Workshop on Laboratory capacity to diagnose equine diseases in Asia and Pacific

Introduction to the WOAH "six diseases" and the **HHP** concept

Susanne Münstermann, WOAH consultant s.munstermann@outlook.de

World Organisation or Animal

Organisation Organización Mundial de Sanidad Animal Fondée en tant qu'OIE Fundada como OIE

mondiale

animale

de la santé

Regional Workshop, Tokyo, 17 – 18 September 2024

The HHP framework in brief: Rationale

- A certain number of sport horses are under close veterinary supervision, governed by FEI¹ and IFHA² rules
- They present a low health risk
- They are identified and traceable
- Their welfare is essential to their capacity to perform
- They enter countries on a temporary basis for competition purpose only, not for breeding

¹FEI = Federation Equestre Internationale ²IFHA = International Federation of Horse racing

They can be defined as a

SUB-POPULATION

of the global equine population

They are included in the OIE Code chapter 4.17 as

HHP horse

(High health, high performance horse)

Sub-population

Perceived challenges to travel internationally

- Application of excessive, inconsistent sanitary regulations
- Differing approaches to quarantine, laboratory testing, certification requirements
- Lack of knowledge/skills/interest/low priority for Veterinary Services
- Few countries with national regulations for temporary importation

Collaboration with the industry

Key partners:

- International Horse Sports Confederation (IHSC) (formed by FEI and IFHA in 2013)
- MoU between IHSC and WOAH
- Engagement in Public-Private-Partnership to address movement constraints at global level

HHP framework for the facilitation of International Competition Horse Movements Based on

OIE Standards and approaches

OIE standards and principles

- The OIE Terrestrial Animal Health Code lists 11 equine diseases and 6 multiple species diseases
- Members have reporting obligations!
- Zoning, Disease Free Zones, and Compartmentalisation are defined in the Code
- Animal identification and traceability described in the Code
- Quality of Veterinary Services and the PVS Framework

HHP sub-population complies with these principles

Based on 4 pillars:

- High Health status: vaccinations, tests, quarantine, HHP health certification
- 2. Performance
- 3. Identification and traceability
- 4. Biosecurity

Progress in implementation of HHP since its inception

- Update of the "HHP Handbook" in December 2018 – containing all elements of the step-wise approach to establish HHP framework at
 - Stable
 - Horse
 - Travel
 - Event

Recap of stepwise approach

- 1. **Stable**: qualification as compartment
- 2. Horse(s): qualification as HHP horse
- 3. Travel and venue(s)
 - HHP certificate(s)
 - Travel up to 90 days with multiple destinations and multiple certificates
- 4. Return to home base

Single use strategy: Compartment not maintained

Multiple use strategy: Compartment was maintained

1. Qualification of stable (compartment)

- Health status of the country
 - Good reporting record of equine diseases to OIE
- Establishment
 - Must be registered with national Federation
 - Qualification period of 90 days under RV supervision
 - Special regulations for introduction of new horses (during qualification and maintenance of compartment)
 - Approval by official veterinarian
 - Once qualified register in HHP database

2. Horse qualification as HHP

- Under regular supervision during stable qualification by RV
- Depending on country health status, required tests and vaccinations
- Once qualified, registered as HHP horse on HHP database

3. Travel and venues

- Issue of the initial HHP Health Certificate
- Observe biosecurity during lay-overs, travel and venue(s)
 - Must be registered on HHP database
 - Must have HHP biosecurity standards
 - EDFZ if not EU approved third country
- Issue of multiple HHP Health Certificates after each event

4. Return to home base

- Return after maximum 90 days continuous travel
- If new cycle of travel is desired and compartment was maintained:
 - 14 days residence in compartment if:
 - Country has known health status, no glanders for 3 yrs, no VEE for 2 years
 - 21 days residence in compartment if:
 - Country not known to be free of VEE for 2 yrs
 - 30 days residence in compartment if:
 - Country not know to be free of glanders for 3 yrs

- HHP framework has since its inception been further developed continuously
- Is in line with WOAH standards and largely fulfils the requirements of the new EU Animal health law for the "conditions of entry into the Union"
- The database, a necessity for HHP to work, has made major progress
- Regions are encouraged to trial the HHP framework for intra-regional movement

The six diseases

- A HHP health certificate was developed, can be found as annex to the HHP handbook
- This health certificate was commented on by WOAH members in 2015 and passed through SCAD in September 2015.
- It is based on the risk assessment that WOAH carried out globally and in which it identified six diseases that need to be regulated in a health certificate because they cannot be detected or mitigated by health management and biosecurity

Dominguez M., Munstermann S., Murray G. & Timoney P. (2015)
High-health, high-performance' horses: risk mitigation strategies for OIE-listed diseases.
Rev. Sci. Tech. Off. Int. Epiz., 34 (3), 837 - 848

Risk assessment based categorisation of WOAH listed diseases of importance

Only the "6 diseases" are specifically regulated in the proposed Certificate

If no HHP preparation period, measures for this group of diseases need to be included

OIE LISTED DISEASES

African horse sickness (AHS), anthrax, contagious equine metritis (CEM), dourine, equine infectious anemia (EIA), equine influenza (EI), equine viral arteritis (EVA), glanders, Japanese encephalitis, infection with equid herpesvirus-1 (EHV-1), Venezuelan equine encephalomyelitis (VEE), piroplasmosis, rabies, Screwworm, Surra, , Eastern equine encephalomyelitis (EEE), Western equine encephalomyelitis (WEE), West Nile fever (WNF)

Thank you for your attention

The WOAH project on Facilitation of international horse movement in Asia and Pacific

Proposed harmonised health certificate for competition horses

Susanne Münstermann, WOAH consultant s.munstermann@outlook.de

World Organisation or Animal

Organisation Organización Mundial de la santé de Sanidad Animal Fondée en tant au'OIE Fundada como OIE

mondiale

animale

Regional Workshop, Tokyo, 17 – 18 September 2024

Background

- HHP concept was developed to facilitate movement of competition horses worldwide (TAHC chapter 4.17)
 - To avoid the need for pre-export and post-arrival quarantines
- A HHP health certificate was developed, can be found as annex to the HHP handbook
- This health certificate was commented on by WOAH members in 2015 and passed through SCAD in September 2015.
- However, as the HHP concept, particularly the registration of HHP horses and premises, have not (yet) been fully adopted by the equestrian sports organisations and the EU, where most competition horses from this region are based, the certificate cannot be used as is
- Rather than to use the harmonised certificate worldwide, we now propose to develop "regional" certificates through initiatives in Asia and Latin America

Background cont.

- The harmonised Certificate is based on the HHP principles
- Was intended initially for several HHP movements within 90 days in the Region, but based on countries' feedback, we changed to a "single use" certificate
- Major modifications to the HHP Certificate in the HHP Handbook:
 - Replaced the "HHP horse" by "registered horse", using the definition as given in the WOAH glossary,
 - Every competition horse will have an affiliation with a national registering body
 - Establishment must be under veterinary supervision to verify the claim of "free from listed diseases"
 - VEE was replaced by Surra, as VEE does not exist in the Region

Background cont.

- The general prinicples can be applied:
 - Competition horses have a high health status
 - They are under veterinary supervision

- Biosecurity measures are applied in their establishments
- They are registered with the national or international Federation /racing association
- They have a passport and are individually identified
- They enter the country temporarily, not a permanent import
- While competing, they are generally not breeding animals
- We can put these general conditions as preamble in the health certificate
- We regulate only the six diseases that are important for competition horses because they cannot be detected or mitigated by health management and biosecurity
- We leave room for bilateral additional conditions to be added

Objective of the proposed harmonised certificate

To be used for movement within the region

- To incentivise to organise intra-regional competitions with facilitated movement for participating horses
- For competition horses resident in the region
- If agreed, it could be tested at a regional event
- If works well, could be upscaled

Current health certificates

- We requested all countries participating in the WOAH project to send us their health certificates
 - They are usually for general permanent import of equines, not specific for competition horses or temporary import, except:
 - Into Thailand for Asian Championships
 - Into China for Asian Games 2023
 - Into Indonesia for Asian Games 2018
- There is a lot of divergence, but some common features
 - Country of origin should be free from AHS for 2 years
 - Establishment/holding should be free from most WOAH listed diseases
 - A definite residence period in the establishment free from specified (mostly 6 months)
 - Horses had no contact with premises that notified a disease or horses of a status for a definite period (mostly 90 days)
 - Horses should be treated against endo- and ectoparasites before departure
 - Horses should be vaccinated against El

Certificates received and studied

General requirements for import into	Specific requirements		
India	Australia into New Caledonia		
Sri Lanka	France into New Caledonia		
Taiwan	New Zealand into New Caledonia		
Thailand	India into Bhutan		
	Argentina into Philippines		
	Australia into Philippines		
For specific sport events	Indonesia into Philippines		
Into Thailand for Asian Championships	USA into Philippines		
Into Indonesia for Asian Games 2018	Korea into Malaysia		
Into Korea for Asan Games 2014	UK into Australia		

Proposal

A certificate that covers one single journey

- Horse shall not remain in the country of the event, but return to country of permanent or temporary residence
- Venue of competition has a high biosecurity standard (particularly vector protection and vector control)
- In Part I it is stipulated that during the 90 day period before travel the horse was not used for breeding
- "registered horse" registered with a national Federation or Racing Association
- "registered premise" registered with a national Federation and under veterinary supervision

Risk assessment based categorisation of WOAH listed diseases of importance

Only the "6 diseases" are specifically regulated in the proposed Certificate

For Asia – replace VEE with surra

If no HHP preparation period, measures for this group of diseases need to be included

OIE LISTED DISEASES

African horse sickness (AHS), anthrax, contagious equine metritis (CEM), dourine, equine infectious anemia (EIA), equine influenza (EI), equine viral arteritis (EVA), glanders, Japanese encephalitis, infection with equid herpesvirus-1 (EHV-1), Venezuelan equine encephalomyelitis (VEE), piroplasmosis, rabies, Screwworm, Surra, , Eastern equine encephalomyelitis (EEE), Western equine encephalomyelitis (WEE), West Nile fever (WNF)

How are the "6 diseases" regulated

AHS

 "Country should be free from AHS for 2 years" - AHS is amongst the diseases for official country freedom since 2015 – how many countries in the region have the WOAH status of country freedom? (12 out of 32)

Proposal to include a condition for countries not officially free!

VEE

VEE has never occured in the region, we therefore removed it - but put Surra instead

Glanders

- Country free for 3 years plus single CFT test
- Establishment free for 12 mths, horse permanent resident for 30 days and double CFT test
- New ELISA test currently under study by WOAH BSC, can eventually complement the CFT and shorten the residence period

Control measures

Piroplasmosis

In line with the newly approved TAHC chapter 12.7.6 (temporary importation) NO test is required, but daily checks for ticks 30 days before departure, during transport and while at the venue (V.9)

EIA

Test within 90 days before departure (Coggins)

►/EI

- Comes from a country free of El and has been resident for 14 days OR
- Is vaccinated against El

Surra

 A TAHC chapter has been developed and been commented on by members, and is currently under study by specialist commissions – has a provision for temporary import (8.7.9) – one serological test 14 days prior to departure

Consultative process

E	
110	
(C	

Date	Activity	Round of revision	comment
February 24	Regional Workshop Thailand	Discussion of draft certificate	Comments by working groups
March 24	Comments were integrated:	1 st	Country comments received by April 24
	Revised certificate + Explanatory notes		
April 24	Comments from NZ, AUS, NC, Singapore, Malaysia, Thailand, Nepal, Bhutan were integrated:	2 nd	Country comments received by May 24
	Revised certificate + Updated Explanatory Note		
June 24	Three online meetings with participating countries	3rd	Final certificate with accompanying Explanatory Notes available

Outcome

- 13 / 16 countries participated actively in the consultation
- Some countries with a substantial horse sport industry did not participate
- 4 countries accepted the final version and would like to use it
- 9 cannot use it in ist current form for different reasons

Proposed way forward:

Organise a test event and use this opportunity to address each countries specific issues

Thank you for your attention

Organisation Organización mondiale Mundial de la santé de Sanidad animale Animal

WOAH Regional Workshop on "Laboratory capacity to diagnose equine diseases" in Asia and the Pacific 17-18 September 2024- Tokyo, JAPAN

Terrestrial Animal Health Code: standards for "six

diseases" and disease distribution (WAHIS)

Mauro Meske Project Liason Officer WOAH-IHSC Disease Status Department

Intoduction- WOAH: Who we are

Introduction: WOAH's governance structure

Veterinary Officer

Introduction: WOAH's governance structure

WOAH establishes standards for the improvement of <u>animal</u> <u>health</u> and <u>welfare</u> and <u>veterinary public health</u> worldwide, including the <u>prevention of disease</u> <u>spread through</u> <u>international trade of</u> <u>animals and animal</u> <u>products</u>. World Trade Organization (WTO) Agreement on the Application of Sanitary and Phytosanitary Measures (SPS) recognises WOAH as the reference international standard-setting organisation for animal health and zoonoses.

Include import sanitary measures, according to the commodity, their origin, the risk reduction measures applicable to each commodity

Veterinary Authorities should use these standards to set up measures to prevent the spread of significant transboundary diseases via international trade in animals and animal products while avoiding unjustified sanitary trade barriers

Members shall ensure that their sanitary measures are based on existing international standards or based on risk analyses conducted according to these standards.

RATIONALE FOR THE SELECTED 6 DISEASES

High health, high performance (HHP) horses: risk mitigation strategies and establishment of specific health requirements

Risk assessment based categorisation of WOAH listed diseases of importance

Oie word where latter for an and the form

Only the 6 diseases are specifically regulated in the proposed HHP Certificate

VEE has never occured in the Asia and the Pacific Region. Therefore, it was removed from the Health Certificate for the Region and replaced it by **Surra**

Revision of WOAH standards for the main diseases affecting horses

- Equine Influenza * Equine piroplasmosis * Surra*
- Contagious Equine Metritis *

Under review (2024-2025):

- Dourine for potential adoption 2025 *
- African horse sickness -for potential adoption 2025
- Western, Eastern and Venezuelan equine encephalomyelitis
 & Japanese Encephalitis (2024-2025)

Glanders (last updated 2018)

- * Provisions for temporary importation of horses
- All Chapters: specific provisions for surveillance & country-zone freedom

Plans to update the Code Chapter 5.12 with a Model passport for the international movement of competition horses- Digital passports (2025-2026)

Already reviewed

and adopted in

2023-2024

- (with requisites for qualification, maintenance and recovery of freedom)
- Guidance on **Surveillance** (animal surveillance, vector surveillance-EP-)
- **Import provisions** for different commodities (live animals, animal products)
- Inclusion of provisions for **temporary importation** of competition horses

Recommendations for importation of equids

Piroplasmosis)

- Recommendations for temporary importation of horses ONLY for competition purposes and HHP horses, lab test are not required but horses should be :
 - Accompanied by an **international veterinary certificate**, a passport and individual identification, belonging to high health horse subpopulation as defined in Chapter 4.17;
 - Not subjected to any practice that may represent a risk of transmission of infection with T. equi and Babesia caballi
 - maintained free from ticks during the 30 days prior to shipment, during transport and protected from ticks during their stay (and examined daily for the presence of ticks)
- Recommendations to protect equids from ticks
- General principles of surveillance (including clinical, serological, agent, and vector surveillance, and surveillance in high-risk areas)

Global distribution of equine piroplasmosis (2019-2023)

2024

Terrestrial Anima

Health Code

World Organisatio

Systematic review and

Case definition

<u>Country or zone free</u>: Notifiable for at least the past 2 years + measures

to prevent the introduction of the infection (i.e., import of equids) and either:

- 1. Country historically free according to <u>Art 1.4.6</u> (notifiability and early warning system in place for **10 years**; no cases for the last **25 years**; no infection in wildlife); or
- 2. Surveillance programme in place for the past two years (including active surveillance)

Compartments free

<u>Recommendations for importation of susceptible animals from infected countries:</u> no clinical signs the day of shipment +

kept since birth or for 6 months in a free country/ zone/ compartment) did not transit to through an infected zone or Subjected to lab test with negative results (2 antibody tests interval 30 days)

Recommendations for temporary importation of horses: (HHP+ vector protection+ 1 test)

General conditions & Surveillance methods: Clinical and Pathological;

Serological; Agent identification; Sentinel animals; vector surveillance

Global distribution of Surra (Trypanosoma evansi) (2019-2023)

• Recommendations for Temporary importation of horses

ONLY for horses and for competition purposes, not exceeding 90 days, lab test are not required but horses should be accompanied by:

Health Cod

- A passport in accordance with Chapter 5.12. and individual identification or belonging to HHP horse subpopulation as defined in Chapter 4.17; AND
- An international veterinary certificate attesting that horses either come from an EI free country/zone OR showed no clinical signs of EI in any premises horses had been resident for the 14 days prior to shipment AND were vaccinated
- During their stay ensure that horses are kept separated from domestic and captive wild equids of a different EI health status through **appropriate biosecurity**
- List of safe commodities
- **Determination of the El status:** Risk assessment+ notifiability+ EI awareness programmes+ surveillance in place to demonstrate the presence of infection in the absence of clinical signs

Chapter 12.6. Inf. with Equine Influenza Virus:

Country, zone or compartment free from Equine Influenza:

- infection with EIV is **notifiable** in the whole country;
- Evidence through an effective surveillance programme, implemented in accordance with principles in Chapter 1.4., that no case of El in the past two years;

i. If vaccination is practiced: evidence through surveillance (serological + agent identification) of absence of EIV circulation in the population of domestic, captive wild, feral, and wild equids during the past 12 months;

ii. If vaccination is not practised: serological surveillance is sufficient;

• Apply appropriate **movement controls** to minimise the risk of introduction of EIV

Recovery of Free Status Vaccination protocols prior to shipment

M

luation of Current Equine Influenza Vaccination tocols Prior to Shipment, Guided by E Standards

Staal Standard, Yook Extending of and Catalan Judie Encoder.
 Staal Standard, Yook Extending of an advance of the standard start of the start of the

Admits To finding the supported properties of bottom for supported models and only appropriate the summarian and a beginning regions along and the MCM Equivalence to the same He field for the support of the support

e equine influenza; vaccination; shipment; OIE; HE; IFHA; harmonization; age; horses

Global distribution of equine influenza (2019-2023)

Self-declaration of freedom from infection with Equine Influenza viruses (EI) in horses by Japan

Self-Declaration sent to the World Organisation for Animal Health (WOAH, founded as OIE) on 31 January 2024 by Dr OKITA Masatsugu, the Delegate of Japan to WOAH, Director of Animal Health Division, Ministry of Agriculture, Forestry and Fisheries (WAFF), Japan. This self-declaration, initially established on 1 July 2009, is reiterated to reflect updates in the Terrestrial Code.

Chapter 12.10. Inf. with *Burkholderia mallei* (glanders):

Case definition

Country, zone free from glanders:

- Glanders is **notifiable** in the whole country for the past 3 years;
- Evidence through an effective surveillance programme, that **no case of glanders in the past 12 months**;
- Apply appropriate import of equids and germplasm to minimise the risk of introduction of *B. mallei*

Recovery of Free Status

Recommendations for importation of equids from free countries/zones (kept 6 months in free countrieszones or from not free zones kept for 12 months in an establishment with no cases+ isolated for 30 days and tests (CFT-ELISA?)

Recommendations for the importation of equine semen and embryos

General Principles of Surveillance and Surveillance Methods

Terrestrial Anima

Dhapter 12.1. Inf. with African Horse Sickness virus (AHS)(2014):

nder visio

Case definition

- **Country, zone free from AHS:**
- Infection with AHS is **notifiable** in the whole country;
- No AHS cases in the past 2 years
- AND either
- Historical freedom (25 years without evidence of AHS infection+ early warning system) or
 - AHS absence for the past two years demonstrated through an effective surveillance programme, or
- Demonstrated AHS absence for 40 days + absence of Culicoides
 Plus, an AHS free country or zone which is adjacent to an infected country or zone should include a zone in which surveillance is conducted

Chapter 12.1. Inf. with African Horse Sickness (AHS):

Recommendations for importation of equids from free countries/zones

Recommendations for importation of equids from free countries/zones not free from AHS

kept 6 months in free countries-zones or from not free zones kept for 12 months in an establishment with no cases+ isolated for 30 days and tests (PCR-ELISA)

Recommendations for the importation of equine semen and embryos

Protecting animals from Culicoides attacks

DISEASE DISTRIBUTION - Data from the World Animal Health Information System (WAHIS)

AHS status in the country

Data source : WAHIS, September 2024

Absent Suspected

Present

No information

Global distribution of African horse sickness

Global distribution of African horse sickness (2019-2023)

Ø

Equine Infectious Anaemia (EIA). Adopted in 2007

Recommendations for the importation of equines:

• No clinical signs 48 prior to shipment

- No case of EIA in the premises where the animals were kept 3 months prior to shipment
- Subjected to diagnostic tests: blood samples collected 30 days prior to shipment for permanent importations and 90 days for temporary importations

Other Chapters under revision:

- Eastern, Western, and Venezuelan Equine Encephalomyelitis
- Japanese encephalitis
- Dourine

Thank you

12, rue de Prony, 75017 Paris, France T. +33 (0)1 44 15 19 49 F. +33 (0)1 42 67 09 87

woah@woah.int www.woah.org Facebook Twitter Instagram LinkedIn YouTube Flickr

The role of the European Union Reference Laboratory on Equine Diseases: an example of a regional approach for specialised diagnostic capacities and vaccine development

Stéphan Zientara

Director of the Animal Health Laboratory Maisons-Alfort, France

EU/WOAH/FAO REFERENCE Lab on FMD EU REFERENCE Lab on EQUINE DISEASES WOAH REFERENCE Lab on EHDV

New official control regulation (OCR) and EURLs

Health and Food Safety

Mission of DG SANTE/Unit G3 – Official Controls and Eradication of diseases in animals

- Coordinate the implementation of the new legislative framework on official controls in the food chain, applicable from December 2019;
- Ensure the application of EU rules for the prevention, control and eradication of animal diseases, including mobilisation of EU crisis management instruments;
- Provide a general framework for the verification of compliance with the EU rules on food & feed, and animal health.

EURL network 2016

- **45 EURLs** according Commission Implementing Decision of 27/07/2015
 - 30 Food and Feed safety
 - 15 Animal Health
- Budget for 2 years (2016+2017): 31.656.500 €
- Budget for 2 years (2019+2020): 41.350.500 €
- Budget for 3 years (2025+2027): 42.000.000 €

There is **continuous Government support** over a period of about 12 years to support this network

https://food.ec.europa.eu/horizontal-topics/european-union-reference-laboratories_en

Food and Feed

Distribution EURLs per Member State

Variety of organisations serving as EURL

- Official Laboratories (as designated by Competent Authority)
- Research Institutes
- University Laboratories
- Private Laboratories
- Also need to fulfil the requirements !

• Accredited: EN ISO/IEC 17025, EN 45002, EN 45003

Health and Food Safety

Health and Food Safety Home > Livestock > Laboratorios de Sanidad y Genética de la Producción agraria > Laboratorio de Referencia de la UE

Laboratorio de Referencia de la UE	
About us	
Bluetongue disease	
Horse sickness	
Diagnosis	

European Reference Laboratory for African horse sickness and f $X \ominus O$ † Bluetongue (AHS&BT)

Welcome to the website of the European Reference Laboratory for African horse sickness and Bluetongue (AHS&BT EURL)

You will find on the site information on Bluetongue and African horse sickness and pathogens that cause them, as well as activities of the EURL.

The role of the European Union Reference Laboratory on Equine Diseases: an example of a regional approach for specialised diagnostic capacities and vaccine development

Since 1st July 2008

COMMISSION REGULATION (EC) No 180/2008

of 28 February 2008

concerning the Community reference laboratory for equine diseases other than African horse sickness and amending Annex VII to Regulation (EC) No 882/2004 of the European Parliament and of the Council

ANSES has a network of nine reference and research laboratoric located throughout France, close to industry. These laboratories operate in three main areas: animal health and wenare, room safety (intermice and microbiologica) and pain health. They are internationally recognised in their respective fields of expertise: epidemiology, microbiology and antimicrobial resistance, toxins and physico-chemical contaminants. Thanks to their work in providing expertise, epidemiological monitoring, alerts and scientific and technical assistance, they play a vital role in understanting various threats and in collecting data from the network of accredited laboratories.

1,400 staff total with 700 staff in laboratories

Animal Health laboratory

uchan Supermarché (Bourgelat)

Access -

Villa Fragonard

leChan

ue de Seine

OIL

Cole Vétérinaire de Maisons-Alfort

Office National des Forêts

Le Temple du Nînja

Rue Naville

Hertz Location De Voitures - Hertz...

Veterinary school

Rue Paul Bert

Le Bar Belge

Re

ĕ

Ru

puou

Ed

Agence l'lationale Sécurité Sanitaire...

Lycée Eugène Delacroix

ıgène

Animal health laboratory, Normandy campus

I. Organisation of the EU RL

EU RL in the Animal Health Laboratory on 2 sites

The EU RL has a mandate with 10 diseases: glanders, CEM, dourine, EAV, EIAV, WNV, exotic encephalitides (EEEV, WEEV, VEEV and JEV)

I. Organisation of the EU RL

Diseases	Heads
WN, EEE, EEV,EEW	G. Gonzalez
Glanders	K. Laroucau
EIAV, EAV, EHV	JC Valle-Casuso/D. Gaudaire
CEM	S. Petry
Dourine	L. Hebert

- all of my colleagues have assisted in organising WOAH webinars on equine diseases
- https://rr-asia.woah.org/en/projects/horsemovement/international-horse-movementin-asia-and-the-pacific/

Director => S.ZIENTARA Deputy Director => G.GONZALEZ

I. Organisation of the EU RL

Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, amending Regulations (EC) No 999/2001

•Art. 94.2.a Providing national reference laboratories with details and guidance on the methods of laboratory analysis, testing or diagnosis, including reference methods.

•Art. 94.2.b Providing reference materials to national reference laboratories

•Art. 94.2.c Coordinating the application by the national reference laboratories and, if necessary, by other official laboratories of the methods referred to in point (a), in particular, by organising regular inter-laboratory comparative testing or proficiency tests and by ensuring appropriate follow-up of such comparative testing or proficiency tests in accordance, where available, with internationally accepted protocols, and informing the Commission and the Member States of the results and follow-up to the inter-laboratory comparative testing or proficiency tests.

•Art. 94.2.1 Where relevant for their area of competence, cooperate among themselves and with the Commission, as appropriate, to develop methods of analysis, testing or diagnosis of high standards.

Missions of the EU RL: communicate with NRL

flyers, papers, social networks,

. . .

On 1 July 2008, the European Commission officially appointed the French Agency for Food, Environmental and Occupational Health &safety (ANSES) as European Union Reference Laboratory (EU RL) for equine diseases (excluding African horse sickness).

The Dozulé Laboratory for Equine Diseases located in Normandy studies Contagious Equine Metritis (CEM), Dourine, Equine Viral Arctitis (EVA), Equine herpes viruses (EHV) and Equine infectious Anemia (EIA).

All these diseases belong to the **OIE** list in forced in **2015** of notifiable terrestrial and aquatic animal diseases (chapter for multispecies disease or chapter for equine diseases). This EURL is therefore specific as compared with others EURL because it's responsible of many diseases and these diseases are due to virological, bacteriological or parasitological pathogens.

According to the diseases managed by the EURL, there is or not a disease-free status in Europe.

European Union Reference Laboratory (EURL) for Equine Diseases

anses

ans

On 1 July 2008, the European Commission officially appointed the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) as European Union Reference Laboratory (EURL) for equine diseases (excluding African horse sickness).

The EURL is located on 2 different sites.

- The Laboratory for Animal Health located in Maisons-Alfort, near Paris studies various equine diseases including the West Nile virus, exotic Equine Encephalits, Vesicular Stomatitis, Glanders and Melioidosis;
- The Dozulé Laboratory for Equine Diseases located in Normandy studies Contagious Equine Metritis, Dourine, Equine Viral Arteritis, Equine Herpes viruses and Equine Infectious Anaemia.

Missions of the EU RL: communicate with NRL

EU RL website :https://eurl-equinediseases.anses.fr

Go to menu Go to content Go to search Sitemap	Identify EN FR
European Union Reference Laboratory for Equine Diseases	Login Password Constant account Accoun
Home Presentation News Contact Workshops Trainin	Validate formation
European Union Reference Laboratory for equine diseases	News / Events
The French Agency for Food, Environmental and Occupational Health Safety (ANSES) has incorporated the missions, resources and personnel of the French Food Safety Agency (AFSSA) and the French Agency for Environmental and Occupational Health Safety (AFSSET). Its principal mission is to contribute to the protection of human health with respect to the environment, the workplace and food.	Published on 01/10/2014 Agenda of the 6th workshops of the EURL on equine diseases
On 1 July 2008, European Commission officially designated the French Food Safety Agency (AFSSA) as the European Union Reference Laboratory (EU-RL) for equine diseases (excluding African horse sickness). > Commission regulation (EC) No 1802008	Published on 30/06/2014 Sanitary news by month in EIA (march, april, may)
The activities of the European Union Reference Laboratory are handled on 2 sites The Maisons-Alfort laboratory for animal health (near Paris) studies West Nile, Viral Equine Encephalitis, Vesicitar's formatifs (Sandres and Melindonis).	Published on 26/05/2014 West nile and exotic encephalitis
The Dozulé laboratory for equine diseases (in Normandy) studies Contagious Equine Metritis, Dourine, Equine Viral Arteritis, Equine Herpes viruses and Equine Infectious Anaemia	Published on 28/05/2014 Conference on Equine Infectious Anaemia
Duties of the EU-RL	Published on 20/05/2014 What's new
The EU-RL provides full assistance to the NRLs for all the diseases concerned for the following tasks	All news
Study and confirmation of samples with unexpected or doubtful results	
Collection and identification of representative samples (strains and sera) isolated in Europe (transmitted from the NRLs to the EU-RL) and in third-party countries and maintenance of the collection	
Supplying the NRLs with standardised reagents and field or reference strains of pathogens	
Improvement, harmonisation in consultation with the European Commission and development of new diagnostic tools	

LABORATORY NETWORK NATIONAL REFERENCE LABORATORIES

lational Reference Laboratories

The EURL for equine diseases is supported by a network of collaborating laboratories in each Member State.

o display information on the laboratory, display on map

EURL DUTIES

The activities of the European Union Reference Laboratory are handled on 2 sites

The Laboratory for animal health, Maisons-Alfort site (near Paris) studies West Nile, Viral Equine Encephalitis, Vesicular Stomatitis, Glanders and Melioidosis The Laboratory for animal health, Dozulé site (in Normandy) studies Contagious Equine Metritis, Dourine, Equine Viral Arteritis, Equine Herpes viruses and Equine Infectious Anaemia

Duties of the EU-RL

The EU-RL provides full assistance to the NRLs for all the diseases concerned for the following tasks

Study and confirmation of samples with unexpected or doubtful results

Collection and identification of representative samples (strains and sera) isolated in Europe (transmitted from the NRLs to the EU-RL) and in third-party countries and maintenance of the collection

Supplying the NRLs with standardised reagents and field or reference strains of pathogens

Improvement, harmonisation in consultation with the European Commission and development of new diagnostic tools

Coordinate in consultation with the Commission the methods employed by Member States for equine diagnosis diseases Set up of new diagnosis methods as Enzyme Link Immunosorbent Assay (ELISA) kits or molecular diagnosis for equine diseases

Research on phenotypic and molecular diversity and epidemiological surveillance

Genotyping of European strains isolated in the fields - Development of new vaccine in horses Information Organisation of Workshops, proficiency tests or training sessions each year for the NRLs

Information

Organisation of Workshops, proficiency tests or training sessions each year for the NRLs

NRL CONTACTS

To display information on the laboratories that work on a given disease, please click on the corresponding image.

Country	Institution	Adress	Adress 2	Postal code	Town	Diseases
AUSTRIA	AGES Austrian Agency for		Robert Koch-Gasse	2340	Moedling	WNV, EVA, EIA, CEM
	Health and Food Safety,		17			Dourine, Glanders,
	Institute for Veterinary					vsv
	Disease Control Moedling					
BELGIUM	Sciensano		Groeselenberg 99	1180	Brussels	WNV, EVA, EIA, CEM
						Dourine, Glanders,
						vsv
BULGARIA	NRL Equine Viral diseases	Exotic and Emerging	190 Lomsko Shose	1231	Sofia	WNV, EVA, EIA
		Diseases	blvd			
CROATIA	ARTERIab	Dpt of Microbiology	Heinzelova 55	10000	Zagreb	WNV, EVA, EIA, CEM
		and Infectious				Dourine
		Diseases with clinic,				
		faculty of veterinary				
		medecine				
CROATIA	Croatian Veterinary Institute		Savska cesta 143	10000	Zagreb	Glanders
CZECH REPUBLIC	State Veterinary Institute in		Sidlistni 136/24	16503	Prague 6 - Lysolaje	WNV, EVA, EIA, CEM
	Prague, NRL for equine					Dourine, Glanders,
	diseases					vsv
CYPRUS	Virology Laboratory virology			1417	Nicosia	WNV, EIA
	service					
DENMARK	Technical University of		Bulowsvej 27	1870	Frederiksberg C	EVA, EIA, CEM,
	Denmark, National					Dourine, Glanders
	Veterinary Institute, Section					
	for Diagnostic and					
	Contingency plans					
DENMARK			Lindholm	DK-4771	Kalvehave	WNV and VSV
ESTONIA	Estonian National Centre for		Kreutzwaldi 30	51006	Tartu	WNV, EVA, EIA, CEM
	Laboratory Research and					Dourine, Glanders
	Risk Assessment (LABRIS)					
FRANCE	ANSES	Laboratory for animal	14 rue Pierre et	94704	Maisons-Alfort	WNV, Glanders, VSV
		health,Maisons-Alfort	Marie Curie			
		site				
FRANCE	ANSES	Dozulé Laboratory for		14430	Goustranville	EVA, EIA, CEM,
		animal health, Dozulé				Dourine
		site				
FINLAND	Finnish Food Authority		Mustialankatu 3	FI-00790	Helsinki	WNV, EVA, EIA,
						Dourine Glanders and

HOME PRESENTATION NEWS CONTACT PT / WORKSHOPS DIAGNOSIS INFORMATION							
	HOME	PRESENTATION	NEWS	CONTACT	PT / WORKSHOPS	DIAGNOSIS Methods	INFORMATION

REFERENCE MATERIALS

Title :	: Title	
Risk Pathogene :	: Risk O	
SEARCH	ular reagents available in the EURL for equine diseases	
SEARCH Listing of molecu	ular reagents available in the EURL for equine diseases	

Listing of serological reagents available in the EURL for equine diseases

Reference materials, Published on 09/02/2018

Listing of reagants available in the EURL for equine diseases

Diseases	Serum ref	Product name	Packaging	Expected titre	Titre range	Contact	Comments
	S00653	EAV positive serum	Lyophilized (1ml)	128	64-256		
EVA	S00653	EAV positive serum	Lyophilized (1ml)	24	12-48	delekies endeine Genera (s	
EVA	S00653	EAV positive serum	Lyophilized (1ml)	192	96-384	delphine.gaudaire@anses.fr	
	S00653	EAV positive serum	Lyophilized (1ml)	8	4-16	1	
	Serum ref	Product name	Packaging	Expected titre	Titre range	Contact	Comments
EIA	S00652	EIAV positive serum	Lyophilized (1ml)	1	1	delphine.gaudaire@anses.fr	
	Serum ref	Product name	Packaging	WNV competition : % S/N*100 (IDVet kit)	WNV IgM capture % S/P*100 (IDVet kit)	Contact	Comments
		JEV positive serum (8 days post inoculation)	Lyophilized (0,5ml)	76	0		
IEV		JEV positive serum (20 days post inoculation)	Lyophilized (0,5ml)	33	0		
JEV		JEV positive serum (35 days post inoculation)	Lyophilized (0,5ml)	26	0		
		JEV positive serum (58 days post inoculation)	Lyophilized (0,5ml)	27	0		
		WNV lineage 1 positive serum (8 days post inoculation)	Lyophilized (0,5ml)	55	110		
		WNV lineage 1 positive serum (20 days post inoculation)	Lyophilized (0,5ml)	19	85		
		WNV lineage 1 positive serum (35 days post inoculation)	Lyophilized (0,5ml)	10	27		
WNV		WNV lineage 1 positive serum (58 days post inoculation)	Lyophilized (0,5ml)	7	4		
		WNV lineage 2 positive serum (8 days post inoculation)	Lyophilized (0,5ml)	35	143		
		WNV lineage 2 positive serum (20 days post inoculation)	Lyophilized (0,5ml)	16	135	cocilo bock@ansos fr	Sera available for
		WNV lineage 2 positive serum (35 days post inoculation)	Lyophilized (0,5ml)	8	102		ELISA and VNT
		WNV lineage 2 positive serum (58 days post inoculation)	Lyophilized (0,5ml)	6	28		
		USUV positive serum (8 days post inoculation)	Lyophilized (0,5ml)	93	-1		
USUV		USUV positive serum (20 days post inoculation)	Lyophilized (0,5ml)	30	0		
		USUV positive serum (35 days post inoculation)	Lyophilized (0,5ml)	33	0		
		USUV positive serum (58 days post inoculation)	Lyophilized (0,5ml)	6	18		
		TBEV positive serum (8 days post inoculation)	Lyophilized (0,5ml)	79	0		
TREV		TBEV positive serum (20 days post inoculation)	Lyophilized (0,5ml)	35	1		
		TBEV positive serum (35 days post inoculation)	Lyophilized (0,5ml)	21	0		
		TBEV positive serum (58 days post inoculation)	Lyophilized (0,5ml)	16	0		
	Serum ref	Product name	Packaging			Contact	Comments
CEM	S00650 / S00651	Polyclonal antibodies anti- <i>Taylorella equigenitalis</i> (produced on rabbits)	1 ml (S00650) 0,2 ml (S00651)			sandrine.petry@anses.fr	for slide agglutination test
	Serum ref	Product name	Packaging			Contact	Comments
	S00654	Dourine high titer positive serum (OVI strain)	1 ml	2+ 1/80	40(2+)-160(2+)		
Dourine	S00655	Dourine low titer positive serum (OVI strain)	830 µl	2+ 1/5	5(1+)-5(4+)	laurent.hebert@anses.fr	
	S00656	Dourine antigens (OVI strain)	1 ml	n/a	n/a]	
	Serum ref	Product name	Packaging			Contact	Comments
All diseases	S00653	Equine negative serum for 8 equine diseases	Lyophilized (1ml)	Negative	1	delphine.gaudaire@anses.fr	

-	\sim	
	U	Γ.
-	-	

DETECTION OF BURKHOLDERIA MALLEI AND BURKHOLDERIA PSEUDOMALLEI BY REAL-TIME PCR

Written by: Thomas DESHAYES Karine LAROUCAU Approved by: Karine LAROUCAU

This protocol is an OIE-based method used at the EU-RL, all OIE-CFT based methods validated and used successfully in the proficiency tests can be used for this assay.

1. TOPIC AND SCOPE

This document describes the PCR methods for the detection of *Burkholderia* sp, *B. mallei* and *B. pseudomallei* according to the world organisation for animal health (OIE) international standard: OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals – Chapter 3.5.11, glanders and melioidosis (https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.05.11_GLANDERS.pdf).

Several systems are described in this document:

- Detection of the B. pseudomallei complex (including B. mallei, B. pseudomallei and B. thailandensis species)
- Specific detection of B. mallei (fliP)
- Specific detection of B. pseudomallei (orf11)

For detection, the PCR systems implemented are based on the use of specific oligonucleotide primer pairs and probes labelled in the 5' with the FAM fluorochrome. The detection of the exogenous gene added at the sample extraction stage is carried out using the associated PCR kit (Diagenode, DICD-YD-L100) and includes primers and a probe labelled in 5' with the fluorochrome VIC. This internal control system makes it possible to check the correct operation of the DNA extraction and the possible presence of PCR inhibitors. It constitutes a control of the DNA extraction steps and of the PCR method.

2. MATERIAL TO BE EXAMINED

2.1. SERUM

The PCR diagnosis of glanders is performed on DNA extracted from tissues or swabs. Upon reception, the samples should be kept refrigerated ($5 \pm 3^{\circ}$ C) or frozen (\leq -16°C).

2.2. TRANSPORT OF SAMPLES

Samples must be stored at \leq -16°C.

Please save the dates!

Two workshops are organized this year on Equine arteritis virus and Glanders/Melioïdosis.

The workshops will be held at the International Center of Deauville - Congress Center, 1 av. Lucien Barrière - 14800 DEAUVILLE (Normandy, France) as follows:

- Monday September 30 , 2024: Equine Arteritis
- Friday October 4, 2024: Glanders Melioïdosis

This year the 2 workshops are organized in conjunction with the International Equine Infectious Diseases Conference (IEIDC 2024)

The hybrid mode in-person / virtual attendance will be offered.

II. Missions of the EU RL: organise PT and workshop

II. Missions of the EU RL: organise training sessions

 According to the results to the PT, training sessions are organized each year by the EU RL

Non-EU countries can participate in ANSES in PTs and training but they have to pay the costs

Biosecurity training

and the second sec

Virus isolation

Molecular diagnosis

1. Equine Viral Arteritis

- EURL develops :
 - New serological diagnostic tools to overcome the challenge to implement VNT in labs and to facilitate result interpretation
 - Innovative diagnostic tools for early detection of EAV infections or in particular, when viral load is very low, and thus the number of viral nucleotides targeted is limited
 - New molecular tools to better characterize EAV to investigate its biological properties of isolated strain and its impact on the health status of the horse population
 - New in-vitro models to identify new therapeutic treatments

Article | Open access | Published: 22 June 2020

Replication of Equine arteritis virus is efficiently suppressed by purine and pyrimidine biosynthesis inhibitors

José-Garlos Valle-Casuso. Delphine Gaudaire. Lotle Martin-Fairre: Anthony: Madeline: Patrick Dallemagne. Stéphane Pronost, Hélène Munier: Lohmann, Stephan Zientara. Pierre-Olivier Vidalain & Aymeric Hans 🖾

Scientific Reports 10. Article number; 10100 (2020) Che this anticle

Interlaboratory proficiency testing

1

Liberté Égalité Fraternité

RÉPUBLIQUE FRANÇAISE anses

 ✓ IL-PT1 : serological diagnosis of EVA using Virus Neutralization Test ☞ EVA VNT

2009 🥥	2013	016	0202 🜔
23 labs	21 labs	23 labs	23 labs
•12 sera : •4- & 8+	•24 sera : •9- & 15+	•24 sera : •13- & 11+	•22 sera : •9- & 13+

- - 1. Detection of EAV genome using RT-PCR method \Rightarrow EAV PCR
 - 2. Detection of EAV infectious particles using Virus Isolation on cell culture \Rightarrow EAV VI

2009 🥥	2013	🤠 2016	0202
19 labs	19 labs	24 labs	24 labs
•EAV PCR: •10 semen •3- & 7+ •EAV VI : •3 semen •1- & 2+	•EAV PCR: •15 semen •11- & 4+ •EAV VI : •5 semen •3- & 2+	•EAV PCR: •16 semen •7- & 9+ •EAV VI : •4 semen •3- & 1+	•EAV PCR: •15 semen •3- & 12+ •EAV VI : •3 semen •1- & 2+

Training session

Theorical training

- Introduction regarding EVA:
 - Disease
 - Diagnostic
- Epidemiology

On-the-job training

- Virus Neutralization test (VNT) plating and result reading
- Virus isolation on cell culture
- PCR diagnosis

Year	2011	2014	2019	2021	2024
Nb of participants	5	3	2	3	2

2021 EVA training session

2. EQUINE INFECTIOUS ANEMIA

Interlaboratory proficiency testing

2014 28 participants

24 sera (7- & 17+)

24 sera (12- & 12+)

24 sera (6- & 18+)

Training session

Theorical training

- Introduction regarding EIA:
 - Disease
 - Diagnostic
- Epidemiology

Year of EIA training session	Nb of participants
2011	5
2015	4
2018	4
2023	4

On-the-job training

Agar Gel ImmunoDiffusion Test : plating and result reading
ELISA

3. CONTAGIOUS EQUINE METRITIS

EURL CEM: management of a network of 22 NRLs

• PCR: >95%

- Culture: Sensitivity greatly depends on the selectivity & productivity of media / Specificity is progressing over time
- Workshop organized the same year than the PT: epidemiological review, review of changes to the CEM chapter of the WOAH Terrestrial Manual, results of the PT, latest scientific and technical advances...

□ Training organized for the worst-performing NRLs in PT

EURL CEM highlights

- **Build up and maintain a Taylorella collection:** 700 strains including 10% *T. asinigenitalis*
- MLST genotyping strains (Duquesne et al., 2021) from NLRs and curation of the international MLST database <u>"Taylorella spp. | PubMLST</u>"

- □ Methodological advances to genotype *Taylorella* spp. isolates
 - 1. MLST: replacement of Sanger sequencing of PCR products by whole genome sequencing
 - 2. core genome MLST in development
- **Observation of subspecies lineages into the** *T. asinigenitalis* species (Kozak et al., 2023)
- Current R&D on improving bacteriological diagnosis (Breuil et al., 2022; Duquesne et al., 2021)

4. GLANDERS

European Laboratory Reference activities

- **Diagnosis Glanders & Melioidosis** (1st line and confirmatory)
- **Coordinating laboratory networks**
 - Interlaboratory proficiency test: every 3 years
 - Training sessions (on request and for lowest-performing NRLs)
- Lyophilised positive glanders serum / Molecular markers
 - need for surveillance and border controls International collaborations Molecular characterization of Burkholderia mallei strains isolated from horses in Brazil (2014-2017) A genetic variant of Burkholderia mallei detected in - Brazil, India, Kuwait, Nepal Mongolia,.... Kuwait: Consequences for the PCR diagnosis of glanders Molecular epidemiology of Burkholderia mallei isolates from India (2015-2016): New SNP markers for strain tracing

Provide a framework to ensure the reliability of official controls

50

anses

Plateniari

Linear phase

Evennential chase Cycles

cofrac

First glanders cases detected in Nepal underscore the

5. DOURINE

European Laboratory Reference activities

- Diagnosis (1st line and confirmatory)
- Coordinating laboratory networks
 - Interlaboratory proficiency test: every 3 years
 - Training sessions (on request and for lowest-performing NRLs)
 - Bilateral comparison (on request):
- Reagent supply for dourine CFT

	2023		
Reagent	# of vial	# of countries	
High Titer serum	31	7	
Low titer serum	17	6	
Negative control	16	5	
Antigen	155	14	

Diag test Dourine Complement fixation

> test CATT/T.evansi

of tests 2023

158

122

- International epidemiological surveys
 - Tunisia, Egypt, Argentina, Saoudi Arabia, Sri Lanka...

5. VIRAL ENCEPHALITIS

Arthropod-borne equine encephalitis viruses – Orthoflavivirus and Alphavirus

European Union Reference Laboratory for Equine Diseases

WEST NILE AND JAPANESE ENCEPHALITIS ORTHOFLAVIVIRUS

Flaviviridae family Orthoflavivirus genus

Reemerging public and veterinary health burdens

ALPHAVIRUSES: EASTERN / WESTERN AND VENEZUELA EQUINE ENCEPHALITIS VIRUS

2023: exceptional circulation of WNV in France

Transmission 2023: 49 equine cases with 32 in Nouvelle-Aquitaine 7 avian cases in Nouvelle-Aquitaine

Epidemiosurveillance of WNV in Europe

Expansion of WNV geographical distribution to northern and southwestern Europe

Article

Detection of West Nile Virus Lineage 2 in Eastern Romania and First Identification of Sindbis Virus RNA in Mosquitoes Analyzed using High-Throughput Microfluidic Real-Time P

Luciana Alexandra CRIVEI 1,*, Sara MOUTAILLER 20, Gaëlle GONZALEZ 3, Steeve LOWENSKI 3, Ioana Cristina CRIVEI¹, Daniela POREA¹, Dragos Constantin ANITA¹⁽⁰⁾, Ioana Alexandra RATOI¹, Stéphan ZIENTARA 30, Luanda Elena OSLOBANU¹, Alexandru TOMAZATOS⁴, Gheorghe SAVUTA^{1,†}

ECDC le 25/10/023)

Article

Contrasted Epidemiological Patterns of West Nile Virus Lineages 1 and 2 Infections in France from 2015 to 2019

Xavier de Lamballerie ³, Gilda Grard ^{2,3}, Guillaume André Durand ^{2,3}, Stéphan Zientara ¹,

MDF

Example of research activities: Orthoflavivirus – Hosts interaction and Pathogenicity

Identification of molecular determinants of WNV L1 virulence in mammalian and avian hosts

International Journal of Molecular Sciences

Très virulente

Review Molecular Determinants of and Pathogenesis in Verteb

→ Lise Fiacre ^{1,2,3}, Nonito Pagès ^{2,3}, Emmanuel Albi Sylvie Lecollinet ^{1,*,†} and Gaëlle Gonzalez ^{1,†}

Article

Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic **Determinants of WNV Lineage 1 Virulence in Birds** and Mammals

and Sylvie Lecollinet 1,*,‡

¹, Stéphan Zientara ¹, Miguel-Ángel Jiménez-Clavero ^{5,6}

Line Einer 1.2.3.† Stande Lambrecht⁴, Maha Dridi⁴, Marine Dumarest¹, Bénédicte Lambrecht⁴, Maha Dridi⁴, > Front Microbiol. 2024 Jan 17:14:1324069. doi: 10.3389/fmicb.2023.1324069. eCollection 2023.

Different viral genes modulate virulence in model

Identific mammal hosts and Culex pipiens vector competence transmission, its virulence in vertebrate hosts in Mediterranean basin lineage 1 West Nile virus strains

European Union Reference Laboratory for Equine Diseases

EURL Arthropod-borne equine encephalitis viruses: management of 25 NRLs

- First line and confirmatory diagnosis of WNV and exotic equine encephalitis viruses (JEV, V/E/WEEV)
- Coordinating a network of 25 NRLs
 - Interlaboratory proficiency test: every 3 years
 - **Training sessions** (on request and for lowest-performing NRLs)
- > Optimization and development of high-throughput detection tools

- International collaborations
- Reagent supply for NRLs (sera, RNA, etc)

Activities 2024

European Union Reference Laboratory for Equine Diseases

Stephan Zientara Directeur

José-Carlos Vallé-Casuso Anémie infectieuse équine Artérite virale équine

Karine Larouceau Morve/ Melioïdose

Laurent Hébert Dourine/Surra

Gaëlle Gonzalez WNV et encéphalites équines exotiques

Métrite contagieuse équine

REFERENCE ACTIVITIES JANUARY-JUNE 2024

Training on EIAV (12 to 14 March 2024 – Dozulé (Normandy)

NRL The Netherlands: 3 people

- Organisation of **2 PTs: Glanders/Melioidosis** and Equine viral arteritis
 - Samples panels sent in July
- Diagnosis
 - WEEV in Argentina: collection of horse samples of

infected horses – characterization of the infection

Dévelopment of an VEEV ELISA \geq

OLYMPIC GAMES of PARIS 2024: equestrian OG

Versailles castle

350 horses

Investigation of equine diseases: WNV/VEEV – CEM – EIA – EVA - necropsy

Organisation of wokshops EAV and Glanders/Melioidosis: 30 September and 4 October 2024

Dequiville

EAV: 30 September 2024 Glanders- melioïdosis: 4 October 2024

Local organisation committee

✓ Conferences:S. Zientara, K. Laroucau

✓ Conferences Practitionners day:
S. Zientara, JC Vallé-Casuso, G.
Gonzalez

 Session « Meet the experts » : implication EURL + NRLs participants to workshops

Thank you for your attention

20 mn + 5 mn

The role of the EU Reference Lab on Equine Diseases: an example of a regional approach for specialised diagnostic capacities and vaccine development (25 min): one of the goals of this workshop is to encourage the region to set up a regional network of Reference Labs, labs with specific capacity and to assist each other in the region to build capacity. It would therefore be very important that you explain the modalities how your network operates, e.g. how it was set up, the schedule of meetings, the schedule for PTs, the services the network offers, how it supports its partners, how it is funded etc. if you could make it a convincing "blue print" for the Asia labs to take as shining example, that would be wonderful!

Liberté Égalité Fraternité

Few comments on the ppt on ANSES as EURL:

activities, particularly in PTs and training!

71 slides for 25 min is definitely too much, even if some only show a picture!

What about the budget after 2017? I think it would be more interesting to show budget availability over a longer time period rather than just 2 years in the past

On slide 21 you could mention that all of your colleagues have assisted in organising WOAH webinars on equine diseases that can be found on our website: <u>https://rr-asia.woah.org/en/projects/horse-</u>movement/international-horse-movement-in-asia-and-the-pacific/

Slide 24: the articles quoted here are Articles of which agreement/regulation/document? Not clear! Slides 37 – 65 on the different diseases: please shorten, particularly on those diseases that are covered in the webinar (glanders, EIA, dourine/surra). It would be a pity if you have to rush through rather than to have few slides and have time to fully explain them Please add something on how non-EU countries can participate in ANSES

67

African Horse Sickness

Global importance for trade; standards and novel diagnostic tests (WOAH manual); existing vaccines, vaccine development

Stéphan Zientara

ANSES-Animal Health Laboratory

European Union reference laboratory on equine diseases UMR ANSES/INRAE/ENVA WOAH reference laboratory on EHDV, FMDV EU reference laboratory on FMDV

Maisons-Alfort, France

World Organisation for Animal Health Founded as OIE

European Union Reference Laboratory for **Equine Diseases**

Orbiviruses

Genus Orbivirus: 22 species

AHSV/BTV/EHDV

Family Sedoreoviridae ; Genus Orbivirus

Orbivirus

reassortment

36 serotypes BTV9 serotypes AHSV7 serotypes EHDV

Vectors: Culicoides (*imicola, bolitinos*,

obsoletus,...)

Following the hottest June on record and a series of extreme weather events, including heatwaves in Europe, North America and Asia, and wildfires in Canada and Greece, ERA5 data from the Copernicus Climate Change Service (C3S') show that July 2023 was the hottest month on record globally and broke several records within the month.

Viral Hemorrhagic Fevers

BTV

AHSV

Distribution of AHS

Why is AHS important for trade?

AHS distribution in the mid-20th century

AHS distribution: mid to end 20th

1959-61

AHS distribution: mid to end 20th

1965-66

AHS distribution: mid to end 20th

AHS distribution: end 20th - 21st century

Data source: WOAH https://www.woah.org/en/disease/african-horse-sickness/ accessed 4 Sep 2023

John Grewar, SA

Diagnosis

Laboratory diagnosis

Serology ← Serum

- AGID: group specific Ab
- ELISA : group specific Ab
- IFI
- Seroneutralisation: type specific Ab

Virology ← spleen, blood (EDTA)

- Virus isolation
 - embryonated chicken eggs (IV)- BHK 21, Vero, KC cells
 - brains of newborn mice
- Virus neutralisation: serotype

RT-PCR rt-RT-PCR

INOCULATION OF AHSV TO ECE

infected (haemorrhages)

negative

> Arch Virol Suppl. 1998:14:317-27. doi: 10.1007/978-3-7091-6823-3_28.

Use of reverse transcriptase-polymerase chain reaction (RT-PCR) and dot-blot hybridisation for the detection and identification of African horse sickness virus nucleic acids

S Zientara 1, C Sailleau, S Moulay, C Crucière, M el-Harrak, W W Laegreid, C Hamblin

Article

Development and Validation of Three Triplex Real-Time RT-PCR Assays for Typing African Horse Sickness Virus: Utility for Disease Control and Other Laboratory Applications

Rubén Villalba¹, Cristina Tena-Tomás², María José Ruano¹, Marta Valero-Lorenzo¹, Ana López-Herranz¹, Cristina Cano-Gómez¹ and Montserrat Agüero^{1,*}

> Transbound Emerg Dis. 2016 Aug;63(4):353-9. doi: 10.1111/tbed.12503. Epub 2016 Apr 19.

Development of a Luminex-Based DIVA Assay for Serological Detection of African Horse Sickness Virus in Horses

A Sánchez-Matamoros ^{1 2 3}, E Nieto-Pelegrín ^{1 2}, C Beck ⁴, B Rivera-Arroyo ^{1 2}, S Lecollinet ⁴, C Sailleau ⁴, S Zientara ⁴, J M Sánchez-Vizcaíno ^{1 2}

SECTION 3.5.

EQUIDAE

CHAPTER 3.5.1.

AFRICAN HORSE SICKNESS (INFECTION WITH AFRICAN HORSE SICKNESS VIRUS)

Chapter 3.5.1. – African horse sickness (infection with African horse sickness virus)

B. DIAGNOSTIC TECHNIQUES

Method	Purpose					
	Population freedom from infection	Individual animal freedom from infection prior to movement	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection – surveillance	Immune status in individual animals or populations post- vaccination
		٩	gent identificati	on ¹		
Real-time RT-PCR	+	+++	+	+++	**	-
Agarose gel- based RT-PCR	- 2	+	+	++	+	-
Virus isolation	1	**	<i></i>	+++	-	-
	-	Detect	ion of immune r	esponse		
ELISA (serogroup specific based on VP7)	+++	**	**	++	+++	**
CFT	+	+	+	+	+	+
VN	+	+	-	+	+	+++

Table 1. Test methods available for the diagnosis of African horse sickness and their purpose

Key: +++ = recommended method; ++ = suitable method; + = may be used in some situations, but cost, reliability, or other factors severely limits its application; - = not appropriate for this purpose; n/a = not applicable. Although not all of the tests listed as category +++ or ++ have undergone formal validation, their routine nature and the fact that they have been used widely without dubious results, makes them acceptable. RT-PCR = reverse-transcription polymerase chain reaction; ELISA = enzyme-linked immunosorbent assay; VN = virus neutralisation; CFT = complement fixation test.
vaccination

L.A.V. – Live-attenuated vaccines (or modified-live vaccines, MLV)

Live-attenuated vaccines

0

But...

Powell (1991), MacLachlan (2007), Von Teichman (2010), Verwoerd (2012), Zientara (2015), Robin (2016), Carpenter (2017), Dennis (2019)

Inactivated vaccines

Mirchamsy (1968), Weyer (2013), Lelli/Pini (2013), Van Rijn (2020)

0

Check for updates

Immune response of horses to inactivated African horse sickness vaccines

Marina Rodríguez¹^{*}, Sunitha Joseph¹, Martin Pfeffer², Rekha Raghavan¹ and Ulrich Wernery¹

VLPs vaccines

Du Plessis (1998), Scanlen/van Dijk (2002), Kanai (2013), Maree (2016)

0

Virus-like particles

- Self-adjuvanting properties
- Highly immunogenic
- **DIVA** compliant
- No risk of reversion to virulence nor reassortment
- Baculo growth under sterile conditions
- High cost media X

VLPs AHS WT $\vec{n} \Rightarrow \vec{n} \Rightarrow$

AHSV vaccines based on reverse genetics

> Vaccine. 2021 May 27;39(23):3161-3168. doi: 10.1016/j.vaccine.2021.04.034. Epub 2021 May 3.

Entry-competent-replication-abortive African horse sickness virus strains elicit robust immunity in ponies against all serotypes

Edward Sullivan¹, Sylvie Lecollinet², Adeline Kerviel¹, Erika Hue³, Stéphane Pronost³, Cécile Beck², Marine Dumarest², Stephan Zientara², Polly Roy⁴

Dennis (2019), Koy (2020), Caivo-Pinilla (2020)

AHSV vaccines based on reverse genetics

*previously called Disabled Infectious Single Cycle (DISC) vaccines

Dennis (2019), Roy (2020), Calvo-Pinilla (2020)

African horse sickness virus (AHSV) with a deletion of 77 amino acids in NS3/NS3a protein is not virulent and a safe promising AHS Disabled Infectious Single Animal (DISA) vaccine platform

Piet A. van Rijn^{a,b,*}, Mieke A. Maris-Veldhuis^a, Christiaan A. Potgieter^{b,c}, René G.P. van Gennip^a

Fig. 1. Schematic presentations of mutated genome segment 10. S10 of AHSV4 and AHSV5 are shown by open and striped boxes, respectively. Domains Late Domain (LD), and trans membrane regions TM1 and TM2 are indicated by filled boxes. AUG->GCC mutations, and introduction of STOP codons and silent mutations in S10 of DISA4 are indicated by ⁺, x, and o, respectively. Untranslated RNA sequences are indicated by lines and putatively translated NS3-ORFs are represented by boxes. The in-frame deletion of 77 amino acid codons in S10 of DISA5 is shown.

Fig. 4. Time course of body temperature and VP7 seroconversion. Four ponies were intramuscularly vaccinated twice with a standard dose of DISA5 (open symbols) on day 0 and 28 (open arrows). Two ponies served as challenge controls and were not vaccinated (filled symbols). All ponies were challenged on day 56 with virulent AHSV5 (filled arrow). A cross indicates death or euthanizing for ethical reasons in the time course of the experiment. A: The body temperature was frequently measured twice daily in the morning and the afternoon on indicated days and every day after challenge. B: VP7 seroconversion was determined by cELISA and expressed as blocking percentage (100-value).

0

Safe Priority Infectious Diseases VACcines

Improved control of priority animal diseases: Novel vaccines and companion diagnostic tests for African horse sickness, peste des petits ruminants and foot-and-mouth disease

List of participating organisations

0

-	#	Participating Organisation Legal Name	Country	Action
	1	FRIEDRICH LOEFFLER INSTITUT - BUNDESFORSCHUNGSINSTITUT FUER TIERGESUNDHEIT	Germany	
	2	AGENCE NATIONALE DE LA SECURITE SANITAIRE DE LALIMENTATION DE LENVIRONNEMENT ET DU TRAVAIL	France	
	3	CENTRE DE COOPERATION INTERNATIONALE EN RECHERCHE AGRONOMIQUE POUR LEDEVELOPPEMENT - C.I.R.A.D. EPIC	France	
-	4	ASOCIACION CENTRO DE INVESTIGACION COOPERATIVA EN BIOCIENCIAS	Spain	
!	5	INNOVATIVE DIAGNOSTICS	France	
. (5	BOEHRINGER INGELHEIM INTERNATIONALGMBH	Germany	
2	7	THE UNIVERSITY OF NOTTINGHAM	United Kingdom	
8	8	AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS	Spain	
Ģ	9	STICHTING WAGENINGEN RESEARCH	Netherlands	
Î	10	UNIVERSITY OF PRETORIA	South Africa	
	11	UNIVERSITY OF SURREY	United Kingdom	
1	12	INSTITUT SENEGALAIS DE RECHERCHES AGRICOLES	Senegal	
	13	MINISTERIO DE AGRICULTURA, PESCA Y ALIMENTACION	Spain	

Multimeric protein scaffold particle vaccines (MPSP)

Figure 1: Flow chart of AHS MPSP vaccine design and construction.

Antigen production in different biological systems

0

Expression of the immunogenic proteins and domains of interest for attachment to MPSPs will be done in different systems using plants, insect cells, mammalian cells and bacteria (WPI). Together with the industrial partner BI (P06), this allows the selection of the best expression system for the prototype vaccine to be used for the pre-industrial scale-up and testing.

0

Figure 2: Flow chart of AHS MPSP vaccine evaluation.

European Union Reference Laboratory for Equine Diseases

Thank you for your attention

Contexte

Projet européen SPIDVAC :

 \rightarrow Développer des vaccins innovants contre la peste équine et évaluer leurs efficacité *in vitro* et *in vivo*

Production de protéines recombinantes pour vaccin

 \Rightarrow Protection totale chez les souris

Protocole expérimental

Objectifs : Cinétique des Ac neutralisants ; étude de la réponse immunitaire innée ; collecte de matériel biologique de référence et développement d'outils de diagnostic.

Vaccination de 3 groupes de 5 chevaux

General requirements and procedures related to official recognition of AHS free status and self-declarations (including EDFZ)

WOAH Regional Workshop on Laboratory capacity to diagnose equine diseases in Asia and the Pacific Japan, 17-18 September 2024

World

lealth

Organisation Organisation mondiale for Animal de la santé animale

Organización Mundia de Sanidad Animal

Aristide Kabore

Disease Status Officer Status Department

Mauro Meske

Disease Status Officer Status Department

- Historical information of official recognition
- Procedures for official recognition of animal health status
- Self-declarations of freedom from equine diseases
- Publication of a self-declaration for the establishment of an Equine Disease-Free Zone (EDFZ)

WOAH official recognition of animal health status

3

WOAH official recognition of animal health status

The main objectives:

- Protect animal and human health in international trade;
- Facilitate trade;
- Guarantees to trading partners;

Long term perspective documented and updated evidence on the diseasefree situation;

Veterinary Services meet baseline requirements concerning disease control and trade activities.

Procedure for official recognition of AHS-free status

Application_SOP

Standard Operating Procedure for official recognition of animal health status and for the endorsement of official control programmes of Members

Description/ Scope:	This procedure describes the process for the preparation, assessment and appror of dossiers for the official recognition of animal health status and for the		
	endorsement of official control programmes of Members.		
Related documents:	Guidelines for the Official Status Recognition Process ¹ (Annexed)		
	Resolution No. 15 of the 2020 Adapted Procedure		
	Resolution No. 16 of the 2020 Adapted Procedure		
Related processes:	Expert Mission Deployment		
	 Procedure (Mission_SOP) 		
	 Guidelines (Mission_Guidelines) 		
	Reconfirmation of a Status or Programme		
	 Procedure (Reconfirmation_SOP) 		
	 Guidelines (Reconfirmation_Guidelines) 		
	Suspension, Recovery and Withdrawal		
	 Procedure (Suspension_SOP) 		
	 Guidelines (Suspension_Guidelines) 		
	Addendum: Establishment of a protection zone		
List of acronyms:	AHG: ad hoc Group		
	Assembly: World Assembly of Delegates		
	DDG: Deputy Director General, Standards and Science		
	SD: Status Department		
	GS: General Session		
	SCAD: Scientific Commission for Animal Diseases		
	Terrestrial Code: Terrestrial Animal Health Code		

Step	Time Reference	Responsible person	Action	Reference Document
1.	After the GS	DG	Sends letter to Delegates confirming SCAD and AHG meeting dates and deadlines for dossier submission.	
	2 months			6.Δ

5

Countries recognised with AHS-free status in Asia and the Pacific: 11 Members of the Regional Commission for Asia and the Pacific without official recognition: 21

https://www.woah.org/en/what-we-do/animal-health-and-welfare/official-disease-status/

Procedure for official status: submission of an application

WOAH calendar meetings:

- Cycle from a General Session to the following one;
- Letter from the DG after each General Session announcing dates of the AHG;
- Deadline to submit dossier: 2 months before the meeting of the AHG.

Tentative dates of official status evaluation ad hoc Groups (AHG)

Disease	Meeting	Submission deadline
BSE	1-4 October 2024	2 August 2024
Rabies	8-10 October 2024	9 August 2024
AHS	9-11 October 2024	10 August 2024 (01)
CBPP	29-31 October 2024	30 August 2024
FMD	5-7 November 2024	6 September 2024
PPR	12-14 November 2024	13 September 2024
CSF	19-21 November 2024	20 September 2024

Procedure for official status: submission of an application

- Compliance with the relevant provisions of the Terrestrial Code.
- Complete relevant to template Questionnaire in <u>Chapter 1.7.</u> of the *Terrestrial Code* (also in WOAH website) – documented evidence
- 50 pages + appendices (properly cross-referenced) + executive summary
- Digitalised map if relevant (free zone)
- Proof of payment fee
- Contact details of technical staff

Does my dossier comply with the requirements of the Terrestrial Animal Health Code?

EVIDENCE

2024

Demonstrate by

> An *ad hoc* Group:

- Usually comprises six internationally recognised experts
- take into consideration geographical representation and gender balance, when possible.

11

Assessment:

- Against *Terrestrial Code* requirements based on:
 - Information from the application (esp. evidence) and other reports (e.g., WAHIS, PVS)
 - Experts' knowledge
 - Information available in the public domain
- Possible interaction (electronic) with the applicant Member
- Detailed evaluation report and recommendations forwarded to the Scientific Commission

- Scientific Commission: Members elected by the World Assembly of Delegates for a three-year term
- Assess the dossier, including the ad hoc Group recommendations
- Possible interaction with
 - The chairperson of the ad hoc Group
 - Applicant Members, including the possible visit of a delegation /!\ official request to WOAH by the Delegate before 31 December
- Final recommendation proposed for adoption by the World Assembly of Delegates
- May request an expert mission (field or virtual) to verify the dossier

Procedure for official status: communication of the outcome

Through the adoption of a Resolution by the World Assembly of Delegates at the General Session

Additional procedures: self-declarations

Self-declarations of freedom from equine diseases without official status recognition

Main objectives:

To allow Delegates to self-declare their country, a zone, or a compartment within their territory, free from any disease (except AHS)

DISCLAIMER

The World Organisation for Animal Health (WOAH, founded as OIE), after performing an administrative and technical screening of a self-declaration concerning the disease-free status of a country, a zone or a compartment ("self-declaration"), as described in the standard operating procedures for self-declarations, reserves the right to publish or not the self-declaration on its website. There shall be no right of appeal from this decision nor any recourse of any kind.

The publication by WOAH of a self-declaration on its website does not reflect the official opinion of WOAH.

Responsibility for the information contained in a self-declaration lies entirely with the WOAH Delegate of the Member concerned.

Neither WOAH nor any person acting on its behalf may be held responsible for:

- (i) any errors, inaccuracies or omissions in the content of a self-declaration;
- (ii) the use which may be made of the information contained in a self-declaration;
- (iii) any direct or indirect consequences of any nature arising from or relating to the use of the information contained in a self-declaration.

Self-declaration of freedom from infection with Equine Influenza viruses (EI) in horses by Japan

Self-Declaration sent to the World Organisation for Animal Health (WOAH, founded as OIE) on 31 January 2024 by Dr OKITA Masatsugu, the Delegate of Japan to WOAH, Director of Animal Health Division, Ministry of Agriculture, Forestry and Fisheries (MAFF), Japan. This self-declaration, initially established on 1 July 2009, is reiterated to reflect updates in the Terrestrial Code.

Member	Self-declared freedom from	Category	From [™]	10	compartment	Status
Japan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-06-02		Country	Active
India	High pathogenicity avian influenza viruses (poultry).(Inf. with)	Terrestrial	2024-05-01		Compartment	Active
Singapore	African swine fever virus (Inf. with)	Terrestrial	2024-05-01		Country	Active
Thailand	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-04-24		Country	Active
Malaysia	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-04-23		Country	Active
Malaysia	Nipah virus encephalitis	Terrestrial	2024-04-23		Country	Active
Japan	Equine influenza virus (Inf. with)	Terrestrial	2024-01-31		Country	Active
Japan	Newcastle disease virus (Inf. with)	Terrestrial	2024-01-31		Country	Active
Indonesia	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2023-10-05		Compartment	Active
Chinese Taipei	Sheep pox and goat pox	Terrestrial	2023-09-15		Country	Active
New Zealand	Brucella abortus (Inf. with)	Terrestrial	2021-04-17		Country	Active
Japan	Brucella abortus, Brucella melitensis and Brucella suis (inf. with).	Terrestrial	2021-04-01		Country	Active
Japan	Mycobacterium tuberculosis complex (Inf. with)	Terrestrial	2021-04-01		Country	Active
New Zealand	Theileria equi	Terrestrial	2020-10-08		Country	Active
New Zealand	Equine arteritis virus (Inf. with)	Terrestrial	2014-06-24		Country	Active
Sri Lanka	Haemorrhagic septicaemia (Pasteurella multocida serotypes 6:b and 6:e)	Terrestrial	2012-12-12		Country	Active
New Zealand	Echinococcus granulosus (Inf. with)	Terrestrial	2002-11-18		Country	Active
China (People's Rep. of)	EDFZ	Terrestrial	2022-01-04	2023-12-31	Zone	Not active
Japan	EDFZ	Terrestrial	2021-07-06	2021-09-05	Zone	Not active

Establishment of Equine disease-free zones (EDFZ) Main objectives:

- to establish (temporarily) a higher health status for a zone with a limited animal population within a country;
- to protect equids in the EDFZ from diseases that may occur in other parts of the territory;
- to protect equids outside of the EDFZ from diseases that potentially could be imported into the zone;
- to enable the safe entry and exit of horses.
Establishment of Equine disease-free zones (EDFZ)

Successful stories: Equine disease-free zones (EDFZ)

19

Self-declarations from the WOAH Region RRAP 20

Self-declarations of freedom from equine diseases without official status recognition

Selecc Africa Americ Asia Pi

Europe Middle

Member filt Todas

Member Search Q /

Sen-Declarations						<u>View q</u>	uick data e	export guide	2
Search a	Member	Self-declared freedom from	Category	From* ▼	То	Country/zone/ compartment	Status	Tempora	iry
	Japan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-06-02		Country	Active	No	
Category filter	New Zealand	Echinococcus granulosus (Inf. with)	Terrestrial	2024-05-06		Country	Active	No	
	India	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-05-01		Compartment	Active	No	
Terrestrial	Singapore	African swine fever virus (Inf. with)	Terrestrial	2024-05-01		Country	Active	No	
Status filtor	Thailand	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-04-24		Country	Active	No	
Active	Malaysia	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2024-04-23		Country	Active	No	Self-Declarations
Not active	Malaysia	Nipah virus encephalitis	Terrestrial	2024-04-23		Country	Active	No	
Temporary	Japan	Equine influenza virus (Inf. with)	Terrestrial	2024-01-31		Country	Active	No	Disease name
Todas V	Japan	Newcastle disease virus (Inf. with)	Terrestrial	2024-01-31		Country	Active	No	Search Q
Regional filter	Indonesia	High pathogenicity avian influenza viruses (poultry).(Inf. with)	Terrestrial	2023-10-05		Compartment	Active	No	
Seleccionar to	Chinese Taipei	Sheep pox and goat pox	Terrestrial	2023-09-15		Country	Active	No	Category filter
Africa	New Zealand	Brucella abortus (Inf. with)	Terrestrial	2021-04-17		Country	Active	No	
Aniencas Asia Pacific	Japan	Brucella abortus, Brucella melitensis and Brucella suis (inf, with)	Terrestrial	2021-04-01		Country	Active	No	
Middle East	Japan	Mycobacterium tuberculosis complex (Inf. with)	Terrestrial	2021-04-01		Country	Active	No	<u>Status filter</u>
	New Zealand	<u>Theileria equi</u>	Terrestrial	2020-10-08		Country	Active	No	Active
Tedas	New Zealand	Equine arteritis virus (Inf. with)	Terrestrial	2014-06-24		Country	Active	No	Not active
Member	Sri Lanka	Haemorrhagic septicaemia (Pasteurella multocida serotypes 6/b and 6/e)	Terrestrial	2012-12-12		Country	Active	No	Temporary Todas v
									Regional filter

Self-declarations of freedom from diseases from the Region: Nipah (Malaysia); EI (Japan), EP & EVA (New Zealand)

.

Publications of Self-declarations for the establishment of EDFZ (Temporary-inactive): China 2022 (Asian Games); Japan 2021-2020 (Olympic Games) 🕂

View quick data export guide

Member	Self-declared freedom from	Category	From* ▼	То	Country/zone/ compartment	Status	Temporar
Korea (Rep. of)	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2023-05-16	2023-12-05	Country	Not active	No
Japan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2023-05-13	2023-11-24	Country	Not active	No
Japan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2022-06-13	2023-01-23	Country	Not active	No
China (People's Rep. of)	EDFZ	Terrestrial	2022-01-04	2022-12-31	Zone	Not active	Yes
China (People's Rep. of)	EDFZ	Terrestrial	2022-01-04	2023-12-31	Zone	Not active	Yes
Japan	EDFZ	Terrestrial	2021-07-06	2021-09-05	Zone	Not active	Yes
Japan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2021-06-30	2021-11-09	Country	Not active	No
Indonesia	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2021-01-29		Compartment	Not active	No
Japan	EDFZ	Terrestrial	2019-08-01	2019-08-23	Zone	Not active	Yes
Korea (Rep. of)	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2018-07-12	2020-11-26	Country	Not active	No
Japan	Avian influenza (including infection with high pathogenicity avian influenza viruses)	Terrestrial	2018-04-15	2020-11-10	Country	Not active	No
Indonesia	EDFZ	Terrestrial	2018-02-15	2018-09-30	Zone	Not active	Yes
Malaysia	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2017-07-01	2018-07-30	Country	Not active	No
Korea (Rep. of)	EDFZ	Terrestrial	2014-05-22	2014-10-05	Zone	Not active	Yes
Malaysia	Rabies virus (Inf. with)	Terrestrial	2013-07-17	2015-07-27	Country	Not active	No
Brunei	White spot syndrome virus (Inf. with)	Aquatic	2010-01-01	2011-02-25	Country	Not active	No
Pakistan	High pathogenicity avian influenza viruses (poultry) (Inf. with)	Terrestrial	2008-07-01	2021-09-08	Country	Not active	No

Official Status vs Self-declarations:

Official status	EDFZ-self-declaration	Self-declarations				
For equine diseases, only for AHS	Diseases selected based on risk approach	Any diseases except AHS, listed or not				
Country, or zone	Zone	country, zone or compartment				
Pre-screening by Status Department	Revision by Status Department	Revision by Status Department				
Evaluation by the ad hoc Group	Validation by WOAH DHoD/DHD and DDG	Validation by WOAH DHoD/DHD and DDG				
Evaluation by SCAD/Decision by the WOAH Assembly	Responsability undertaken by the Delegate	Responsability undertaken by the Delegate				
Annual reconfirmation needed	Usually Temporary (for an specific event)	Deactivation in the event of an outbreak				
Compliance with the Questionnaire/SOPs, horizontal and disease-specific chapters of the WOAH Terrestrial Code						

Dourine and Surra: Disease situation in Mongolia; drawbacks of diagnostic tests (WOAH Manual), and development of pen-side diagnostic tests for dourine

> Batdorj Davaasuren¹, Banzragch Battur¹, Battsetseg Badgar¹, Keisuke Suganuma², Noboru Inoue²

¹Institute of Veterinary Medicine, Mongolia ²National Research Center for Protozoan Diseases, WOAH RC for Surra, Japan

Economic Status of Horse

Horse breeding and herd structure in Mongolia

A stallion

Gelding 5-10

Yearling and youngster 10-20

Mares with colt 10-20

- Unorganized breeding with other breed of horse
- Stallion introduction from Eastern province to other provinces

Subgenus Trypanozoon

Surra

Areas where surra has been known to occur

Areas where the presence of surra has been suspected

Y. Ozawa report (1998)

Surra outbreak reported in 1980s Surra endemic in Xinjiang in China

Dourine situation in Mongolia

Through SATREPS project (FY2014 to 2018) funded by JICA* and AMED*, nationwide epidemiological survey was conducted. Epidemiological survey of dourine by Antibody detection ELISA

Clinical signs

Major Symptoms:

- 1. Fever
- 2. Anemia
- 3. Local oedema of the genitalia
- 4. Paralysis
- 5. Depigmentation of genitalia

Drawbacks of diagnostic tests (WOAH Manual)

Method	Specificity	Sensitivity	Application
CATT	Good	Poor	Easy
CFT	Good	Good	Difficult
ELISA	Good	Good	Difficult
ICT	Good	Moderate	Easy
IFAT	Moderate	Moderate	Easy
PCR	High	High	Difficult

- Current diagnostic methods (CFT, CATT/*T. evansi*, ELISA and PCR) have disadvantages in either sensitivity or field application.
- We need effective and user-friendly diagnostic tools for dourine.

T. equiperdum isolation and whole genome analysis

Publications Isolation: Suganuma *et al.* (2016) Parasites & Vectors Whole genome: Davaasuren *et al.* (2019) Microbiology resource announcements

Applications using culture-adapted *T. equiperdum* for further research

Culture-adapted *T. equiperdum* must be important research recourses and can be contributed for the progress of trypanosome research in future.

Development of Immunochromatographic test (ICT) for dourine (Mongolian Government Authority Accredited in 2018)

We have developed the ICT for dourine which was accredited by Mongolian Government Authority. This test is now being utilized throughout Mongolia, especially before horses are used for breeding.

Science and Technology Research Partnership for Sustainable Development Program

Адууны нийлүүлгийн өвчний түргэн оношлуур

Practical use of the ICT in Mongolia

over 7,200 test strips of the ICT provided in 2024

Dourine case reduction from 2017-2022 in target group

Issue of asymptomatic case

rGM6-4R is a recombinant antigen utilized in our ICT test for dourine and ELISA Ref.: Nguyen, T.T. *et al*. (2014) Veterinary Parasitology. 201 (1-2) 18-23.

Summary of the presentation

- Dourine prevalence is decreasing in certain regions, but outbreaks remain a recurring issue.
- While Mongolia is currently free of surra outbreaks, the presence of active cases near its borders poses a significant risk.
- Implementing effective measures like culture isolation, diagnostic tool development, and prevalence surveys is crucial for mitigating the spread of these diseases.
- The availability of affordable diagnostic tools in targeted areas is contributing to reduced case numbers.
- Asymptomatic cases pose a significant challenge in disease control, as they can spread the infection without showing any symptoms.

Thank you for your attention

WOAH-recommended diagnostic assays for equine piroplasmosis and their limitations

Naoaki Yokoyama

National Research Center for Protozoan Diseases Obihiro University of Agriculture and Veterinary Medicine

Equine piroplasmosis

Global epidemiology of equine piroplasmosis

Choice of diagnostic assays

WOAH terrestrial manual

Method	Purpose							
	Population freedom from infection	Individual animal freedom from infection	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection - surveillance			
Microscopy	-	+	-	++	+			
PCR	+++	+++	+++	+++	+++			
IFAT	++	++	++	-	++			
cELISA	+++	++	+++	-	+++			

Purpose of equine piroplasmosis diagnosis

Confirmation of individual animal freedom

Diagnostic tests used in international movement of horses

Importing country	cELISA	IFAT	CFT	Microscopy	Note
New Zealand	+	+			
Australia	+	+			
Canada		+			IFAT or cELISA
USA	+		+		
China (Hong Kong)		+			
Japan	+	+		+	cELISA or IFAT
Thailand		+	+	+	Microscopy or IFAT or CFT
UAE					
Singapore	+	+			cELISA or IFAT

Competitive enzyme-linked immunosorbent assay (cELISA)

RAP1 or EMA1 Antigen

T. equi or *B. caballi* antibodies in test serum

Mouse anti-RAP1 or EMA1 Mab

Biotinylated anti-mouse IgG antibody, avidinalkaline phosphatase complex

Substrate

 Negative
control
 Image: Control

 Positive
control
 Image: Control

Sample 1 (Neg.)

Sample 2 (Neg.)

Sampe 3 (Neg.)

Sample 4 (Pos.)

Positive (>40% inhibition) High inhibition Low OD

Negative (<40% inhibition) Low inhibition High OD

Limitation of *T. equi* cELISA

0.010

Limitation of B. caballi cELISA

False-negative results due to genetic diversity

B. caballi cELISA was based on RAP1 from genotype A and cannot detect antibodies in animals infected with genotypes B1 and B2.

✓ False-positive results potentially due to cross-reactive epitopes

Immunofluorescent antibody test (IFAT)

T. equi or B. caballi antibodies in test serum

Fluorescence-labeled anti-horse IgG

Advantages of cELISA over IFAT

Laboratories continue to use cELISAs despite their limitations.

Summary of our activities as reference lab

Provide diagnostic services IFAT, cELISA, & PCR Develop diagnostic assays PCR & ELISA

Offer expert advice Interpretation of results

Supply diagnostic materials IFAT slides & DNAs

IFAT slides supplied in 2023						
France	2,400					
UK	412					
Ireland	40					
Netherlands	680					
Argentina	800					
Australia	100					
China	100					
Singapore	100					
India	60					
Japan	400					
Total	5,092					

WOAH Reference Laboratory for Equine Piroplasmosis

World Organisation for Animal Health Founded as OIE

Improved diagnosis of equine piroplasmosis

Provide training Sero-diagnosis

World Organisation for Animal Health Founded in 1924

Equine piroplasmosis - challenges when using WOAH-recommended tests

Sanjay Kumar ICAR-National Research Centre on Equines, India

Global Economic Impact of the Equine Industry – 2022 Significant International Movement

- Between 2021 and 2022, the exports and imports of Horses grew remarkably – significant international movement of horses.
- Emphasize the need for more advancement in diagnostic development - safe cross-border movements of horses.

Involves ~ 4.22 billion US dollars ; > 1.5 million full-time jobs

WOAH Recommended diagnostic test methods for equine piroplasmosis and their purpose

Methods	Population freedom from infection	Individual animal freedom from infection	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection - surveillance	Immune status in individual animals or populations post- vaccination		
Detection of Agents – Theileria equi or Babesia caballi								
Microscopic Examination	-	+	-	++	+	-		
PCR	+++	+++	+++	+++	+++	-		
Detection of immune response - Theileria equi or Babesia caballi								
IFAT	++	++	++	-	++	-		
cELISA	+++	++	+++	-	+++	-		

+++ = recommended for this purpose; ++ recommended but has limitations; + = suitable in very limited circumstances; – = not appropriate for this purpose
Detection of the Agent – Theileria equi or Babesia caballi

MICROSCOPIC EXAMINATION MOLECULAR METHODS – POLYMERASE CHAIN REACTION (PCR) ASSAY

Microscopic Examination

Per cent T. equi or B. caballi Parasitaemia

	T. equi	B. caballi	
Acute/Clinical	1 – 7 %	0.1 – 1 %	Microscopy is useful
Chronically carrier	~0.1 %*	Not possible	Microscopy is ineffective
	-14		
	T. equi	B. caballi	

*: Horse once infected remains lifelong latently carrier to T. equi parasite

Challenges

- Blood smears should be prepared within 2 to 3 Ο hour of blood collection (CDC, USA).
 - Delay may affect the parasite morphology and \bigcirc staining characteristics.
 - Rouleaux formation.
- Lab needs to **optimize** Giemsa Staining conditions.
- **Expertise is needed** to differentiate between Ο artifacts and *T. equi -* or *B. caballi*.
- Training is required for quarantine veterinary Ο officers and lab personnel.

Polymerase chain reaction (PCR) Assay

• WOAH recommends 18S rRNA-based PCR assays for *T. equi - and B. caballi*

- Two specific primer sets Bashiruddin et al., 1999;
- Multiplex PCR for simultaneous detection of *T. equi* and *B. caballi* Alhassan et al., 2005.

O DNA extraction methodology :

• Phenol Chloroform Isoamyl alcohol combination (PCI) / Commercial Kits.

• PCR results may vary with the use of different PCR reagents/conditions:

• Taq polymerase > Hot-start/ High-fidelity/ Ex Taq/ Multiplex etc.

• *T. equi / B. caballi* positive control DNA – no uniformity

DNA from micro-aerophilous stationary phase (MASP) cultured infected RBCs – USDA strain.

PCR Assay

- Heterogenicity in 18s rRNA from different genotypes of *T. equi* and *B. caballi*.
 - **Requirement of validated PCR assay** having ability to detect all the genotypes of *T*. *equi*.
- Sequencing of PCR amplified products may be required for confirming the results.
- An international consensus on PCR primer sets, other reagents, and cycling conditions is required.
 - WOAH manual needs to address PCR assay, keeping the present scenario of genetic diversity.

Detection of Theileria equi and Babesia caballi antibodies

Indirect Fluorescent Antibody Test (IFAT) Competitive Enzyme Linked Immunosorbent Assay (cELISA)

Indirect Fluorescent Antibody Test (IFAT)

- Equipment Requirement : Fluorescence microscope with 100x objective lens; calibrated.
- **IFAT slides preparation :** *T. equi -* or *B. caballi* infected RBCs from MASP in-vitro cultures.

Micro-aerophilous Stationary Phase - MASP in-vitro Culture system - Challenges

- Specific requirements : BSL-2 facilities, culture media, serum and RBCs from uninfected horse, and incubation conditions, (O₂, CO₂, and N₂).
- Not all strains of *T. equi* and *B. caballi* adapt to in vitro conditions.
- $\circ~$ Frequent media change is necessary.
- **Time consuming** Field strains may take 8 15 days to start growing in-vitro.
- Few Laboratories maintain MASP cultures at present.

IFAT - challenges

• **Results interpretation**:

• Subjective, expertise required, especially when sera have low antibody titers.

• Standardization Issues:

- IFAT kits are **not commercially available**.
- The use of different commercial reagents for IFAT leads to inconsistent results between labs.

• Certified Reference Materials (CRMs):

- Need of certified/reference *T. equi* or *B. caballi* **positive serum controls**.
- Only a few laboratories are able to share these control samples.

• Fluorescence :

Quick observation is important to avoid false-negative result, as fluorescent signals fade rapidly.

cELISA – Theileria equi or Babesia caballi

\circ Accessibility issues:

• VMRD Inc, USA, marketed globally through distributors.

$\circ~$ Requirement for specific equipment :

 Calibrated ELISA reader, incubator, pipettes are vital for interlaboratory results consistency.

$\circ~$ High cost - cELISA kits are expensive :

- One test kit = \$1269.93.
- Total Samples: 84 (in duplicate) = \$15.11/sample (if full plate is used in one go), excluding costs for lab infrastructure, instruments and man-power.
- Storage/Transportation : 2-8°C
- Sero-epidemiological surveys using cELISA are not economical.
 - PCR assay genetic heterogenicity consensus or validated primer sets.

Activities as National Referral Laboratory on Equine Piroplasmosis

Developed diagnostics assays

• ELISA (EMA-2 antigen based); Rapid diagnostic – LFA; IFAT; PCR and RT-PCR,

Performing WOAH-recommended diagnostic assays

o cELISA, IFAT, PCR, Microscopic examination

• Maintain in-vitro cultures

• MASP in-vitro culture system for *Theileria equi* and IFAT slide production.

\circ Activities

- Sero-epidemiological studies on Indian equines ELISA.
- Providing training to staff on Equine Piroplasmosis diagnostics to veterinarian and technicians.
- Supplying diagnostic material Reference positive *T. equi* DNA, serum samples, recombinant protein, stained–blood smears
- Provide expert advice on treatment and diagnosis.

International Collaborative R&D activities

- Prof. N. Yokoyama, NRCPD, Japan to investigate genotypic diversity of *T. equi* and develop improved diagnostics for equine piroplasmosis.
- ASEAN countries CTU, Philippines; CMU, Thailand.

Thank you

World Organisation

for Animal Health

EIA: recommended diagnostic tests (WOAH Manual) and novel diagnostics tests

Dr Xiaojun Wang

Harbin Veterinary Research Institute the Chinese Academy of Agricultural Sciences WOAH Reference Laboratory for Equine Infectious Aneamia Email: wangxiaojun@caas.cn

EIA: course of the disease

✓<u>Acute phase</u>: High fever with a severe anemia (~ 90 days)

✓ <u>Chronic phase:</u> recurrent febrile
 episodes (~1 year)

✓ Inapparent phase: long term carrier
 w/o any clinical signs (life-long)

Maiı

Recommended tests by WOAH

ye ye want		Purpose							
		Method	Population freedom from infection	Individual animal freedom from infection prior to movement	Contribute to eradication policies	Confirmation of clinical cases	Prevalence of infection – surveillance	Immune status in individual animals or populations post- vaccination	
Vain limitations				Ider	ntification of the a	agent ¹			
Highly diverse viral genes	-	PCR	Т	+/	Ι	+/	T	-	
Low viral load poor cell adaptation	-	Virus isolation	-	-	-	+	r,	-	
				Detec	tion of immune re	esponse			
Low sensitivity	+	AGID	++	++	++	++	++	-	
Low specificity	-	ELISA	++	++	++	+	+	-	
No commercial reagents	+	Immunoblot	-	++	++	++	-	-	

Key: +++ = recommended for this purpose; ++ recommended but has limitations;

+ = suitable in very limited circumstances; - = not appropriate for this purpose.

PCR = polymerase chain reaction; AGID = agar gel immunodiffusion; ELISA = enzyme-linked immunosorbent assay.

Global epidemic

over 31 countries

0.050

Phylogenetic tree based on complete gag gene sequences

Limited usage of previous PCR method

Current PCR recommended by WOAH is specific for certain strains

1. Newly developed TG-qPCR is suitable for more viral strains globally

Shuaijie Li, et al. Microbiology Spectrum.2023

TG-qPCR is more suitable for global detection

TABLE 4 Comparison of detection range between TG-qPCR and qPCR for detecting EIAVs from different geographic regions^a

Templates ^a	TG-qPCR (Ct)	qPCR (Ct)	
P-Wyoming	11.02	10.87	
P-DE Italy	10.94	38.21	
P-Ita-1	10.19	No Ct	
P-SA-Italy	10.28	37.51	
P-Devon	10.79	No Ct	
P-Cornwall	10.21	No Ct	
P-Bau Gard co	10.96	No Ct	
P-Ecl Gard co	10.06	No Ct	
P-F2	10.97	37.23	
P-Newmarket	10.16	No Ct	
P-POCONE-BRA1	11.23	No Ct	
P-Miyazaki2011-A	11.52	No Ct	
P-SERB-1	10.56	No Ct	
P-V26	10.26	10.43	
R-UK3	24.48	36.51	
R-DLV2-6	25.71	No Ct	
R-Liaoning	25.66	No Ct	
R-Vaccine	29.98	No Ct	

"P" indicates synthetic plasmid, and "R" indicates virus RNA from EIAV strains infected cells.

Shuaijie Li, et al. Microbiology Spectrum.2023

TG qRT-PCR Kit

- Early diagnosis
- High sensitivity
- Universal detection

NICONS 便居 马代在我看贺是Posiek就试开查一所有毒致 50份/查 [图4·NI23 计定接条。 [图4·NI23 计定接条。 [图4·NI23 计定接条。 [图4·NI23 计定接条。 [图4·NI23 计定接条。	\$27.0 1154w 1154w 1154w 1154w 1154w 1154w	51985- 5135429 1913 Joca 1910	2 1 1 1 1 2 1 2 1 2 2 1 2 1 2 1 2 1	Richen Assort

2. AGID Test

- OIE recommended
- "Golden standard"
- Low sensitivity
- Time-consuming

Figure 1. Results of testing for equine infectious anemia viral

Comparison of 4 agar gel immunodiffusion kits for serologic detection of equine infectious anemia virus antibodies

Hiroshi Bannai,¹ Yoshinori Kambayashi, Manabu Nemoto, Takashi Yamanaka, Koji Tsujimura

Journal of Veterinary Diagnostic Investigation 1–3 © 2023 The Author(s) Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/10406387231171567

jvdi.sagepub.com

The positive control lines were sufficiently clear for evaluations to be made with all of the kits, but they showed a slight difference in sharpness: NECVB was the sharpest, followed progressively by VMRD, IDvet, and Idexx (Fig. 1A). No nonspecific lines were observed for any samples tested with the 4 kits. All of the kits detected strong-positive lines

3. cELISA

Detection of the Antibodies against EIAV

- ✓ Several commercial kits
- ✓ High sensitivity: 8-16 times higher than AGID
- ✓ High specificity: no false positive
- ✓ High throughput

Early detection: experimental infected horses

Time points	Month 2				Month 3			Month 8			Month 9					
Horse No.	IDEXX- AGID	IDEXX- cELISA	<mark>NECVB-</mark> cELISA	<mark>NECVB</mark> BP(%)												
#2	-	+	+	92.06	-	-	-	45.79	-	+	+	61.24	-	+	+	79.24
#3	-	+	+	74.79	-	-	-	51.34	-	-	-	21.93	+++	+	+	99.94
#5	-	-	+	96.34	++	+	+	100.00	-	+	+	93.1	-	+	+	97.44
#8	-	+	+	85.29	-	+	+	67.77	-	+	+	59.83	-	-	-	37.73
#14	-	+	+	93.71	-	+	+	95.24	-	+	+	70.63	-	+	+	68.32
#4	-	-	-	14.59	-	-	-	16.30	-	-	-	14.29	++++	+	+	100.12
#6	-	-	-	-1.77	-	-	-	44.08	-	-	-	11.36	-	+	+	55.13
#1	-	+	+	76.56	-	+	+	72.41	-	-	-	29.24	-	+	+	99.08
#21	-	-	-	17.09	-	-	-	14.77	-	-	-	10.56	-	+	+	75.34
#9	-	+	+	58.06	-	-	-	50.18	-	-	-	21.06	N/A	N/A	N/A	N/A
#7	-	+	+	68.55	-	-	-	41.24	N/A	N/A	N/A	N/A	++	+	+	98.35
#10	-	+	+	88.69	-	-	-	48.69	-	-	-	13	+	+	+	100.12
#11	-	+	+	58.79	-	-	-	36.20	-	-	-	18.8	-	+	+	98.29

cELISA: High sensitivity

The titers of antibodies against EIAV from China

Kit		AGID		Competitive ELISA			
Sample	IDEXX	VMRD	NECVB	IDEXX	HVRI		
14EIA004	8x	8x	8x	64x	64x		
Lin	8x	-	8x	64x	128x		
2011	8x	4x	8x	128x	128x		
Ruo	1x	-	1x	32x	32x		
2009	16x	8x	8x	128x	128x		

"x" stands for the most dilution fold for the detection.

Hu et al., Applied Microbiology and Biotechnology 2023

cELISA: High sensitivity

The titers of antibodies against EIAV from USA

Kit Sample		AGID		Competitive ELISA	Indirect ELISA	Competitive ELISA						
		VMRD	HVRI	IDEXX	VMRD	HVRI						
NVSL-902	2x	N/A	2x	16x	128x	64x						
NVSL-903	1x	N/A	1x	4x	64x	32x		,				
							, /	Mathad	1/:+	VM	RD Anti-E	IAV
VMRD-Strong				-	8x	16x	/	Methoa	КI	Strong	Medium	Weak
	_	_	_	_	_		/	cELISA	HVRI	+	+	+
VMRD-Medium	—	_	-	-	2x	4x	ľ		IP	99.39%	88.42%	67.45%
VMRD-Weak	-	-	-	-	2x	2x		Western blot	1000 dilution	-	Sugar.	-

"x" stands for the most dilution fold for the detection; ND = Not Applicable.

Broad spectrum: Testing samples from Argentina

481 samples from Argentina were imported in 2014

cELISA results

ЦУРІ	IDEX	_	
cELISA	+	-	Total
+	261	18*	279
-	0	202	202
Total	261	220	481
Coincidence			
rate	100.00%	91.82%	96.26%

HVRI	IDEXX	Tatal	
cELISA	+	-	TOTAL
+	278	1*	279
-	0	202	202
Total	278	203	481
Coincidence			
rate	100.00%	99.51%	99.79%

* True positive confirmed by WB

Third-party Assessments of the cELISA Kit

Agriculture, Fisherises and **Conservation Department of Hong** Kong Special Administrative Region

> 40 samples from USA AGID(IDEXX) cELISA(IDEXX) cELISA(NECVB) Specificity: 100% Sensitivity:100%

1	Description of Test (Type of assay, whether derived from OIE prescribed or alternative test, published or in-house development) (Except sample / tissue type to be tested: preservative used, age / shelf life, temperature, transport requirements)	Evaluation of commercial cELISA test (NECVB) for the detection of EIA antibody in equine sera.
2	References (Provided relevant references including any that the test was based or; list publications resulting from this work if a laready published or submitted)	 Kit inserts of Equine Infectious Anemia Virus cELISA Antibody Test Kit, NECVB. Requirements for Equine Infectious Anemia Agar Gel Immunosofficusion (Cogglins) and Enzyme-Linked Immunosorbent Assay Testing at Veterinary Services Approved Laboratories, SOP-EO-0034.02, 25 Mar 2014.
3	Test Method Protocol (Sufficient detail needs to be provided so that the test can be repeated by someone with experience in the basic technique) Reference to documented method	EDM-5 National Engineering Research Center of Veterinary Biologics (NECVB) cELISA Assay EQUINE INFECTIOUS ANEMIA (EIA)
4	Prior Treatment of Specimen (Selection of specimens, include collection, transport, method of preparation, concentration, NA extraction etc.)	1-2 ml serum samples are separated from the clot and put in sterile containers as soon as possible and stored at 2-8 $\rm C_{\star}$ or stored frozen until testing.
5	Reagent Selection (Describe the controls and reagents that are being used and why they were selected for this assay development e.g. type of conjugate etc Provide details of suppliers and information on the continuous availability of supply of essential reagents)	Equine Infectious Anemia Virus cELISA Antibody Test Kit (National Engineering Research Center of Veterinary Biologics (NECVB), #NEE28330) () 96 well microtitration plates (stripwell format) – coated with anti-ELAV antibody. (ii) Positive control (iii) Negative control (iv) Washing solution (10x) – dilute buffer 1:10 with distilled water (v) ELAV antigen conjugate (Do not keep at room temperature for more than 2 hrs) (Ready to use) (vi) Substrate A (Ready to use) (vi) Substrate A (Ready to use) (vii) Substrate B (Ready to use)
6	Repeatability and Reproducibility (Repeatability: testing conducted with the same method on identical samples in the same laboratory by the same operator using the same equipment within short intervals of time. Reproducibility; testing conducted by different laboratories)	Repeatability (Yeady to use) Repeatability 1 set of samples (20 in total – QAP samples from NVSL) are tested including 7 negative sera and 13 positive sera (vary from weak to strong positive) repeated by the same operator in 3 days and the obtained results were reproducible (Refer to Table 1-3). Reproducibility

Year: 2018

		are tested including 14 negative sera and 26 positive sera (vary from weak to strong positive) repeated by 3 operators on the same date and the obtained results were reproducible (Refer to Table 4-6).
7	Sensitivity and Specificity (Proportion of know infected reference animals that tested positive)	20 negative, 10 weak positive and 10 strong positive sera (NVSL) are tested respectively (Refer to Table 7).
	positive)	Both Sensitivity and Specificity are 100%
8	Reference Test (Gold standard) (Justification for the reference method)	AGID is the golden method for the detection of EIA in equine serum
9	Consistency with Reference Test	The results obtained are 100% consistent with EDM-3 and EDM-4
10	Controls and Reference Reagents Describe any further controls required (positive and negative) and the reasons for their use	All controls are provided in the commercial kit
11	Assay Interpretation (Describe interpretation including expected results from positive and negative samples)	$ \begin{array}{l} Based on the calculation of percentage of inhibition (1 \%) \\ 1\% = [(OD NC - OD semple) / (OD NC - OD PC)] \times 100\% \\ Negative: 1\% < 55\% \\ Positive: 1\% < 55\% \end{array} $
		Test valid criteria: Negative control: mean of OD _{NC} > 1.0
		Positive control: mean of OD _{PC} < 0.2
12	* It is only a preliminary MU and will	Low PC serum will be made by diluting PC (kit) with negative equine sera so as to make that the 1% of low PC (1%L) closed to the cut-off (55%) (Table 8).
	be updated and reviewed annually.	Low PC serum is tested 102 times in the 3 runs by 3 operators, the relative standard deviation (RSD) is calculated:
		RSD (I%L) = SD / Mean = 2.62 / 64.88 = 0.04
		Expanded Uncertainty (U) is the statistic defining the interval within the value of the measure within 95% level of confidence (CI). Expanding the uncertainty is done by multiplying the RSD(94L) by a factor 2,
		U (95%CI) = 2 x RSD = 0.08
		This estimate can then be applied at the threshold level
		95% CI = 55 ± (55 × 0.08)
		= 55 ± 4.4
		Interpretation of MU
		Any result of 1% falls between 50.6% to 59.4% is regarded as indeterminate within 95% confidence.
13	Quality Assurance	Quality assurance program from NVSL is joined on 6-month

International Comparison of cELISA Tests

No.	Sample ID	Store No.	Harbin-ELISA	AGID	Idexx-ELISA	Eradikit-ELISA
158	SE 15/20	S135-58	Negative	Negative	Negative	Positive
159	SE 17/20	S136-9	Negative	Negative	Negative	Positive
160	SE 91.2/20	\$09-39	Negative	Negative	Negative	Doubtful
161	SE 135.1/20	S06-2	Negative	Negative	Negative	Doubtful
162	SE 211.14/20	\$08-58	Negative	Negative	Negative	Doubtful
163	SE 284.2/20	S10-45	Negative	Negative	Negative	Positive
164	Muneca		Positive 98.1%	Positive	Positive	Positive
165	EQC 17/7839		Positive 99.1%	Strong Positive	Positive	Positive
166	EQC 17/7840	-	Negative	Negative	Negative	Negative
167	EQC 17/7841	-	Positive 99.4%	Positive	Positive	Positive
168	IdVet Ref.sera Neat	-	Positive 98.6%	Positive	Positive	Positive
169	IdVet Ref.sera 1:4	123	Positive 90.5%	Negative	Negative	Positive

Specificity	
Harbin ELISA	100%
AGID	100%
Idexx ELISA	100%
Eradikit ELISA	77.30%

100%

83.30%

83.30%

100%

Sensitivity Harbin ELISA

Idexx ELISA

Eradikit ELISA

AGID

True Positives: 1 (Field case); 2 EQC (positive); 2 (Reference sera)

Year: 2020

CENTRAL VETERINARY RESEARCH LABORATORY, DUBAI, UAE

Priv. Doz. Dr. Dr. habil. U. Wernery Scientific Director

Central Veterinary Research Laboratory, P.O. Box 597, Dubai, UAE,

Proficiency testing for veterinary laboratories

Results tabulation for 13982/SE PT0046: Equine Infectious Anaemia (EIA)

AGIDT	Seguraria and	Second of	19/7896	19/7897	19/7898	19/7899	19/7900
	Kit Manufacturer	Kit Batch Number	Results	Results	Results	Results	Results
Intended			Negative	1/8 dilution	1/8 dilution	Negative	1/4 dilution
		8	-ve	+ve	+ve	-ve	+ve
1007	VMRD	P181215-001	-ve	W+ve	W+ve	-ve	+ve
1056	Idvet	C45	-ve	M+ve	M+ve	-ve	S+ve
1113	IDVet	C45	-ve	+Ve	+ve	-ve	+ve
1141	IDEXX	KP995	-ve	M+ve	M+ve	-ve	S+ve
1246	idexx	LOT CP 050	-ve	+ve	+ve	-ve	+ve
1300	VMRD	P180110002	-ve	W+ve	W+ve	-ve	W+ve
1391	Nil Return	German	×	Name:	Norma -	<u> </u>	Same .
1438	ldexx	KP995	-ve	M+ve	W+ve	-ve	M+ve
1499	VMRD	P181215-001	-ve	W+ve	W+ve	-ve	M+ve
1686	VMRD	P190315-001	-ve	+Ve	+ve	-ve	+Ve
1749	IDEXX	KP995	-ve	W+ve	W+ve	-ve	+ve
1787	VMRD	P181215-001	-ve	W+ve	W+ve	-ve	+ve
1835	VMRD-EIA Veterinary Medical Research&Development	P-181215-001	-ve	+ve	+ve	-ve	+ve
1883	VMRD	P181215-001	-ve	+ve	+ve	-ve	+ve
1929	VMRD	P180417-002	-ve	+ve	+ve	-ve	+ve
1946	ID VET	C45	-ve	W+ve	-ve	-ve	S+ve
1992	ONE IDEXX DRIVE	CP050	-ve	-ve	-ve	-ve	M+ve
2025	ID.vet	F01	-ve	+ve	+ve	-ve	+ve
2123	ID Vets	D99	-ve	+ve	+ve	-ve	+ve
2443	IDEXX	KP995	-ve	W+ve	-ve	-ve	W+ve
2453	IDEXX	FR519	-ve	+ve	-ve	-ve	+ve
2507	IDEXX	KP995	-ve	+Ve	+ve	-ve	+ve
2535	VMRD	P181215-001	-ve	+Ve	+ve	-ve	+ve
2716	NECVB	201907220011	-ve	+ve	+ve	-ve	+ve
3143	VMRD	P181215-001	-ve	W+ve	W+ve	-ve	M+ve
3176	VMRD	P181215-001	-ve	+ve	+ve	-ve	+ve
3232	VMRD	P190315-001	-ve	W+ve	W+ve	-ve	M+ve
3248	Nil Return	•					

Year: 2019

Distribution Date: 22/10/2019

Animal & Plant Health Agency

IEC ØE	В	哈尔滨国生生物科技股份有限公司						
	马传染性贫血病毒 cELISA 抗	体检测试剂盒使用说明书						
【产品货号】	NEE26300							
【产品名称】	马传染性贫血病毒 cELISA 抗体检测试剂	盒						
【作用与用途								
本试剂盒采) 血感染的辅]	用竞争 ELISA 技术,用于检测马血清中马作 助诊断。	与染性贫血病毒抗体,检测结果可用于马传染性贫						

Testing carried out to determine the intended results of the samples using Agar Gel Immunodiffusion Test (AGIDT), was subcontracted to an Animal and Plant Health Agency (APHA) laboratory.

Sample 19/7896 = 19/7899, sample 19/7897 = 19/7898.

Comments provided by Jean-Pierre Frossard, APHA Weybridge

Laboratories 1007, 1056, 1113, 1141, 1246, 1300, 1438, 1499, 1686, 1749, 1787, 1835, 1883, 1929, 2025, 2123, 2507, 2535, (2716, 3) 143, 3176 and 3232, using a variety of different test kits, reported the intended result for all samples tested.

For laboratories 1007, 1056, 1141, 1300, 1499, 1749, 1787, 3143 and 3232, where the strength of the reaction was reported, it was consistent for the replicate samples (19/7897 & 19/7898), and was higher for the less dilute sample (19/7900).

N

Laboratory 1438 reported a medium positive result for sample 19/7897, and a weak positive result for sample 19/7898.

Laboratories 1946, 2443 and 2453 reported a negative result for sample 19/7898, whereas the expected result was positive.

Printed: 7/12/2019

cELISA played key role in eradication of EIA in Bayanbulak, Xinjiang

- The last area where EIA was eradicated (2023) in China
- ~50,000 horses
- Grassland area 23,835 km²
- 320,000 tests every year
- No positive cases detected after 2021

马传贫cELISA抗体检测试剂盒

4. EIA Rapid test strip

- Onsite detection
- 10 minutes
- High specificity
- High sensitivity

Developed by Xiaojun Wang's lab

Good sensitivity

Unpublished data, wang lab

EIA Rapid test strip (NECVB)

- Onsite detection
- 10 minutes
- High specificity
- High sensitivity

Serum dilutions	20	21	22	23	24	25	26	27	28	29	210	211	212	213	214	1×PBS
AGID	+	+	+	+	+	+	-	-	-	-	-	-	-	-	-	-
NECVB - cELISA	+	+	+	+	+	+	+	+	+	+	-	-	-	-	-	-
IDEXX - cELISA	+	+	+	+	+	+	+	+	+	+	8-6	-	-	-	-	-
Test strip I (coated with p26 and gp45 protein)	E.	:E	:E	- (L) - (0)	•	•	•	•	•	•	•			•	(f:	(f:
Test strip II (coated with p26 protein)	:E	:E	:E	:E	:E	•			. () . ()			:]	-)	([:	(†:	(† :
Serum dilutions		27	2	8	29	210	D	211	212	21	3	214	215	2	216	217
40KDa Western blot																

Zenan Zhang, et al. Appl Microbiol Biotechnol .2024

Comparation of AGID, cELISA, and Gold Strip

Sample No.	AGID c	ELISA	IP	Gold Strip	Sample No.		ELISA	IP	Gold Strip	
2	_	+	99.80%	+	7	-	+	100.18%	+	
9	-	+	100.47%	+	9	-	+	100.03%	±	
3	+	+	100.50%	+	19	_	+	95.45%	+	
10	+	+	100.30%	+	31		+	100.42%	+	
11	+	+	100.44%	+	33	-	+	99.48%	+	
16	+	+	100.47%	+	36	_	+	100.52%	+	
17	-	+	99.94%	±	37	-	+	99.97	+	
19	±	+	100.18%	+	40	±	+	100.19%	+	
20	+	+	100.68%	+	42	_	+	99.71%	+	
10	±	+	100.47%	+	43	±	+	100.39%	+	
11	_	+	100.33%	+	46	-	+	99.84%	+	
5	-	+	99.62%	±	56	—	+	100.45%	+	

Note: The result of AGID " \pm " stands for weak positive; the result of gold strip; " \pm " stands for very shallow line. Samples were from experimental infected horses.

Hu et al., Applied Microbiology and Biotechnology 2023

5. Immunoblot (IB)

>Gold standard serological test

Immune response against several viral proteins is detected

Sensitive and specific

≻Ag production an issue

Cannot be performed routinely on thousand samples
INDIRECT METHODS used in Spain

Serological diagnosis / Proposed strategy

Reference doi.org/10.1016/j.vetmic.2013.02.027

6. Next Generation Sequencing to improve EIAV diagnostics

Results : 1st Desing

Results : 2st Desing

Sanger Sequencing

Consensus Consensu Cover... Coverage C €IAV-14.. C. EIAV-14D19.

100% coverage

3st Desing

Test On Going

45,7% coverage

>80 % coverage

Conclusion & Perspectives

- 1. AGID is the Gold Standard for confirmation, but with less sensitivity
- 2. iELISA is good for screening, but with limited specificity, need more confirmation tests
- 3. cELISAs, with good sensitivity and specificity.
- 4. Immunoblot, is complicated to use for large numbers of samples.
- 5. qPCR can be used in certain cases with proper disease course and sampling
- 6. Application of new sequencing technologies to the diagnosis of the EIAV infection

World Organisation for Animal Health

Acknowledgements

中国农业科学院哈尔滨兽医研究所 HARBIN VETERINARY RESEARCH INSTITUTE (HVRI). CAAS

https://eurl-equinediseases.anses.fr/

Dr. José Carlos Valle-Casuso

adm.eurl-equinediseases@anses.fr jose-carlos.valle-casuso@anses.fr Reference Laboratory Gor Animal Health

Dr. Maria. T. Scicluna teresa.scicluna@izslt.it

Recommended diagnostic tests (WOAH manual) and novel diagnostic tests for equine influenza

Solution Equine Research Institute Japan Racing Association

Equine influenza (EI)

Pathogen

- Influenza A viruses (Family: Orthomyxoviridae)
- Subtypes: H3N8 and H7N7

Neuraminidase (NA)

 H7N7 has not been isolated since the late 1970s (Webster, Equine Vet. J., 1993)

Equine Influenza (EI)

Epidemiology

- Endemic in the world except for New Zealand and Iceland (Cullinane and Newton, Vet. Microbiol., 2013)
- In Japan, outbreaks occurred in 1971 and 2007

Clinical signs

- Fever (≧ 38.5°C)
- Harsh dry cough and nasal discharge
- Morbidity rate in naïve horses: up to 100%

(Cullinane and Newton, Vet. Microbiol., 2013)

Equine influenza (EI)

Prevention and control

- Rapid diagnosis
- Movement restrictions
- Vaccination

Test methods for the diagnosis of El

Virus detection

- Virus isolation
- Conventional and real-time RT-PCR
- Rapid antigen detection (RAD) kits

Serological diagnosis

- Hemagglutination inhibition (HI)
- Single radial haemolysis (SRH)
- Enzyme-linked immunosorbent assay (ELISA)

Sample collection

Nasopharyngeal or nasal swabs

Should be collected from acute cases

Paired serum samples (acute and convalescent phases)

Virus isolation

Gold standard for EI diagnosis

Embryonated hens' eggs

- Widely used in research labs and vaccine production
- Able to yield a robust amount of virus
- Time and money intensive

Madin-Darby canine kidney (MDCK) cells

Less permissive than embryonated hens' eggs

Reverse transcription PCR (RT-PCR)

More sensitive than virus isolation

Conventional RT-PCR

Visualized by the presence of the target band

Target: HA1 subunit gene

(Newton et al., Vet Rec, 2006)

Reverse transcription PCR (RT-PCR) More sensitive than virus isolation

Real-time RT-PCR

 Pan-reactive influenza type A real-time RT-PCR

• Developed for detecting equine influenza viruses Target: Nucleoprotein gene (Lu *et al.*, J. Clin. Microbiol., 2009)

Rapid antigen detection (RAD) kits User-friendly and fast

- The first EI case in Japan in 2007 was identified
- Less sensitive than real-time RT-PCR (Yamanaka *et al.*, Influenza Other Respir. Viruses, 2016)

Quick Chaser Flu A, B

Immunochromatography

Quick Chaser Auto Flu A, B

Silver amplification immunochromatography

Hemagglutination inhibition (HI) test

Widely used for HA subtyping, surveillance, vaccine testing

Agglutination Antibody (+)

No agglutination Antibody (-)

- Pretreatment of equine sera is needed to remove non-specific agglutinin
- The HI results may vary between laboratories
 (Date of a December 2)

(Daly et al., Pharmeuropa Bio. 2007)

Single radial haemolysis (SRH) Ideal for vaccine efficacy studies

Haemolysis Antibody (+)

No haemolysis Antibody (-)

Zone of haemolysis

- 25mm² or 50% increase in zone of haemolysis: seroconversion (Cullinane and Newton, Vet. Microbiol., 2013)
- SRH antibody levels post-vaccination correlate well with protection (Mumford and Wood, Dev. Biol. Stand., 1992)

Enzyme-linked immunosorbent assay (ELISA) Ready-to-use ELISA kits are available

Competitive and blocking ELISA

IDEXX AI Multi-Screen Ab Test

 Commercialized ELISAs originally developed for avian influenza are available

 Shown to be effective in the detection of influenza A antibodies in horses (sensitivities: 96-99%) (Kittelberger *et al.*, Vet. Microbiol., 2011)

Virus neutralization assay

Essential for vaccine efficacy studies and understanding immune protection

• Determines the neutralizing capability of antibodies against EIV

• The growth of the virus will be inhibited if neutralizing antibodies are present

Recent research on RAD kits for EI

- In JRA racehorse hospitals, commercialized RAD kits developed for human influenza are used
- Newly launched and updated RAD kits need to be evaluated for equine influenza viruses (EIVs) regularly

Seven RAD kits* were evaluated for EI

*Available in Japan, 2023-24

The 50% detection limits for each assay

Product name	Detection limit (EID ₅₀ */200 µL)
	A/equine/Tipperary/1/2022
Alsonic Flu	2300
Check Flu A-B	2300
Immunofine FLU II	2300
Quick chaser Flu A, B	2300
Finevision Influenza	460
RapidTesta Flu-NEXT	460
Quick chaser Auto Flu A, B	66
Real-time RT-PCR	1.0

*50% egg-infectious dose (Manuscript submitted)

Take-home messages

- Because of its high sensitivity, real-time RT-PCR should be performed to detect EI cases
- Definitive diagnosis should be made by virus isolation
- Serological diagnoses are not applicable for rapid EI detection but are useful for retrospective diagnosis and surveillance

Combining several diagnostic assays is essential to control El