30 days and
- Movement between non-infected states or historically Glanders-free states shall be permitted with one Glanders test result carried out within 30 days before the date of inter-state migration
- Equines do not show signs and pathology consistent with Glanders on the day of entry

Human Surveillance

- Following confirmation of Glanders in equines, human health authorities to be intimated for testing of all in-contact personnel including the owners
- CMVL will undertake testing of human samples specifically from defense service personnel, if needed

Compensation

- State / UT Veterinary Authority are responsible for paying compensation to *bonafide* owners for eliminating Glanders/*B. mallei* infected animals in accordance with DAHD notification
- Paid under ASCAD on a 50:50 basis (as on date)
- Compensation shall also be paid for animal suspected to be infected with Glanders but dies before receipt of test results positive for Glanders
- Compensation amount to be revised every three years.

Research Priorities

- By designated laboratories in consultation with ICAR-NRCE
- Capacity building to conduct the test
- ICAR-NRCE to develop improved diagnostic methods/kits

Training and Capacity Building

- CVE Programmes on Glanders for field vets and lab personnel
- ICAR-NRCE to support Regional Disease Diagnostic Laboratories (RDDLs) and also other Designated State / UT Laboratories

Public awareness

- Public awareness by public, private and government institutions, and NGOs to sensitize all stakeholders about zoonotic significance of disease wrt equines and humans
- Regular awareness campaigns at pilgrimage/tourist places where equines are used for transportation

Other details included

- Destruction of the Infected Equines/animals
- Disinfection of the premises including the disinfectants
- SOP for serum samples collection from equines for Glanders surveillance
- Suggestive format of Equine Health Card along with the guidelines
- Details of Glanders' Surveillance Plan

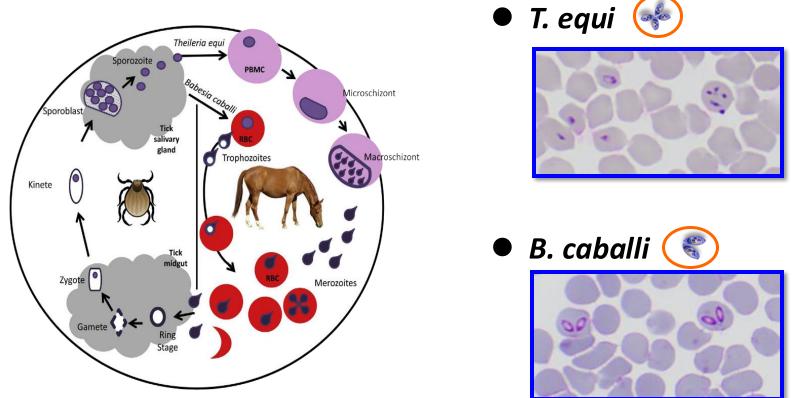
Way forward

- Review of the NAP needed, mainly for
 - Notified/Infected area/zone, Surveillance zone
 - Define purpose of surveillance
 - Focus on hot spots/zones
 - Investigate risk factors for disease spread
 - Include all susceptible species in screening
 - Attempt contact tracing
 - Organization of equine congregations
 - Compensation issues
 - Community engagement and risk communication strategies
- Establishment of more DFZs/compartments for HHP equines

Piroplasmosis' surveillance in Mongolia

B. Enkhtaivan¹., P. Myagmarsuren¹., D. Otgonsuren¹., T. Sivakumar²., B. Davaasuren¹., M. Zoljargal¹.,
 S. Narantsatsral¹., B. Davkharbayar¹., B. Battur¹., N. Inoue²., B. Battsetseg¹, N. Yokoyama²

¹ Laboratory of Molecular Genetics, Institute of Veterinary Medicine, Mongolian University of Life Sciences. ² National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine.



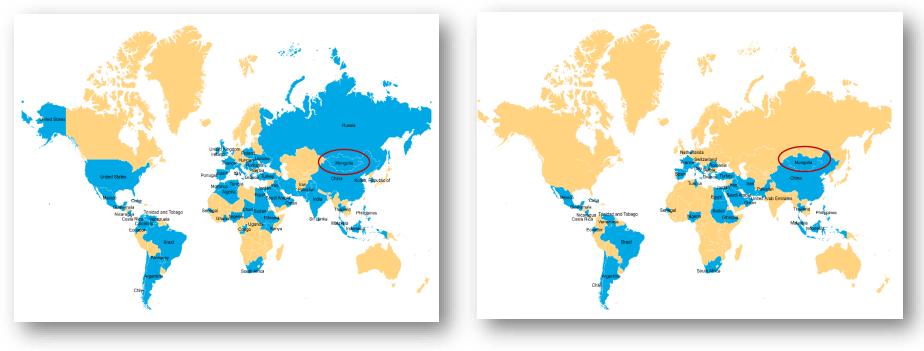
Regional workshop on laboratory expertise for equine diseases in Asia and the Pacific 17-18 September 2024.

Introduction

Equine piroplasmosis is caused by *Theileria equi* and *Babesia caballi*.

Infected animals become prolonged carriers.

(Wise at al., 2013. Equine Piroplasmosis. Vet. Clin. North Am. Equine Pract. 30: 677-693)


Introduction

Global distribution of equine piroplasma species

T. equi

B. caballi

https://www.obihiro.ac.jp/facility/protozoa/en/oie-rl-ep-ep

Introduction

T. equi

(Life-long)

Economical significance of equine piroplasmosis

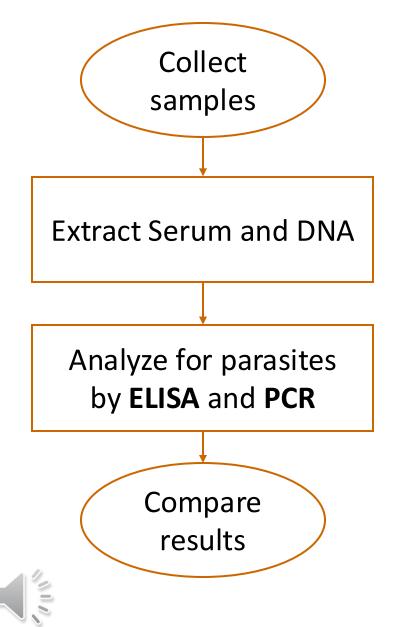
Equine piroplasmosis

- Anaemia Production loss
 Death
- Costs
 Treatment
 Tick control
- Impaired international trade

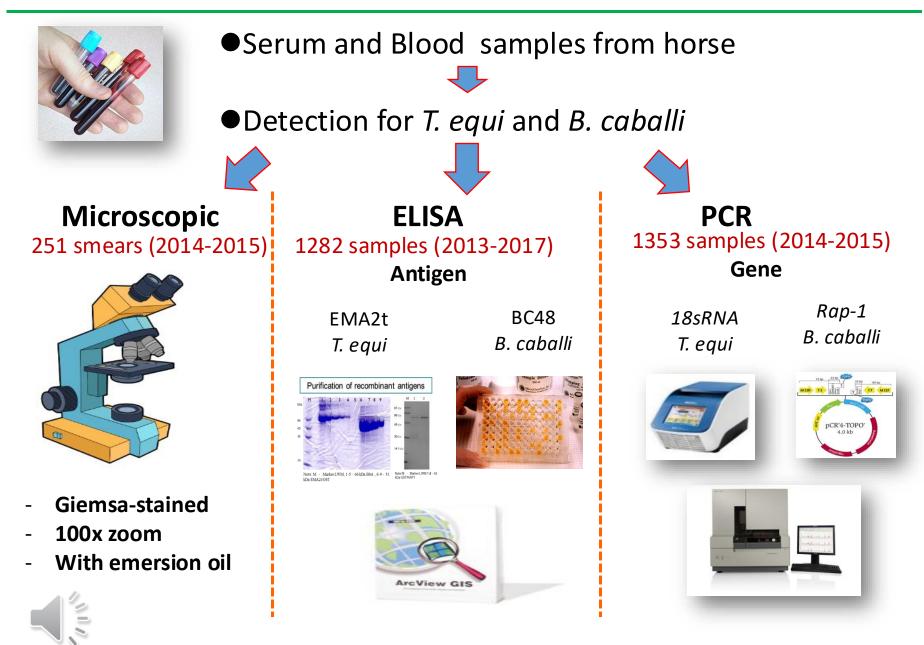
Huge economical losses to horse industries

Clinical Sub-clinical Death Recovery Chronic carriers (Source of infection)

B. caballi


(4 years)

- To investigate the molecular and sero-prevalance of *T. equi* and *B. caballi* infections in horse reared throughout the Mongolia
- To determine the parasite's genotypes in Mongolia
- To develop distribution maps for *T. equi* and *B. caballi* in Mongolia



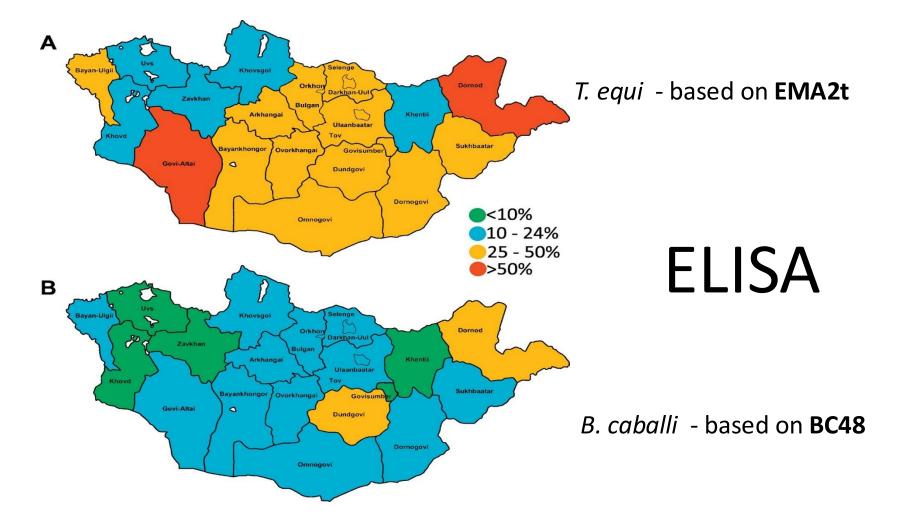
- The horses were apparently healthy and randomly selected for sampling.
- The serum was extracted in same day, while DNA extracted in one month after collect blood.

Material and methods

Province	Microscopy							
	No. sample	T. equi		B. caballi				
		No. positive	% (CI ^a)	No. positive	% (CI)			
Arkhangai	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Bayankhongor	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Bayan-Ulgii	82	8	9.8 (5.0-18.1)	0	0.0 (0.0-0.0)			
Bulgan	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Dornogovi	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Dundgovi	27	1	3.7 (0.6-18.3)	1	3.7 (0.6–18.3			
Khentii	12	4	33.3 (13.8–60.9)	2	16.7 (4.7–44.8)			
Khovd	80	5	6.25 (2.7-13.8)	1	1.25 (0.2-6.7			
Khovsgol	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Orkhon	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Omnogovi	50	12	24.0 (14.3–37.4)	0	0.0 (0.0–0.0)			
Ovorkhangai	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Selenge	0	0	0.0 (0.0-0.0)	0	0.0 (0.0–0.0)			
Tov	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
Zavkhan	0	0	0.0 (0.0-0.0)	0	0.0 (0.0-0.0)			
(Total)	251	30	12.0 (8.5-16.6)	4	1.6 (0.6-4.0)			

Otgonsuren et al., 2024; https://doi.org/10.1645/18-189

Results...


Province	No.	T. equi		B. caballi		T. equi and/	No. co-infected		
	samples	No. positive	% (CIª)	No. positive	% (CI)	No. positive	% (CI)	(% ^c)	
Arkhangai	54	20	37 (25.4-50.4)	7	13 (6.4-24.4)	22	40.7 (28.7-54)	5 (22.3)	
Bayankhongor	57	18	33.3 (21-44.5)	7	12.3 (6.1-23.3)	21	36.8 (25.5-49.8)	4 (19.05)	
Bayan-Ulgii	105	45	43 (33.8-52.4)	17	16.2 (10.4-24.4)	52	49.5 (40.2-58.9)	10 (19.2)	
Bulgan	20	6	30 (14.5-51.9)	2	10 (2.8-30.1)	8	40 (21.9-61.3)	0 (0)	
Dornod	93	69	74.2 (64.5-82)	37	39.8 (30.4-49.9)	76	81.7 (72.7-88.3)	29 (38.2)	
Dornogovi	57	16	28.1 (18.1- 40.8)	9	16 (8.5-27.4)	21	36.8 (25.5-49.8)	4 (19.04)	
Dundgovi	33	10	30.3 (17.4- 47.3)	12	36.3 (22.2-53.4)	18	54.5 (38-70.2)	4 (22.2)	
Govi-Altai	29	17	59 (40.7- 74.5)	7	24.1 (12.2-42.1)	20	69 (50.8-82.7)	4 (20)	
Govisumber	25	7	28 (14.3-47.6)	2	8 (2.2- 24.9)	7	28 (14.3-47.6)	2 (28.6)	
Khentii	98	24	24.5 (17.1- 33.9)	7	7.1 (3.5-14.02)	30	30.6 (22.4-40.3)	1 (3.3)	
Khovd	110	21	19 (12.8-27.4)	5	4.5 (1.9-10.2)	23	20.9 (14.4-29.4)	3 (13.04)	
Khovsgol	62	15	24.1 (15.2- 36.1)	9	14.5 (7.8-25.3)	21	33.9 (23.3-46.3)	3 (14.3)	
Omnogovi	57	20	35 (24-48.1)	12	21 (12.5-33.3)	26	45.6 (33.4-58.4)	6 (23.1)	
Ovorkhangai	26	11	42.3 (25.6- 61.1)	3	11.5 (4.0-28.9)	14	53.8 (35.5-71.2)	0 (0)	
Selenge	64	13	26.5 (12.3- 31.7)	9	14 (7.6-24.6)	21	32.8 (22.6-45)	1 (4.8)	
Sukhbaatar	136	42	31 (23.8-39.1)	15	11 (6.8-17.4)	53	39 (31.2-47.4)	4 (7.5)	
Τον	48	23	48 (34.5-61.7)	6	12.5 (5.8-24.7)	26	54.2 (40.3-67.4)	3 (11.5)	
Uvs	75	17	23 (14.7-33.3)	5	6.6 (2.9-14.7)	20	26.7 (18-37.6)	2 (10)	
Zavkhan	133	29	22 (15.6- 29 6)	11	8.2 (4.7-14.2)	39	29.3 (22.3-38)	1 (2.6)	
Total	1282	423	33 (30.5-35.6)	182	14.2 (12.4-16.2)	518	40.4 (37.8-43.1)	86 (16.6)	

^a 95% confidence interval, ^b Animals infected with *T. equi* and/or *B. caballi*

^c Expressed as a percentage of number of animals infected with *T. equi* and/or *B. caballi*

Myagmarsuren et al., 2019; https://doi.org/10.1645/18-189

Province	No. sample		T. equi	B. caballi			
		No. positive	% (Cl ^a)	No. positive	% (CI)		
Arkhangai	71	58	81.7 (71.2 -90.0)	2	2.8 (0.8 -9.7)		
Bayankhongor	39	34	87.2 (73.3 -94.4)	0	0.0 (0.0 -9.0)		
Bayan-Ulgii	145	81	55.9 (47.7 -63.7)	5	3.4 (1.5 -7.8)		
Bulgan	77	61	79.2 (68.9 -86.8)	1	1.3 (0.2 -7.0)		
Dornogovi	37	34	91.9 (78.7 -97.2)	2	5.4 (1.5 -17.7)		
Dundgovi	86	65	75.6 (70.3 -87.5)	5	5.8 (2.7 -13.7)		
Khentii	41	40	97.6 (87.4 -99.6)	5	12.2 (5.3 -25.6)		
Khovd	136	98	72.1 (64.0 -78.9)	5	3.7 (1.6 -8.3)		
Khovsgol	105	67	63.8 (54.3 -72.4)	6	5.7 (2.6 -11.9)		
Orkhon	10	4	40.0 (18.9 -73.3)	0	0.0 (0.0 -29.9)		
Omnogovi	77	64	83.1 (73.2 -89.9)	14	18.2 (11.2 -28.2)		
Ovorkhangai	21	21	100.0 (84.5 -100.0)	1	4.8 (0.8 -22.7)		
Selenge	93	55	59.1 (49.0 -68.6)	3	3.2 (1.1 -9.1)		
Точ	236	212	89.8 (85.3 -93.0)	6	2.5 (1.2 -5.4)		
Zavkhan	179	164	91.6 (87.2 -95.3)	7	3.9 (1.9 -7.9)		
(Total)	1353	1058	78.2 (75.9-80.3)	62	4.6 (3.6-5.8)		

^a 95% confidence interval.

Otgonsuren et al., 2024; https://doi.org/10.1645/18-189

PCR-prevalence based distribution map

90°E 95°E 100°E 105°E 110°E 115°E 120°E 51°N 51°N Khovsgol Uvs Selenge Bayan-Ulgii 48°N Orkhon 48°N Darkhan-Uul Zavkhan Dornod Bulgan Arkhangai Ulaanbaatar Khentii Khovd Tov Sukhbaatar 45°N Ovorkhangai 45°N Govisumber Govi-Altai Dundgovi Bayankhongor Dornogovi 42°N 42°N Omnogovi Sampled provinces Theileria equi Babesia caballi 100 200 400 600 800 39°N Kilometers 39°N 95°E 100°E 105°E 110°E 115°E

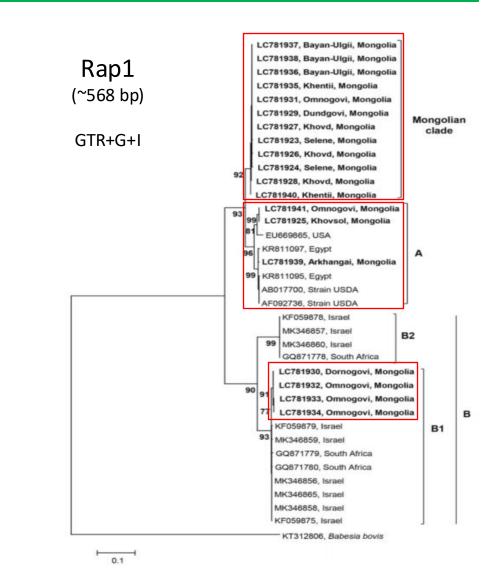
Otgonsuren et al., 2024; https://doi.org/10.1645/18-189

Results...

T. equi, 18sRNA gene sequence based

HM229408, South Korea - DQ287951, Spain LC781919, Dornogovi, Mongolia LC781901, Tov, Mongolia LC781903, Zavkhan, Mongolia LC781908, Dundgovi, Mongolia - LC781910, Omnogovi, Mongolia - LC781904, Dundgovi, Mongolia LC781889, Selenge, Mongolia LC781921, Uvurkhangai, Mongolia 18S rRNA - LC781899, Khovd, Mongolia LC781882, Arkhangai, Mongolia - LC781917, Omnogovi, Mongolia - LC781896, Zavkhan, Mongolia (~1591 bp) HM229407. South Korea - LC781909, Dornogovi, Mongolia - LC781886, Dundgovi, Mongolia LC781894, Zaykhan, Mongolia — LC781895, Bayan-Ulgii, Mongolia LC781913, Arkhangai, Mongolia - KM046918, Switzerland GTR+G+I LC781915, Bulgan, Mongolia LC781898, Bayan-Ulgii, Mongolia LC781883, Bulgan, Mongolia LC781892, Khovd, Mongolia AY534882. Spain LC781905, Bayan-Ulgii, Mongolia Е - LC781884, Khovd, Mongolia LC781893, Zavkhan, Mongolia - LC781888, Tov, Mongolia LC781912, Uvurkhangai, Mongolia - LC781890, Bayan-Ulgii, Mongolia KF559357, China LC781906, Khentii, Mongolia LC781897, Selenge, Mongolia 99 LC781881, Selenge, Mongolia - LC781911, Bayankhongor, Mongolia - LC781900, Omnogovi, Mongolia LC781887, Dornogovi, Mongolia - LC781920, Selenge, Mongolia LC781902, Tov, Mongolia LC781922, Khovd, Mongolia LC781891, Khovd, Mongolia - LC781885, Bayan-Ulgii, Mongolia - LC781914, Khentii, Mongolia LC781907, Bayan-Ulgii, Mongolia KM046920, Switzerland U642507, South Africa в - AB515310, Sudan 95 KF597077, Kenya - KY111762. Cuba KY111761 Cuba JX177671, USA texas MK615933. Iran KX227640, Isreal KJ573370, Brazil EU888906. South Africa А JX177672, USA 99 AY150062, Spain AY150063 Spain KX227623, Jordan KX227620 Icroal KP995259, Indian LC781916, Khovsgol, Mongolia LC781918, Zavkhan, Mongolia 98 KX227641, Brazil 80 96 MG052895 Brazil С KJ573372 Brazil 99 KU647709, USA 10390047 LISA EU888903, South Africa 92 AB515308, Sudan 99 AB515311. Sudan AB515315, Sudan KX227634, Israel D 99 AB515314, Sudan KX227633, Palestine MG569900. Turkey KX227632. Palestine L02366, Theileria parva 99 - M64243, Theileria annulata

Results


Genotypes A and E were detected.

Otgonsuren et al., 2024; https://doi.org/10.1645/18-189

0.01

B. caballi, rap-1 gene sequence based

Results...

A, B1 and a new clade were detected.

Otgonsuren et al., 2024; https://doi.org/10.1645/18-189

🚕 Equine piroplasmosis in Mongolia

Discussions

• A study investigated the sero-prevalence of *T. equi* in 1282 horses in various Mongolian provinces.

 Recently the PCR based-prevalence of *T. equi* in 1353 horses in various Mongolian provinces.

		Method	Positive rate	Reference		
ELISA	T. equi	EMA-2 antigen	~ 33.0 %	(Myagmarsuren et al., 2019)		
	B. caballi	Bc48 antigen	~ 14.3 %			
PCR	T. equi	PCR / 18sRNA gene	~ 78.2 %	(Otgonsurensuren et al., 2024)		
	B. caballi	Rap1 gene	~ 4.6 %			

🚕 Equine piroplasmosis in Mongolia

- The difference of positive rates for the parasites, specially for *T. equi's* in serological and PCR based methods may explained by following reasons.
- Because the recombinant proteins of the ELISA kit are prepared from only the parasites' A genotypes.
- However, the sequence analysis based on 18sRNA gene indicated that *T. equi*'s two different subtypes including A and E in Mongolian horses.
- Also, E type was more dominant than A subtype in Mongolian horses.
- The second possible reasons for the differential positivity's of *T. equi* and *B. caballi* may depend on their tick vectors and clearance time by host animals' immunity.

- All of the surveyed provinces had been exposed to both *T. equi* and *B. caballi* in Mongolia. The overall positive rate of *T. equi* was significantly higher than *B. caballi*.
- Microscopic screening reported that *T. equi* (12.0%) and *B. caballii* (1.6%), respectively.
- By ELISA, the positive rates of *T. equi* (33%) and *B. caballii* (14.2%) varied among provinces.
- By PCR, the positive rates of *T. equi* (78.2%) and *B. caballii* (4.6%) varied among provinces
- Based on 18S rRNA gene sequence, two genotypes (A and E) of *T. equi* were detected, while based on *rap-1* gene sequence there are three different genotypes (A, B1 and a new clade) for *B. caballi*.

SATREPS project recommended diagnostic methods for effective diagnosis of piroplasmosis

ELISA assay kit for detection of anti *T. equi antibody* MNS 6174:2010 ELISA assay kit for detection of anti *B. caballi* antibody MNS 6175:2010

These ELISA Kit are not commercial and produced in our laboratory.

Diagnostic kits production and its applications

In response to a request from the General Department of Veterinary Medicine in Mongolia (GDVM), we have developed and distributed recombinant protein-based ELISA kits for the diagnosis of equine piroplasmosis to local veterinary centers throughout Mongolia in 2018-2023.

In the frame of Credentials (MNS ISO2018:17025), we have made a lot of services for equine piroplasmosis;

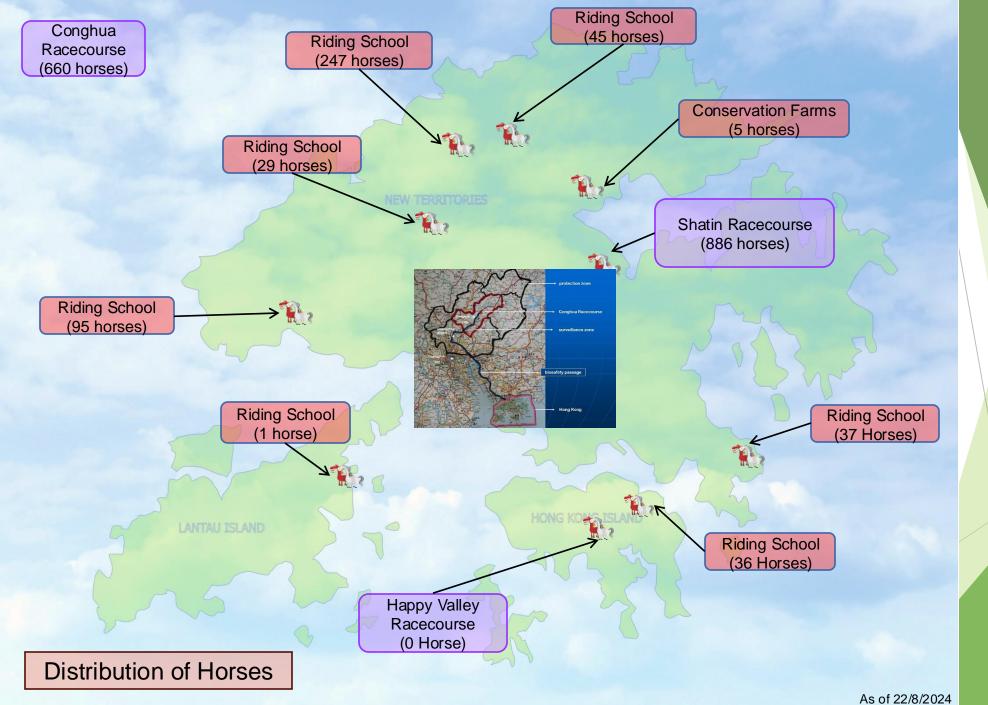
- Diagnosis
- Treatment
- Checking after treatment

Thank you for your kind attention!

SATREPS project all members

Equine Infectious Disease Surveillance in the Region of Hong Kong, SAR

Agriculture, Fisheries and Conservation Department Inspection & Quarantine Branch Equine Disease and Residues Control Division


> Patrick Lau Senior Veterinary Officer patrick_it_lau@afcd.gov.hk

Equine Population in Hong Kong

- Around 2 040 horses in Hong Kong (including 660 in Conghua Equine Disease Free Zone)
- Approx. 900 horses in HKJC Shatin Stables, 90% horses are actively racing
- Equine animals include Thoroughbred, Pony and others but no Zebra, no Mule, no Donkey, NO WILD/ FERAL HORSES

漁農自然護理署 Agriculture, Fisheries and Conservation Department

Equine Animals in Hong Kong

Public Health (Animals and birds) Ordinance (Cap. 139)

- Quarantine and prevention of disease among animals and birds
- Importation and control of equines
- Issuance of licences for riding establishments
- **Pounds Ordinance (Cap. 168)**
- Impound and control of stray animals
- Wild Animals Protection Ordinance(Cap. 170)
- Conservation of wild animals
- **Rabies Ordinance (Cap. 421)**
- Prevention and control of rabies

Agriculture, Fisheries and Conservation Department

Import & Export of Horses

- ▶ In 2023, a total of 478 horses were imported from overseas
- Bilateral import/export terms and veterinary health protocol with Schedule Countries
- Schedule countries: Argentina, Australia, Canada, Denmark, France, Germany, Italy, Japan, New Zealand, UAE, Great Britain and Northern Ireland and USA
- ▶ Testing requirements: EI, EIA, EVA and EP

			2023 Ho	orse Imp	orting	Coun	tries			
Argentina	Australia	France	England	Germany	Ireland	Italy	Japan	New Zealand	USA	Total
1	273	7	20	1	44	3	3	122	4	478

Conservation Department

Establishment/ Full-time NCSC Staff and Responsibilities of Inspection and Quarantine Branch (596 staff)

Technical Services Division

(1SVO, 1VO, 2SEOs, 1EOI, 1EOII, 2FOIs, 5EAs*, 2ACOs, 2PACOs*, 1CA/18 staff)

- Assist in formulation and review of animal health policy and veterinary legislation for IQ Branch
- Perform risk analysis and animal health related research
- Maintain close liaison on animal diseases and related issues with overseas and local authorities/ institutions
- Coordinate and provide administrative support to divisions of IQ Branch
- Provide administrative and professional support to the Veterinary Surgeons Board Secretariat

Veterinary Laboratory Division

(1SVO, 1VP*, 7VOs, 2Vs*, 2SO(M)s, 1PSO(M)*, 1MO*, 1CRO*, 5VTs, 40AVTs, 2FOIs, 1SAHT*, 1AHT*, 1EA*, 1ESA*, 1PCO*, 1PACO*, 1SSA*, 2FAs, 7LAs, 1WMI/80 staff)

- Diagnostic and surveillance testing for livestock, poultry, bird, fish and other animals
- Laboratory testing for health certification of ornamental fish
- Diagnostic and surveillance testing for avian influenza
- Ante-mortem screening tests for chemical residues in food animals
- Antimicrobial resistance surveillance testing
- Post-mortem examination for animal cruelty and poisoning investigations

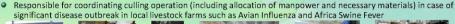
Equine Disease Division

(1SVO, 3VTs, 1CAVT*, 1EA*/6 staff)

 Laboratory testing for Equine Diseases to facilitate the movement of racehorses between Hong Kong and Conghua Equine Disease Free Zone in Guangdong

Animal Management (Development) Division

(1SVO, 2VOs, 3SFOs, 4FOIs, 12FOIIs, 1FS*, 1PFO*, 1ERO*, 1FA/26 staff)


- Draw up and implement publicity activities and public education programmes to promote animal welfare and Responsible Pet Ownership
- Combat illegal animal trading and boarding on the Internet and in pet grooming shops
- Review legislation, procedures and guidelines related to animal management and animal welfare
- Implement the 3-year "Trap-Neuter-Return" Trial Programme at designated places
- Issue Dog Breeder Licence (Category A) / One-off Permit / exemption documents under Cap. 139B, inspect licensed premises and discharge relevant duties
- Conduct public consultation and legislation amendment of Prevention of Cruelty to Animals Ordinance, Cap. 169

Animal Health Division

(1SVO, 4VOs, 1V*, 3SFOs, 10FOIs, 17FOIIs, 1AMI*, 9FAs, 1ART, 1WMI, 1WMII/49 staff)

- To monitor and control Avian Influenza (e.g. surveillance through collection of wild bird carcasses and
- poultry farm samples, handling bird nuisance cases, and combating illegal keeping of poultry, etc.)
- To monitor and provide advice for the usage of veterinary drugs and vaccine in local livestock farms
- To provide advice for local livestock farms on disease prevention and control (e.g. through enhancing farm hygiene conditions and biosecurity)
- To promote prudent and responsible antimicrobial use in food animals
- To conduct surveillance of antimicrobial resistance and antimicrobial use in food animals

Import and Export Division

(1SVO, 2VOs, 3SFOs, 33FOIs, 54FOIIs, 13FAs, 2CFAs*, 2ARTs, 6WMIs, 1CWMI*, 1ACO, 1CA, 3CCAs*/122 staff)

- Prevention of the introduction of exotic animal disease into Hong Kong
- Enforce relevant regulations and policies related to the import and export of live animals, birds and animal products
- Facilitate and provide certification for export of live animals, aquatic animals and animal by-products

Plant and Pesticides Regulatory Division

(1SAO, 5AOs, 2PAOs*, 6SFOs, 1PSPO, 13FOIs, 23FOIIs, 1PFS*, 3PFOs*, 4CFOs*, 1FA, 4ACOs, 1CA, 1PCA*/66 staff)

- Plant import and phytosanitary control
- Plant varieties protection
- Pesticides control
 Prosecutorial services for AECD

Animal Management (Operations) Division

(1SVO, 5VOs, 1V*, 6SFOs, 11FOIs, 47FOIIs, 4SFAs, 38FAs, 6PFAs*, 1CFA*, 10ARTs, 61WMIs, 8PWIs*, 20MDs, 1ACO, 3PACOs*, 1CA, 1PCA*/225 staff)

- Control of stray animals and enforce relevant regulations
- Issue dog licences and vaccinate dogs against rabies to prevent introduction of rabies
 Licensing and inspection of animal exhibitions, boarding facilities,
- riding facilities and animal traders
- Providing veterinary services to other disciplinary services
- Management of stray bovine animals
- Safeguard animal welfare

漁農自然護理署 Agriculture, Fisheries and Conservation Department

(1AD, 1PVO, 1PSI, 1CCA*)

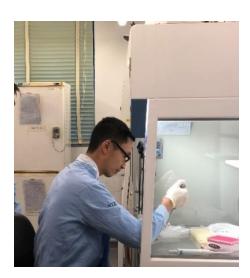
Movement of Racehorses

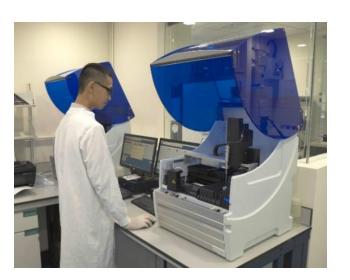
- Since 2018, over 23 000 horses have traveled between Hong Kong and Conghua EDFZ
- More than 70 000 tests were conducted for:-

Routine (fever) Cases, Biannual Surveillance and Ad-hoc Disease Testing

Prior to travel, every horse is inspected by Certifying Veterinarian and accompanied by Animal Health Certificate

漁 農 自 然 護 理 署 九龍長沙灣道三〇三號 長沙灣政府合署五樓	AGRICULTURE, FISHERIES AN CONSERVATION DEPARTMEN Cheing Sha Wan Government Off 303 Cheing Sha Wan Road, Bh floor, Kowdoon, Hong Kong
ANIMAL	HEALTH CERTIFICATE
(for The Hong Kong Jockey Club I	horses movement from Hong Kong to Conghua Racecourse
	动物健康证书
(近田王乘港連1	- 301初1992-0家102.173 马会马匹从香港运往广州从化马场)
(近川)官相受-	与云与四水苷褐运住/ 川水化与湖)
	Certificate No.
	证书编号23/1955-1959
Country/Region of dispatch : Hono	Kong Special Administrative Region (HKSAR)
	t 格别行政区
	culture, Fisheries & Conservation Department (AFCD)
	Cheung Sha Wan Government Offices.
303 C	Cheung Sha Wan Road, Kowloon, Hong Kong
	1九龙长沙湾道303号
长沙	湾政府合署五楼
渔农	(自然护理署(渔护署)
	ne Disease Division
	动物疾病科 (2)(疗法)
I. IDENTIFICATION DETAIL	




Agriculture, Fisheries and Conservation Department

Routine (fever) Cases

- ► Temperature of all racehorses taken twice daily
- ► Temperature > 38.5°C (101.3°F) must be reported and checked by an equine veterinarian
- Samples are submitted to AFCD Equine Disease Unit

Equine Influenza, Strangles, Equine Viral Arteritis, African Horse Sickness

Biannual Surveillance

- Twice a year samples are collected randomly from racehorses in Hong Kong and Conghua EDFZ on the same day; usually in March and August
- Concerted effort between AFCD, MARA, GACC and HKJC
- Samples are submitted to AFCD Equine Disease Unit, HVRI and IQTC EIA, EP, EVA, WNF, AHS, EI (Ab titre), JE (Ab titre)

Case Number 档			LABC	RATORY REP	ORT 化驗報告			
Care Number 档:				Final Repo	rt			
Sample Received Report Date 报告 Sample Type 样2	Date 样本接收 日期: 6 Apr 20	日期: 30 Ma 023	ar 2023					
3. The report sha To 致: Dr Alexa	ll riot be reprodi ndra Davis	uced except in		tten approval of th	e laboratory. course, Shatin N.T. (Equine Piroplasmosis Babesia Caballi	MARA) Equine Piroplasmosis Babesia Equi	Equine Viral Arteritis 马病毒性动脉炎	West Nile Virus 西尼罗河热 Ig-M Capture
				ELISA	马焦虫病 cEUSA	马焦虫病 cEUSA	ELISA	ELISA
ED23-0081-00001	30/03/2023	G65	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
	30/03/2023	H75	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00002					NEGATIVE SEME	NEGATIVE SPM	NEGATIVE BRM	NEGATIVE 問性
ED23-0081-00002 ED23-0081-00003	30/03/2023	G477	Thoroughbred	NEGATIVE 開性			NEGATIVE DITE	
ED23-0081-00003	30/03/2023 30/03/2023	G477 A201	Thoroughbred Thoroughbred	NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 附住	NEGATIVE 财性	NEGATIVE 阴性
ED23-0081-00003 ED23-0081-00004								
ED23-0081-00003 ED23-0081-00004 ED23-0081-00005	30/03/2023	A201	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 開性 NEGATIVE 開性 NEGATIVE 開性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性
ED23-0081-00003 ED23-0081-00004 ED23-0081-00005 ED23-0081-00005	30/03/2023 30/03/2023	A201 H25	Thoroughbred Thoroughbred	NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 開性 NEGATIVE 開性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性
ED23-0081-00003 ED23-0081-00004 ED23-0081-00005 ED23-0081-00005 ED23-0081-00007	30/03/2023 30/03/2023 30/03/2023	A201 H25 H325	Thoroughbred Thoroughbred Thoroughbred	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 開性 NEGATIVE 開性 NEGATIVE 開性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性
ED23-0081-00003 ED23-0081-00004 ED23-0081-00005 ED23-0081-00005 ED23-0081-00007 ED23-0081-00008	30/03/2023 30/03/2023 30/03/2023 30/03/2023	A201 H25 H325 G170	Thoroughbred Thoroughbred Thoroughbred Thoroughbred	NEGATIVE 別性 NEGATIVE 別性 NEGATIVE 別性 NEGATIVE 別性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 閉性 NEGATIVE 閉性 NEGATIVE 閉性 NEGATIVE 閉性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性
	30/03/2023 30/03/2023 30/03/2023 30/03/2023 30/03/2023	A201 H25 H325 G170 G221	Thoroughbred Thoroughbred Thoroughbred Thoroughbred Thoroughbred	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 附性 NEGATIVE 附性 NEGATIVE 附性 NEGATIVE 附性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性	NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性 NEGATIVE 阴性

Ad-hoc Disease Testing

- ► AHS outbreak in Thailand, testing peaked at an average of 60 tests per month
- ▶ EHV-1 outbreak in Europe, accredited laboratory for FEI
- Recently developed Taqman Array Card for screening of 18 equine infectious diseases

Annual Surveillance Report

AGRICULTURE, FISHERIES & CONSERVATION DEPARTMENT, HKSAR, 香港特別行政區政府漁農自然護理署

Equine Disease Division, Tei Lung Veterinary Laboratory, Lin Tong Mei, Sheung Shui, HKSAR, 再要動物供用料, 六龍影響化設計, 新昇上水運煙電 Tel: (852)2790 9578 Fax: (852)2672 4144

LABORATORY REPORT 化驗報告

Final Report

Case Number 档案编号: ED23-0081 Sample Received Date 样本接收日期: 30 Mar 2023 Report Date 报告日期: 6 Apr 2023 Sample Type 样本类型: SERUM

Note:

For information (except the results) related to the title of the table shown below are provided by the submitter.
 Results only apply to the samples as received and only to the item tested.
 The report shall not be reproduced except in full, without written approval of the laboratory.

To 致: Dr Alexandra Davis

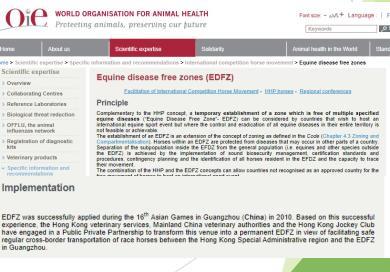
The Hong Kong Jockey Club,1st Floor Shatin Central Complex, Shatin Racecourse, Shatin N.T. (MARA)

Sample ID 样本标识号	Sampling date 样本日期	Horse ID 马匹标识号	Breed 品种	Equine Infectious Anaemia 马传染性贫血 ELISA	Equine Piroplasmosis Babesia Caballi 马焦虫病 cELISA	Equine Piroplasmosis Babesia Equi 马焦虫病 cELISA	Equine Viral Arteritis 马病毒性动脉炎 ELISA	West Nile Virus 西尼罗河热 Ig-M Capture ELISA
ED23-0081-00001	30/03/2023	G65	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00002	30/03/2023	H75	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00003	30/03/2023	G477	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00004	30/03/2023	A201	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00005	30/03/2023	H25	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00006	30/03/2023	H325	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00007	30/03/2023	G170	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00008	30/03/2023	G221	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00009	30/03/2023	D187	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00010	30/03/2023	H190	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性
ED23-0081-00011	30/03/2023	A12	Thoroughbred	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性	NEGATIVE 阴性

NATA Accredited Laboratory Accredited for compliance with ISO/IEC 17025 - Testing Number: 21176 NATA NATA endorsed test report. This document shall not be reproduced, except in full.

EQUINE DISEASE DIVISION NATA Accredited in the field of Veterinary Testing for the following: Bacteriology, Virology, Serology of infection.

> Page 1/4 Form No. 469



Equine Infectious Disease Surveillance

- Public Private Partnership since horseracing began in 1846
- ▶ International horseracing since 1988, and partnership with overseas laboratories
- ► AFCD Equine Disease Unit official laboratory testing established in 2017
- Equine Disease Free Zone established permanently in Guangzhou, Conghua

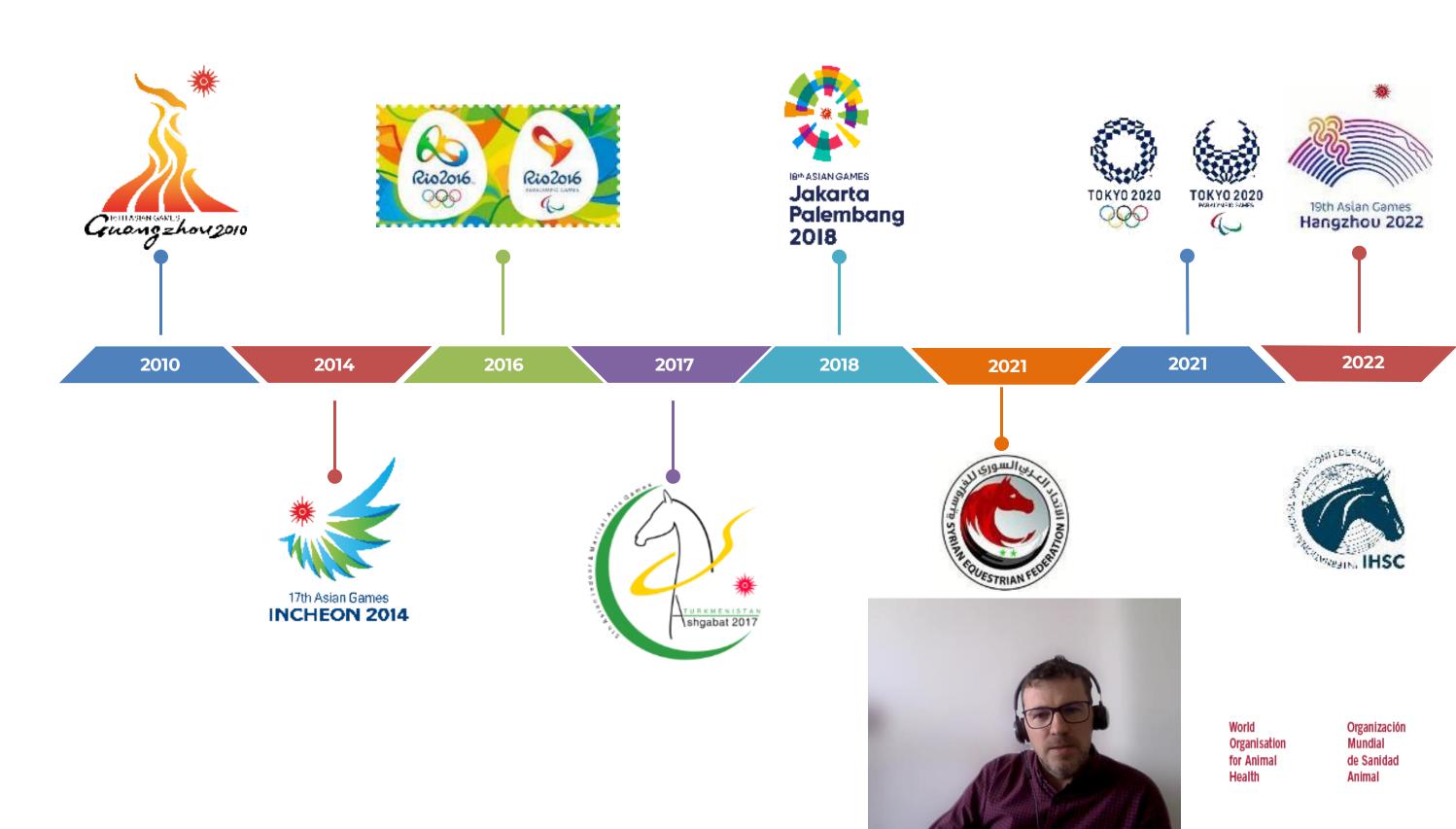
Equine Infectious Disease Surveillance

- > Partnership with WOAH Ref. Lab. (JP) NRCPD, (CN) HVRI, (GB) Pirbright, (IE) IEC, etc.
- Receiving samples from Australia and New Zealand authorities since 2022
- Inter-laboratory trials, comparisons and reviews with Mainland laboratories
- Equine disease laboratory network in the Greater Bay Area

Equine Disease & Residues Control Division

- New building complex Kai Tak Veterinary Testing Facility
- Establish and maintain a network with other institutions designated for the international movement of racehorses
- Identify, cultivate and maintain consultant(s) in this field of expertise
- Organise, coordinate, present and harmonise the international standard for the movement of racehorses

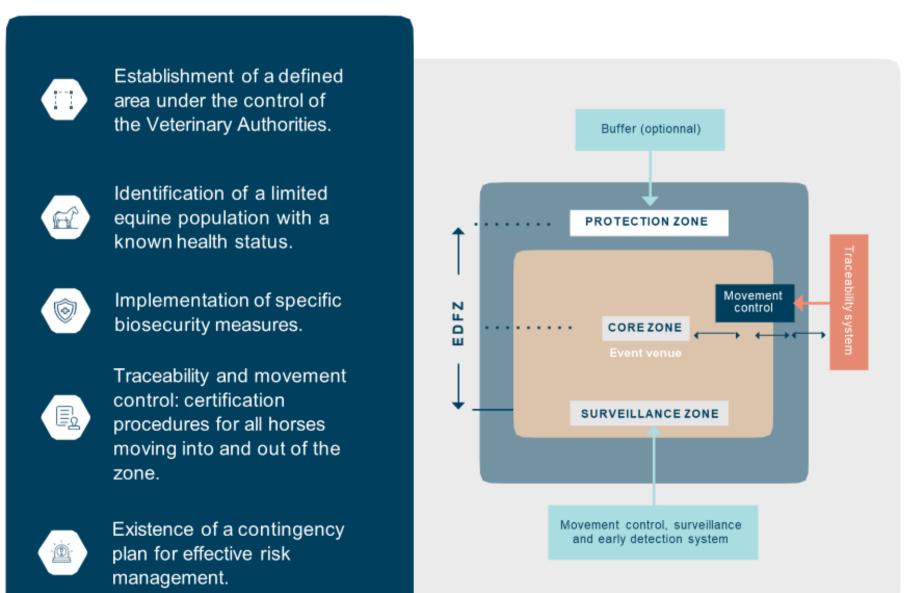
Thank You


patrick_it_lau@afcd.gov.hk

EDFZ Hangzhou Asian Games 2023 in People's Republic of China

Kenneth Lam BSc(Hons), BVetMed, PhD, CertVA, MRCVS Executive Manager, International Veterinary Liaison & Epidemiology Hong Kong Jockey Club WOAH IHSC

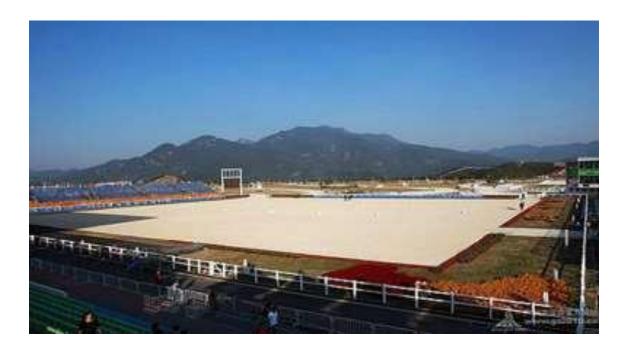
Publication of self-declarations on horse related diseases including EDFZ at the WOAH website



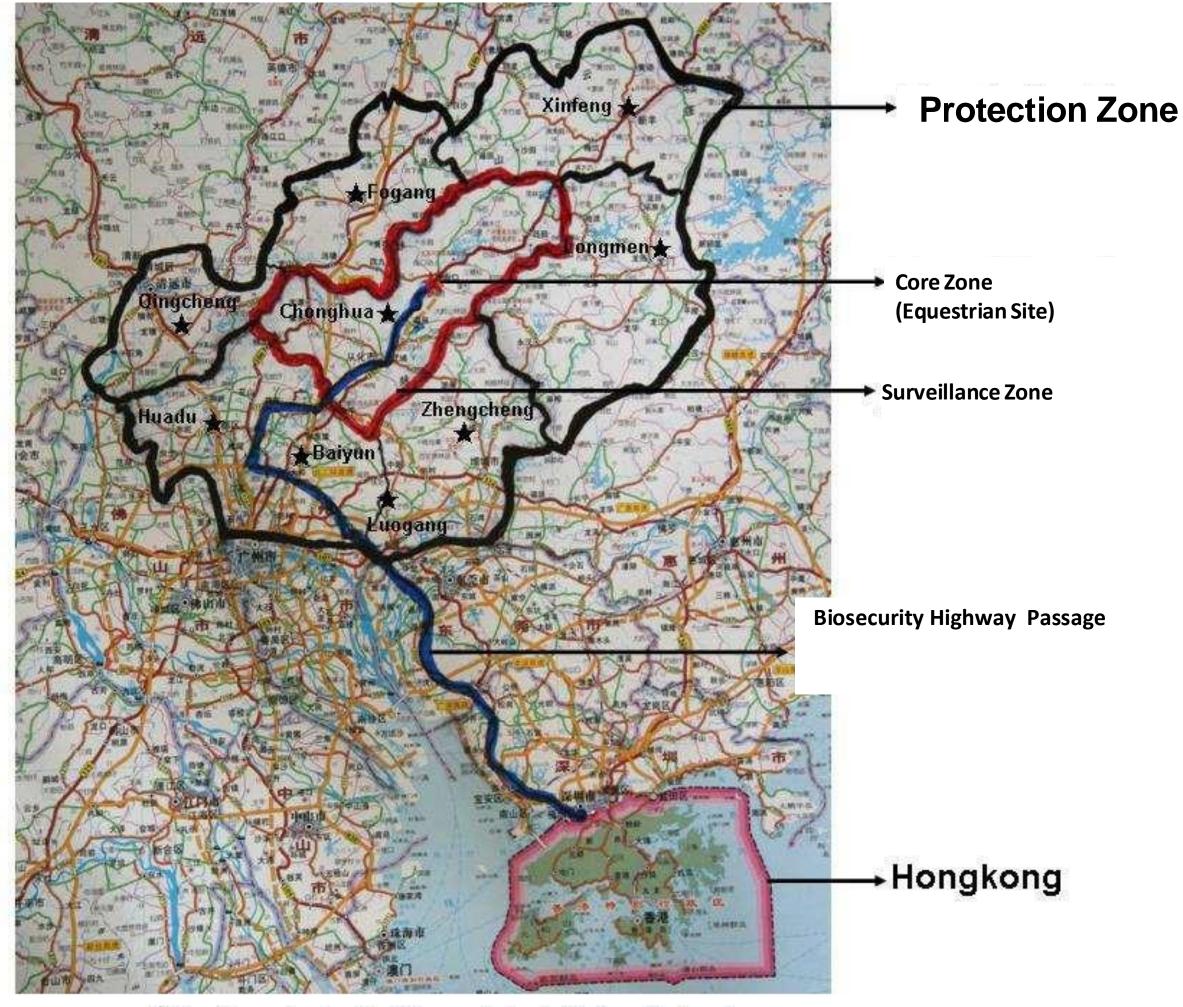
Adoption of a risk-based approach

When international equestrian sport competitions are planned in countries where the control or eradication of specific equine diseases is not achievable throughout the whole territory, it is possible to define specific zone(s) in which equine disease risks are mitigated.

Equine Disease Free Zones (EDFZ) allow the separation of imported horses from the local equid population. They aim to protect both imported horses from diseases that may occur in other parts of the territory and the equid population of the host country from imported diseases.


What are the criteria for an EDFZ?

Case study on 1st EDFZ in 2010 (Grandfather)


- 16th Asian Games, Conghua, Guangzhou, China November, 2010.
- Based on experiences e.g. Sydney & China Equestrian Olympics and Paralympics (Hong Kong)

Application of OIE Zoning principles

* Locations of animal health supervision institution of relevant areas

PANORAMA > AROUND THE WORLD > 04-3-2 LONG-TERM, EQUINE-DISEASE-FREE ZONE (EDFZ) IN GUANGZHOU, THE PEOPLE'S REPUBLIC OF CHINA

Panorama 2019-2

SUCCESS STORIES

AROUND THE WORLD

04-3-2 Long-term, Equine-Disease-Free Zone (EDFZ) in Guangzhou, the People's Republic of China

https://bulletin.woah.org/?panorama=04-3-2-edfz-conghua-en

AUTHORS

Kenneth Lam⁽¹⁾* & Brian Stewart⁽¹⁾

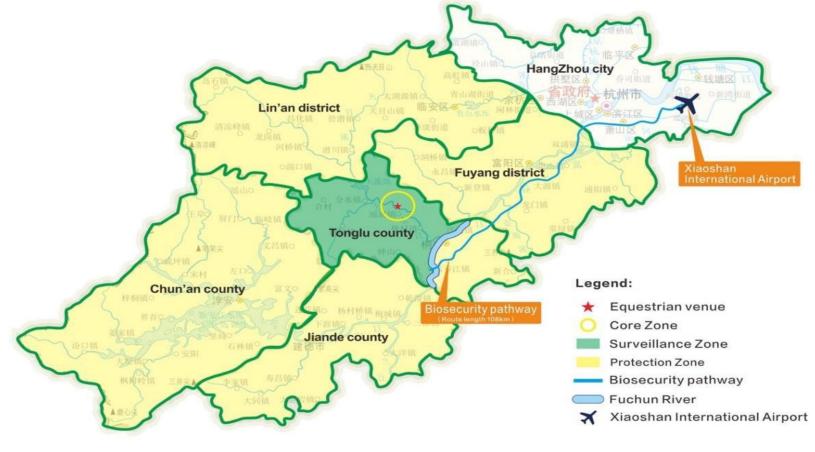
(1) Hong Kong Jockey Club Hong Kong Special

Font size - AAA +

SUMMARY

A long-term, Equine-Disease-Free Zone (EDFZ) has been in operation in Guangzhou, the People's Republic of China,

PRC Hangzhou Asian Game 2023


Self-declaration of an Equine Disease-Free Zone in Tonglu, Hangzhou, China for the purpose of facilitating the Equestrian competitions for the 19th Asian Games Hangzhou 2022, Equine Disease-Free Zone (EDFZ) is established in Tonglu, Hangzhou, Zhejiang province in China.

Self-declaration submitted to the World Organisation for Animal Health on 8 February 2022 by Dr Baoxu Huang, Delegate of China to the OIE.

A. Executive Summary

1.Acronyms
2.Veterinary Services
3.Structure and barrier of the EDFZ
4.Equine disease situation
5.Maintenance of EDFZ
6.Conclusions

https://www.woah.org/app/uploads/2022/03/2022-03chinapeop-s-rep-ofedfz-selfd.pdf

The CZ includes the venue and surrounding areas with a radius of 5 km (Figure 2). The construction of the CZ fully considers the requirements of biosecurity, ease of management, and reasonable spatial layout. No equine animals and other susceptible animals to horse-related diseases (such as pigs, cattle, sheep) are kept in the area. Biosecurity measures are taken against vectors and susceptible wild animals.

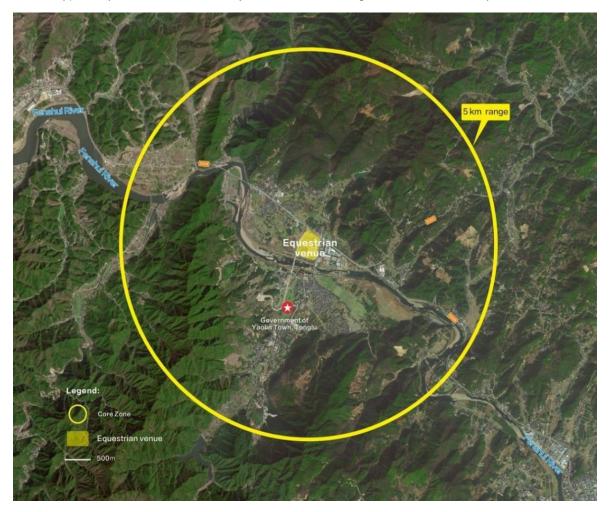


Figure 2: Schematic diagram of equestrian venue and CZ

Highlights of Hangzhou EDFZ (1)

- Similar approach to establishment of Conghua EDFZ, Guangzhou
- Clear layout of EDFZ including The Core Zone (5km radius) with no resident horses in the venue and The Survelliance Zone (about 55km long from east to west, 46 km wide from north to south, and covers an area of about 1,220 km²). There are no equids in the CS & SZ of EDFZ.
- The Protection Zone is set up around the EDFZ (with an area of about 12300 km²)
- Airport connected to venue via highway biosafety passage
- The declaration covers **19 diseases**
- Additionally, China has been officially recognized as historically free from AHS by the WOAH and maintained the AHS-free status since 2014.

Highlights of Hangzhou EDFZ – Veterinary Services

- PRC Ministry of Agriculture & Rural Affairs (MARA) is responsible for the national animal husbandry and veterinary work in China.
- The Animal Husbandry and Veterinary Bureau of MARA is responsible for organizing and implementing animal disease prevention and the supervision and management activities in the People's Republic of China.
- The General Administration of Customs of the People's Republic of China is responsible for the quarantine, supervision and administration of entry and exit of animals and animal products.

Highlights of Hangzhou EDFZ (3)

 The local people's governments of Zhejiang Province, Hangzhou City and the counties (cities and districts) involved in EDFZ have established a comprehensive veterinary work system, including veterinary administration, technical support and supervision and enforcement systems, which can effectively carry out animal disease prevention and management, disease monitoring, supervision and inspection.

Animal Population in EDFZ, PZ & Biosafety Passage

- As of 30 December 2021, there are no equids kept in the CZ & SZ of EDFZ.
- The livestock in the Surveillance Zone of EDFZ were pigs 53,251, cattle 572, sheep 2,482 and dogs 14,911.
- The 166 equids that have been registered in the PZ, including 23 working horses and 39 mules, as well as 104 ornamental horses, donkeys and zebras, are all kept in Fuyang Zoo, Hangzhou.
- The livestock in the PZ were pigs 446,398, cattle, 5,155, sheep 62,767 and dogs 77,306.
- There are no equids and susceptible animals to horse-related diseases (pig, cattle, sheep) kept along the biosecurity pathway.

Equine Disease Situation

 In accordance with the Animal Disease Prevention Law of the People's Republic of China, MARA has established an animal disease reporting system, published a list of reportable animal diseases, and regularly reported the reportable equine diseases to WOAH as required. The People's Government of Hangzhou, Zhejiang Province formulated the Emergency Plan for Tonglu Equine Disease-Free Zone, Hangzhou, and listed 19 equine diseases

No.	Notifiable equine disease in China	Diseases status (last case)	Surveillance
1	AHS	Never occurred, <u>China is officially</u> recognised as free from AHS by the OIE	General and Targeted surveillance
2	Vesicular stomatitis	Disease never reported	General surveillance
3	West Nile fever	Disease never reported	General surveillance
4	Nipah virus disease	Disease never reported	General surveillance
5	Hendra disease	Disease never reported	General surveillance
6	Equine encephalomyelitis (including Eastern and Western)	Disease never reported	General surveillance
7	Venezuelan equine Encephalomyelitis	Disease never reported	General surveillance
8	Contagious equine metritis	Disease never reported	General surveillance
9	Equine infectious anemia	(<u>01/2010, in Guangdong, equine</u>)	General and Targeted surveillance
10	Glanders	(<u>12/2019, in Chongqing, equine</u>)	General and Targeted surveillance

19 Equine Diseases under surveillance

19 Equine Diseases under surveillance

11	Equine viral arteritis	Disease never reported	General surveillance
12	Equine piroplasmosis	Disease never reported	General surveillance
13	Equine influenza	(12/2021, in Yunnan, equine)	General surveillance
14	Japanese encephalitis	(06/2021, in Henan, Hunan, Jiangxi, Shaanxi, pig)	General surveillance
15	<i>Trypanosoma evansi</i> (surra)	(12/2021, in Shaanxi, equine)	General surveillance
16	Dourine	(01/2021, in Inner Mongolia, equine)	General surveillance
17	Anthrax	(09/2021, in Inner Mongolia, cattle and other animals; in Tibet, sheep)	General surveillance
18	Rabies	(09/2021, in Inner Mongolia, other animals; in Henan, dog)	General surveillance
19	Equine rhinopneumonitis (EHV-1)	(06/2021, in Tibet, equine)	General surveillance

Veterinary Laboratory Capabilities

- The veterinary laboratory system consists of a national laboratory and local veterinary laboratories, which effectively support the surveillance, diagnosis and epidemiological investigation of the EDFZ equine diseases.
- At the national level, there are national veterinary laboratories such as National Center for Diagnosis of Exotic Animal Diseases (NCDEAD) in China Animal Health and Epidemiology Center,
- OIE Reference Laboratory for equine infectious anaemia and the National Reference laboratory for glanders in Harbin Veterinary Research Institute (HVRI) of Chinese Academy of Agricultural Sciences.
- At the local level, the Local Veterinary Laboratories (LVL) in Zhejiang Provincial Animal Disease Control Center, Hangzhou, EDFZ and PZ are in charge of implementing the equine disease testing.

Equine Disease Surveillance

- In order to control the situation of the aforementioned 19 diseases in the EDFZ including Surveillance Zone and Protection Zone, routine epidemiological investigation and surveillance plans, regular epidemiological investigations on susceptible animals are conducted in the region and carry out active and passive monitoring.
- Vectors and susceptible wild animals are sampled for investigation and active monitoring. The results of laboratory serology and pathogen surveillance conducted showed no positive cases to the 19 equine diseases in the EDFZ in the past **12 months**.

Surveillance in the Protection Zone (PZ)

- There is no equids in the Surveillance Zone.
- In the PZ, a total of 1,316 equine samples (including 446 serum, 437 nasal swabs and 433 blood samples) were collected, for the surveillance of 19 diseases.
- Results of testing showed that all tests for the detection of the pathogenic agent were negative, and all tests for the detection of immune response were negative except for equine influenza and Japanese encephalitis
- Vector investigation and surveillance in the EDFZ and the PZ
- Investigation and surveillance in susceptible wildlife

Surveillance results of 19 equine disease in PZ

			(Category of e	quid*				Result	
Disease	Surveillance time	No. equids	Working horse	Working mule	Ornamental horses/ donkeys/ zebras, etc.	No. sample	Method	Lab	pos	neŧ
	Aug.2020	278	61	83	134	156	AGID	VDC- ZAFU	0	15€
Equine infectious anemia	Nov.2020	230	42	64	124	118	AGID	VDC- ZAFU	0	118
unenna	May.2021	207	33	48	126	93	cELISA	LVL	0	93
	Oct.2021	173	24	43	106	79	cELISA	LVL	0	79
	Aug.2020	278	61	83	134	156	CFT	HVRI	0	156
Glanders	Nov.2020	230	42	64	124	118	CFT	HVRI	0	118
	May.2021	207	33	48	126	93	CFT	HVRI	0	93
	Oct.2021	173	24	43	106	79	CFT	HVRI	0	79
	Aug.2020	278	61	83	134	156	ELISA	VDC- ZAFU	О	156
Equine viral arteritis	Nov.2020	230	42	64	124	118	ELISA	VDC- ZAFU	0	118
	May.2021	207	33	48	126	93	ELISA	LVL	0	93
	Oct.2021	173	24	43	106	79	ELISA	LVL	0	79
	Aug.2020	278	61	83	134	156	ELISA	VDC- ZAFU	0	15€
Equine	Nov.2020	230	42	64	124	118	ELISA	VDC- ZAFU	0	118
piroplasmosis	May.2021	207	33	48	126	93	ELISA	LVL	0	93
	Oct.2021	173	24	43	106	79	ELISA	LVL	0	79
	Aug.2020	278	61	83	134	156	CATT	VDC- ZAFU	о	156
Trypanosoma	Nov.2020	230	42	64	124	118	CATT	VDC- ZAFU	0	118
<i>evansi</i> (surra)	May.2021	207	33	48	126	93	ELISA	LVL	0	93
	Oct.2021	173	24	43	106	79	ELISA	LVL	0	79
	Aug.2020	278	61	83	134	156	ELISA	HVRI	0	156
Dourine	Nov.2020	230	42	64	124	118	ELISA	VDC- ZAFU	0	118
	May.2021	207	33	48	126	93	ELISA	LVL	0	93
	Oct.2021	173	24	43	106	79	ELISA	LVL	0	79
	Aug.2020	278	61	83	134	151	RT-PCR	VDC- ZAFU	0	151
Equine influenza	Nov.2020	230	42	64	124	114	RT-PCR	VDC- ZAFU	0	114
	May.2021	207	33	48	126	93	RT-PCR	LVL	0	93
	Oct2021	173	24	43	106	79	RT-PCR	LVL	0	79
	Aug.2020	278	61	83	134	147	RT-PCR	HVRI	0	147

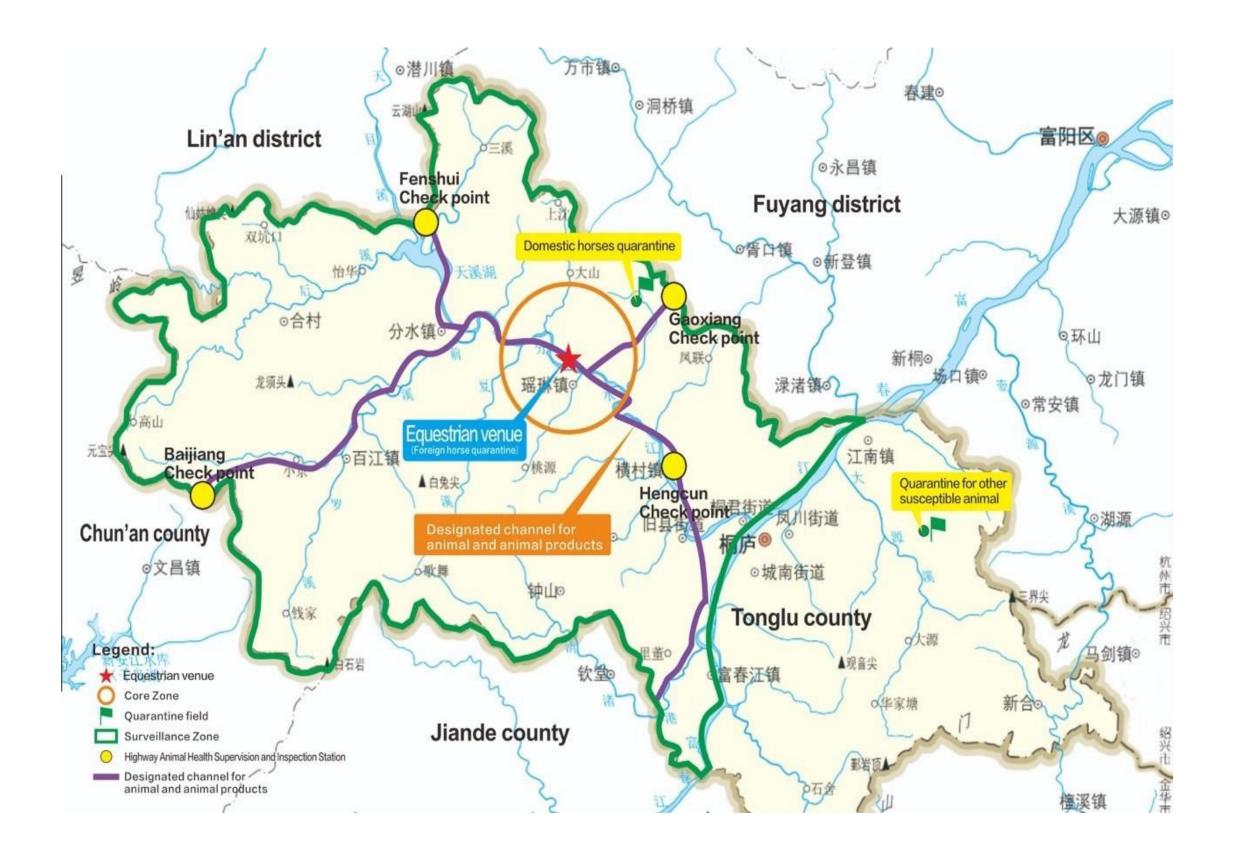
Equine rhinopneumonitis (EHV-1)	May.2021 Oct.2021 Aug.2020 Nov.2020 May.2021 Oct.2021	207 173 278 230	33 24 61	48 43	126	93	RT-PCR	LVL	0	93
Equine rhinopneumonitis (EHV-1)	Aug.2020 Nov.2020 May.2021	278		43	106	70				
Equine rhinopneumonitis (EHV-1)	Nov.2020 May.2021		61		100	79	RT-PCR	LVL	О	79
rhinopneumonitis (EHV-1)	May.2021	230	-	83	134	156	ELISA	HVRI	О	156
(EHV-1)	-		42	64	124	118	ELISA	HVRI	О	118
	Oct 2021	207	33	48	126	93	ELISA	HVRI	О	93
		173	24	43	106	79	ELISA	HVRI	О	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	О	31
	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	О	24
sickness	May.2021	207	78 61 83 134 156 ELISA HVRI 0 30 42 64 124 118 ELISA HVRI 0 73 24 43 106 79 ELISA HVRI 0 73 24 43 106 79 ELISA HVRI 0 73 24 43 106 79 ELISA HVRI 0 73 61 83 134 31 RT-PCR HVRI 0 07 33 48 126 93 ELISA NCDEAD 0 73 24 43 106 79 ELISA NCDEAD 0 73 24 43 106 79 RT-PCR HVRI 0 07 33 48 126 93 RT-PCR NCDEAD 0 73 24 43 106 79 RT-PCR NCDEAD 0 <t< td=""><td>О</td><td>93</td></t<>	О	93					
	Oct.2021	173	24	43	106	79	ELISA	NCDEAD		79
Equine	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	О	31
encephalomyelitis	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	О	24
(including Eastern	May.2021	207	33	48	126	93	RT-PCR	NCDEAD	Ο	93
	Oct.2021	173	24	43	106	79	RT-PCR	NCDEAD	Ο	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	0	31
Vesicular stomatitis	Nov.2020	230	42		124	24	RT-PCR	HVRI	0	24
'	May.2021	207	33	48	126	93	RT-PCR	NCDEAD	0	93
	Oct.2021	173	24	43	106	79	RT-PCR	NCDEAD	0	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	Ο	31
Nipha virus disease	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	Ο	24
	May.2021	207	33	48	126	93	ELISA	NCDEAD	ο	93
	Oct.2021	173	24	43	106	79	ELISA	NCDEAD	ο	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	0	31
West Nile fever	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	ο	24
	May.2021	207	33	48	126	93	ELISA	NCDEAD HVRI HVRI NCDEAD NCDEAD HVRI NCDEAD NCDEAD NCDEAD HVRI HVRI	Ο	93
	Oct.2021	173	24	43	106	79	ELISA	NCDEAD	Ο	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	О	31
Hendra disease	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	О	24
,	May.2021	207	33	48	126	93	ELISA	RT-PCRHVRIELISANCDEADELISANCDEADRT-PCRHVRIRT-PCRNCDEADRT-PCRHVRIRT-PCRHVRIRT-PCRNCDEADRT-PCRNCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIELISANCDEADRT-PCRHVRIRT-PCRHVRIRT-PCRHVRIRT-PCRHVRIRT-PCRNCDEADRT-PCRHVRIRT-PCR	О	93
	Oct.2021	173	24	43	106	79	ELISA	NCDEAD	О	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	О	31
Venezuelan equine	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	О	24
	May.2021	207	33	48	126	93	RT-PCR	NCDEAD	О	93
	Oct.2021	173	24	43	106	79	RT-PCR	NCDEAD	О	79
	Aug.2020	278	61	83	134	31	RT-PCR	HVRI	О	31
Contagious equine	Nov.2020	230	42	64	124	24	RT-PCR	HVRI	О	24
	May.2021	207	33	48	126	93	RT-PCR	HVRI	О	93
	Oct.2021	173	24	43	106	79	RT-PCR	HVRI	0 0 <td< td=""><td>79</td></td<>	79
	Aug.2020	278	61	83	134	15	ELISA	HVRI	О	15
Rabies	Nov.2020	230	42	64	124	13	ELISA	HVRI	О	13
	Oct.2021	173	24	43	106	10	ELISA	HVRI	О	10
	Aug.2020	278	61	83	134	15	PR	HVRI	О	15
	Nov.2020	230	42	64	124	13	PR	HVRI	О	13
Anthrax	May.2021	207	33	48	126	10	PR	HVRI	О	10
	Oct.2021	173	24	43	106	10	PR	HVRI	О	10

Surveillance results of susceptible animals (pigs, cattle and sheep) other than equids in EDFZ

	Surveillance		No.			Res	ults	Complement y testing or	
Disease	time	Category	samples	Method	Lab	pos	neg	investigatio results	
	Aug.2020	pig, cattle, sheep	898	CATT	TLVL	Ο	898		
Trypanosoma	Nov.2020	pig, cattle, sheep	986	CATT	TLVL	0	986		
evansi (surra)	May.2021	pig, cattle, sheep	1080	CATT	TLVL	0	1080		
	Oct.2021	pig, cattle, sheep	1497	CATT	TLVL	0	1497		
Japanese	Aug.2020	pig	745	ELISA	TLVL	30	715	Positive resu due to vaccination based on clinical examination and pathoge negative tes	
encephalitis	Nov.2020	pig	831	ELISA	TLVL	0	831		
(antibody detection)	May.2021	pig	870	ELISA	TLVL	364	506	All pigs in th EDFZ have	
,	Oct.2021	pig	1267	ELISA	TLVL	1059	208	been vaccinated since Marc 2021, thus, t positive resu are due to vaccination	
Japanese	Aug.2020	pig	12	RT-PCR	TLVL	0	12		
encephalitis (antigen detection)	Nov.2020	Pig	135	RT -PCR	VDC- ZAFU	0	135	Among ther 117 sample were from	
								antibody- positive pi farms	
	May.2021	Pig	1110	RT -PCR	TLVL	0	1110		
	Oct.2021	Pig	1604	RT -PCR	TLVL	0	1604		
Vesicular stomatitis	Aug.2020	pig, cattle, sheep	898	ELISA	TLVL	Ο	898		
(antibody)	Nov.2020	pig, cattle, sheep	986	ELISA	TLVL	0	986		
Vesicular stomatitis	May.2021	pig, cattle, sheep	1200	RT-PCR	TLVL	0	1200		
(antigen detection)	Oct.2021	pig, cattle, sheep	1639	RT-PCR	TLVL	0	1639		
	Aug.2020	Pig	745	ELISA	TLVL	0	745		
Nipah virus	Nov.2020	Pig	831	ELISA	TLVL	0	831		
disease	May.2021	Pig	870	ELISA	TLVL	0	870		
	Oct.2021	Pig	1267	ELISA	TLVL	0	1267		
	Aug.2020	pig, cattle, sheep	91	ELISA	TLVL	0	91		
Rabies	Nov.2020	pig, cattle, sheep	96	ELISA	TLVL	0	96		
	May.2021	pig, cattle, sheep	109	ELISA	TLVL	0	109		
	Oct.2021	pig, cattle, sheep	158	ELISA	TLVL	0	158		
	Aug.2020	pig, cattle, sheep	91	PR	TLVL	0	91		
Anthrax	Nov.2020	pig, cattle, sheep	96	PR	TLVL	0	96		
	May.2021	pig, cattle, sheep	109	PR	TLVL	0	109		
	Oct.2021	pig, cattle, sheep	158	PR	TLVL	0	158		

Sample size Assuming 1% Disease Prevalence at 95% confidence interval Table 4: Surveillance results of susceptible animals (pigs, cattle and sheep) other than equids in the PZ

Disease	Surveillance	veillance Category		Method	Lab	Results	
Discuse	time	carceory	sample	Method	Lub	pos	neg
Japanese encephalitis	Aug.2020- Oct .2021	pig	5468	RT-PCR	HVRI VDC-ZAFU	0	5468
<i>Trypanosoma</i> evansi (surra)	Aug.2020- Oct .2021	pig, cattle, sheep	3103	TGSBF	VDC-ZAFU	0	3103
Vesicular stomatitis	Aug.2020- Oct .2021	pig, cattle, sheep	2458	RT-PCR	NCDEAD	0	2458
Nipha virus disease	Aug.2020- Oct .2021	pig	4334	ELISA	NCDEAD	0	4334
Rabies	Aug.2020- Oct .2021	pig, cattle, sheep	746	ELISA	HVRI	0	746
Anthrax	Aug.2020- Oct .2021	pig, cattle, sheep	746	PR	HVRI	0	746


Sample size Assuming 1% Disease Prevalence at 99% confidence interval

Equine disease surveillance and early warning system

- MARA has established a comprehensive animal disease reporting system, and veterinary institutions at the provincial, city and county levels report the occurrence of animal diseases to MARA according to reporting requirements.
- In order to ensure early warning, horse breeders in the PZ carry out body temperature measurement and clinical observation of the horses in stock every day. Livestock owners are required to immediately report to the local veterinary institution if there is any finding of any clinical abnormality.

Exporting Country of competition horsescentralised hubs for import into EDFZ

- Mainland China 2 horses (180 days under official supervision at place of origin + 30 days quarantine in EDFZ prior to entry to competition venue)
- Europe- 100 horses
- Japan- 5 horses
- South Korea- 7 horses

Layout of EDFZ highway animal health supervision check points, designated transportation pathways and quarantine fields

WOAH Public Private Partnership for Hangzhou Asian Games 2023

- WOAH International Horse Sports Confederation (Liaison Role)
- PRC Ministry of Agriculture & Rural Affairs (MARA)
- China Animal Health and Epidemiology Centre
- PRC General Administration of China Customs
- Hong Kong Agriculture, Fisheries & Conservation Department (Expert group for China Customs with veterinary laboratory diagnostic support)
- Hong Kong Jockey Club (Technical Support for Biosecurity, Stable and Event Management)

THANK YOU

The WOAH project on Facilitation of international horse movement in Asia and Pacific

Updated Laboratory survey results (2024)

Susanne Münstermann, WOAH consultant s.munstermann@outlook.de

World Organisation or Animal

Organisation Organización Mundial de Sanidad de la santé Animal Fondée en tant au'OIE Fundada como OIE

mondiale

animale

Regional Workshop, Tokyo, 17 – 18 September 2024

Importance of laboratory capacity

- Adequate capacity to diagnose equine diseases is key to
 - Early recognition of diseases
 - Differential diagnosis
 - Surveillance and control programmes
 - Certification of country / zone / individual disease freedom
 - Being trustworthy to trade partners
- Few WOAH Reference laboratories in the region
- Different level of laboratory capacity
 - To understand this better, a survey was carried out during 2023
 - The survey was updated in 2024 in view of presenting a proposal for a Phase II of our project, focusing on laboratory capacity development

Laboratory capacity survey

Methodology:

- Questionnaire with 11 questions and referenced to 15 listed diseases of importance for international horse movement
- Sent to project liaison person and WOAH laboratory Focal points
 - Capacity for diagnosis of equine diseases
 - Participation in regional and international PTs
 - Collaboration with regional and international laboratories
 - Interest in WOAH laboratory twinning programme
 - National experts
 - Topics of interest for online training
 - Research or routine work on AMR in equines

No	Disease
1	African horse sickness
2	Contagious equine metritis
3	Dourine
4	Equine herpes virus 1 + 4
5	Equine infectious anemia
6	Equine influenza
7	Equine viral arteritis
8	Glanders
9	Hendra virus
10	Japanese encephalitis
11	Nipah virus
12	Piroplasmosis
13	Strangles
14	Surra
15	West Nile fever

General results

16 / 15 of the 21 countries replied

- 11 countries included ALL state Veterinary laboratories
- 5 countries gave different answers from individual labs or one document for selected labs
- Information was captured in a database and analysed
- A full report is available and was updated to reflect the situation in 2024
- For privacy reasons in this presentation no countries are named individually

Capacity to diagnose the 15 equine diseases in the region

Disease	Number of countries capable
	to diagnose disease
EIA, EI	13
AHS, EHV	11/12
EVA, glanders,	10
piroplasmosis	10/11
Strangles	9/10
WNF	8/ <mark>9</mark>
Surra, JE, CEM	7/8
Hendra	4/5
Dourine	3/5
Nipah	1 (1)

Results: Proficiency testing

2. Internal national Proficieny tests

6 / 16 countries carry out internal PTs with their decentralised or partner laboratories, including University laboratories

Diseases covered by these PTs: El, EVA, piro, surra, ElA, glanders, AHS, Hendra, EHV, CEM (10)

3. International Proficiency Tests

10 / 16 countries engaged with WOAH Ref labs on international PTs in the last 5 years.

Diseases covered were the same as above plus strangles and rabies (12)

A. Interest in participating in international Proficiency tests

Interest was expressed by 12 /13 to participate in PTs if organised by WOAH Ref labs

Rank	Disease desired for international PT	Disease already tested in international PTs
1	AHS	AHS
2	Glanders, EIA	EIA, piro
3	Surra	EI, EVA

Results: improvement of capacity

5. Desire to establish additional capacity

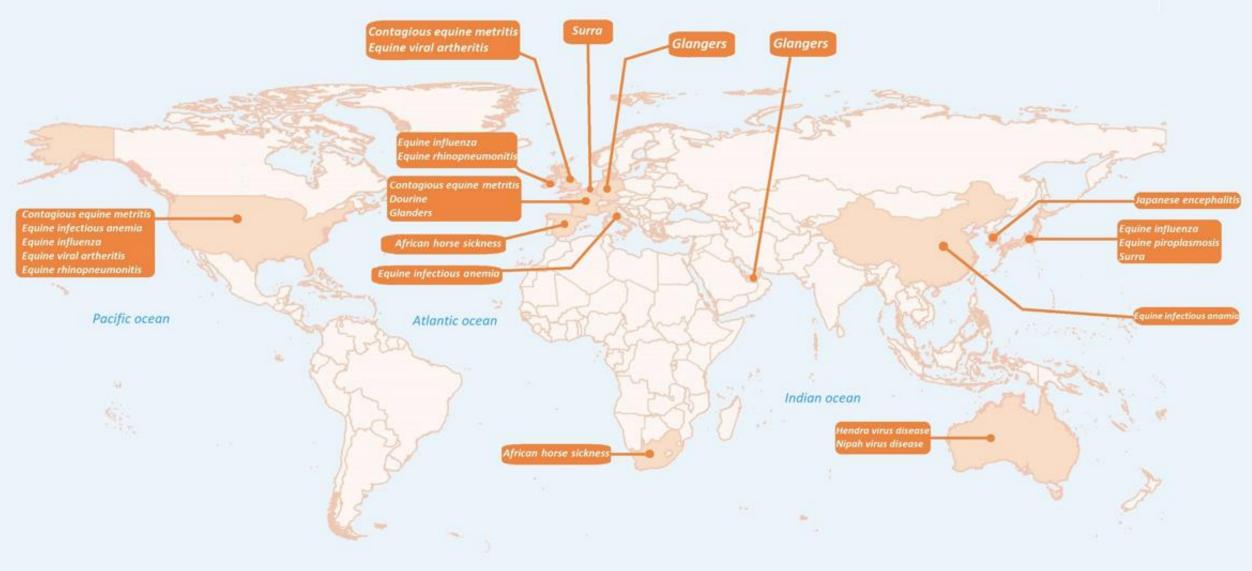
12 / 16 want to increase their capacity to diagnose equine diseases

Rank	Disease
1	EHV, dourine
2	EIA, Nipah, Hendra, WNF
3	Strangles, AHS, JE

6. Interest in WOAH twinning program

4 / 6 expressed interest for a wide range of diseases

7. Interest in receiving training


12 / 16 want to receive training in different diseases and tests (prefered type of training: in person!)

Rank	Disease
1	AHS
2	CEM, dourine, glanders, Hendra, Nipah, piro, strangles
3	JE, EIA, EHV

Indicated need for the establishment of additional capacity to test for certain diseases either to identify the pathogen or for antibodies

Lab /Disease /country	AUS	Bhutan	China	Chinese Taipei	India	Indonesia	Mongolia	Myanmar	Singapore	Sri Lanka	Thailand
	Glanders	EIA	Harbin	Nipah	Hendra	AHS	AHS	EI	Dourine	AGS	dourine
	CEM	EI	dourine	Hendra	Nipah	JE		Strangles	JE	EHV	
		Glanders	TC of Quindao	EIA		Glanders		Glanders	Nipah	EEE	
		Strangles	Surra	EVA		Hendra		piro	WNF	WNF	
		Dourine		CEM		Dourine				EIA	
		EHV		EHV		strangles				Hendra	
		EVA		Glanders						Glanders	
		WEE, EEE		Strangles						Strangles	
				piro						Surra	
				dourine						dourine	

World distribution of WOAH Reference laboratories for equine diseases

Dr Gregorie Hermann Bazimo (WOAH World Animal Health Information and Analysis Department)

WOAH experts for equine diseases

Species and Prof	Diagon Nama	Asi	a and the Pacific	Other regions		
Yokoyama	Disease Name	Nations	Experts	Nations	Experts	
	Japanese encephalitis	Korea(RO)	Dr. Dong. Kun. Yang	-	-	
Multiple		-	-	Italy	Dr. Federica. Monaco	
Species	West Nile fever	-	-	USA	To be Decided	
	Surra (Trypanosoma evansi)	Japan	Prof. Noboru. Inoue	Belgium	Dr. Nick Van Reet	
				South Africa	Dr. Baratang. Alison. Lubisi	
	Infectious with African horse sickness virus	-	-	Spain	Dr. Montserrat. Agüero. Garcia	
	Infectious with African horse sickness withs	-	-	Spain	Dr. José. Manuel. Sanchez-Vizcaino	
		-	-	UK	Dr. Carrie Batten	
		-	-	UK	Dr. lan. Mawhinney	
	Contagious equine metritis			USA	Dr. Kristina Lantz	
		-	-	France	Dr Sandrine Petry	
	Dourine	-	-	France	Dr. Laurent. Hébert	
	Equine encephalomyelitis	-	-	USA	Not anymore a WOAH Reference La	
	Equine infectious anaemia	China(PRO)	Dr. Xiaojun. Wang	USA	Currently under study	
Equidae				Italy	Dr. Maria. Teresa. Scicluna	
Equidae	Infection with equine influenza virus	Japan (JRA)	Dr Manabu Nemoto	Ireland	Prof. Ann. Cullinane	
	miection with equine initializa virus	-	-	USA	Dr. Thomas. M. Chambers	
	Equine piroplasmosis	Japan	Prof. Naoaki. Yokoyama			
	Equine rhinopneumonitis	-	-	Ireland	Prof. Ann. Cullinane	
	(Infection with equid herpesvirus-1)	-	-	USA	Dr Lutz Goehring	
	HENDRA, NIPAH	AUSTRALIA	DR KIM HALPIN	-	-	
		-	-	UK	Prof. Falko. Steinbach	
	Infection with equine arteritis virus	-	-	USA	To be decided	
		-	-	Germany	Dr. Heinrich. Neubauer	
	Glanders	-	-	UAE	Prof. Ulrich Wernery	
		-	-	France	Dr Karine Laroucau	
	Venezuelan equine encephalomyelitis	-	-	USA	Not anymore a WOAH Reference La	

Inquiry on work on AMR in equines (2024)

- During the update of the survey, the following additonal questions were asked:
- **1. Has your laboratory been involved in testing for AMR in equines?**
- 2. Are you aware of any studies on AMR in equines in your country
- Six countries indicated that they are involved either in research on AMR in equines or have included it into regular surveillance programmes, testing any reports of confirmed bacterial diseases for AMR.
- Most of these countries indicated their increasing interest in research on AMR in equines

Conclusion and recommendations

- There is a lot of capacity in the region, including WOAH Ref labs, but also at national level and the update of the survey indicates an increase
- Countries are encouraged to utilise regional capacity when national capacity is not sufficient
 - E.g. only 4 countries have sent samples for confirmatory diagnosis to other countries in the region in the last 5 years!
- The need for a ,,regional Collaborating Centre for diagnostics in equine diseases" should be discussed
- The need for a WOAH Reference Lab for glanders in key regions like Asia (but also in the Americas)
- The use and recognition of private laboratories to carry out diagnosis for certification should be considered
 - Only 3 countries indicate that they use private laboratories
- The region is home to a large number of experts which could be called upon for training activities
 - 8 countries provided names of their experts

Thank you for your attention

The WOAH project on Facilitation of international horse movement in Asia and Pacific

Concept for intra-regional training programme

Susanne Münstermann, WOAH consultant

s.munstermann@outlook.de

World Organisation or Animal

Organisation Organización Mundial de Sanidad de la santé Animal Fondée en tant au'OIE Fundada como OIE

mondiale

animale

Regional Workshop, Tokyo, 17 – 18 September 2024

Introduction & justification

- Equestrian sports are on the increase in the Region competitive sport and leisure sport
- Economic importance employment, national and international events

- Against this background, the number of intra-regional events are still small, competition horses often based in Europe
 - Difficult and different import conditions
 - Laboratory diagnostic capacity for equine diseases
 - Evidence provided in the laboratory survey and update
 - Very few Reference Laboratories in the Region
- Clear need for capacity building program in the Region

Objective of the proposal

- To increase capacity in countries with an identified gap
- Strengthen regional collaboration and networking

Strengthen links between laboratories in the Region and WOAH Ref labs outside the region and other networks (e.g. EU network)

Methodology

Step 1

- Identify up to 3 experts from laboratories in the Region with high standards and capacity, e.g.
 - Equine Research Institute, Japan
 - National Institute for Animal Health, Thailand
 - National Research Centre for Equines, India
 - Veterinary Laboratory Division of AFCD, Hongkong
 - Harbin, China

Methodology cont.

p2

Confirm identified needs with the countries (based on Table 8 in the survey report) during online meeting

<mark>Lab</mark> /Diseas	AUS	Bhutan	China	Chinese Taipei	India	Indonesia	Mongolia	Myanmar	Singapore	Sri Lanka	Thailand
/countr				·							
	Glanders	EIA	Harbin	Nipah	Hendr a	AHS	AHS	EI	Dourine	AGS	dourine
	CEM	EI	dourine	Hendra	Nipah	JE		Strangles	JE	EHV	
		Glanders	TC of Quindao	EIA		Glanders		Glanders	Nipah	EEE	
		Strangles	Surra	EVA		Hendra		piro	WNF	WNF	
		Dourine		CEM		Dourine				EIA	
		EHV		EHV		strangles				Hendra	
		EVA		Glander s						Glanders	
		WEE, EEE		Strangles						Strangles	
				piro						Surra	

Methodology cont.

Step 3

Identify the diagnostic methods needed per disease (serology, agent identification, others)

Match with suitable experts

Develop a training plan per expert

Team Member	Role	Six Sigma	Office	Hardware	Infrastructure	Teamwor
Abbey Arias	BI Analyst	Advance	Competent	Basic	Competent	Basic
Drake Henson	Phyton Programmer	Basic	Basic	Basic	Trainer	Basic
Agnes Kent	BI Analyst	Trainer	Trainer	Advance	Competent	Basic
Marisa Redman	Server Tech	Competent	Competent	Advance	Trainer	Competent
Keegan Cooley	РМО	Trainer	Basic	Competent	Basic	Basic
Jonty Mustafa	Phyton Programmer	Competent	Trainer	Advance	Competent	Basic
Meghan Cochran	Java Programmer	Trainer	Competent	Advance	Advance	Trainer

TRAINING PLAN

Methodology cont.

Step 4:

Contract experts according to their capacity to implement the training plan

Proposal:

- Country visits of 1 week each
- Each expert max 3 countries during 1 year
- Project to provide DAS, travel and accommodation -NO honorarium

Expected results

- Training under local conditions with local equipment and reagents, experiencing local difficulties and challenges
- Approach increases networking between lab experts in the region and the establishment of long lasting links between laboratories
- Ultimately laboratories can diagnose diseases correctly, and support the certification of horses for export / participation in competitions / international horse movement

Thank you for your attention

