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Abstract

®
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For the determination of the Boltzmann constant by dielectric-constant gas thermometry,
the uncertainty of pressure measurements in helium up to 7MPa has been decreased
compared with previous achievements (Sabuga 2011 PTB-Mitt. 121 247-55). This was
possible by performing comprehensive cross-float experiments with a system of six special
pressure balances and the synchronization of their effective areas. It is now possible

to measure a helium pressure of 7MPa with a relative standard uncertainty of 1.0 ppm
applying a 2 cm? piston-cylinder unit, the calibration of which is traceable to the SI

base units.
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dielectric-constant gas thermometry, Boltzmann constant
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1. Introduction

The determination of the Boltzmann constant k by dielectric-
constant gas thermometry (DCGT) is directed to the new defi-
nition of the base unit kelvin, which is planned to come into
force in 2018 [2]. For this goal, a relative uncertainty below
3ppm is necessary [3]. In turn, this requires to measure pres-
sures up to 7MPa with a relative uncertainty of order one
part per million (1ppm) [4]. To achieve this level, a project
was started at PTB to improve the national pressure standard
accordingly. The solution for this improvement and the first
results obtained in 2011 are summarized in section 2. The first
results were the starting point for activities performed in 2013
and 2014 to finally decrease the uncertainty to 1ppm. These
activities are described in detail in the following sections 3
and 4. After establishing a complete uncertainty budget in
section 5, conclusions are drawn and an outlook is given at the
end of the paper.
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2. Improvement of the national pressure standard
of the PTB in 2011

The goal to measure pressures up to 7MPa with a relative
uncertainty of order 1 ppm is achievable only by using pres-
sure balances, which act moreover as pressure stabilisers.
A system of special pressure balances, as outlined in [1, 5],
was designed, constructed, and evaluated [6-8], see also the
summary in [9]. The system includes two pressure-balance
platforms, three piston-cylinder units (PCUs) with effective
areas of 20cm? (Nos. 1159, 1162, and 1 163), and three 2 cm?
PCUs (Nos. 1341, 1342, and 1343). Traceability to the SI
base units up to 7MPa was realized in two general steps.
First, the zero pressure effective areas of the 20cm? PCUs
were determined from dimensional measurements. Second,
the 2cm? PCUs were calibrated against the 20 cm? PCUs by
cross-float comparisons. The calibration of the mass pieces
traceable to the national mass standards and the accurate
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Figure 1. Detailed steps of the traceable calibration of the 2cm?
PCUs. Ay; is the dimensional effective area of PCU No. i at zero
pressure. 4;; and A are the coefficients describing the non-linear
distortion of the PCUs under pressure. They are calculated by
applying the RGD theory [8] or the Lamé theory [10].

determination of the local gravity acceleration did not cause
any special challenges.

The detailed steps of the traceable calibration of the 2cm?
PCUs are illustrated in figure 1. The dimensional data for the
2cm? PCUs are first of all needed for the calculation of their
pressure distortion coefficients by the finite element method
[7]. The calculations are performed applying the rarefied gas
dynamics (RGD) theory [8] or the Lamé theory [10]. Cross-
float experiments are described in section 3, and the synchro-
nization of effective areas in section 4.

Cross-float measurements determine the ratio of the effec-
tive areas of two PCUs at given pressures. They cannot yield
the absolute areas, or the pressure dependence of the areas.
Besides the area ratios, the measurements provide an informa-
tion on the performance of the PCUs, especially an estimate
of the Type A uncertainty contributions to pressure-balance
readings. For performing the measurements, the PCUs are
mounted on a common pressure system and are in equilib-
rium at the chosen pressure, when the pistons are loaded with
appropriate masses and located at a defined reference level.
Pressure balances act as barostats, i.e. they fix the pressure at
the value defined by the applied load and the effective area.
The basis of the comparison is, therefore, the determina-
tion of the loads, at which each balance would individually
barostat the system at precisely the same pressure. In reality,
the pressure-sensing technique was applied. The two pressure
balances were individually barostatted by the PCUs, and the
difference between the two pressures was measured with a
differential-pressure indicator.

The results obtained in 2011 are described in detail in [1]
and compared with the present results in the following two
sections, see tables 1 and 4. They yielded a combined standard

uncertainty of the measurement of a helium pressure of 7MPa
using one of the 2cm? PCUs (No. 1342) of 1.9 ppm, see the
uncertainty budget given in [9] (table 1). The budget is domi-
nated by the two components connected with zero-pressure
effective area (1.5 ppm) and the pressure-distortion coefficient
(1.1 ppm). The second dominating component was caused by
an unexpected difference in the pressure dependence of the
effective areas of two 2cm?® PCUs (Nos. 1342 and 1343). The
present data show that this difference was obviously an exper-
imental artefact, see figure 8 in the next section.

3. Cross-float measurements in 2013 and 2014

The second cross-float measurements campaign, being the
topic of this paper, lasted about one year, namely from July
2013 to August 2014. It was performed to decrease the uncer-
tainty of the pressure measurement up to 7 MPa by including
all 6 PCUs, by clarifying the discrepancy between the pressure
distortions of PCUs Nos. 1342 and 1343 obtained in the first
campaign, see section 2, and by checking the long-term sta-
bility of the PCUs. Since the cross-float effective-area ratios
R;; fulfil the relations R = 1/R;;, a complete list of all pos-
sible cross floats includes 15 comparisons for the 6 PCUs (see
figure 2): 3 comparisons of three pairs of 20 cm? PCUs in the
pressure range from 0.15MPa to 0.76MPa, 9 comparisons
between three 20cm? PCUs and three 2cm? PCUs (0.3 MPa
to 0.76 MPa), and 3 comparisons of three pairs of 2 cm? PCUs
(0.3 MPa to 7MPa). All comparisons were performed in abso-
lute mode with helium as measuring gas and applying a cali-
brated capacitive diaphragm gauge (CDG) for measuring the
remaining pressure differences. The steps of the automated
cross-float process are described in detail in [6].

Two CDGs with different operation ranges were used:
First, a high-accuracy MKS Baratron capacitance diaphragm
sensor (Model 698A11TRA, u(Ap) =0.1Pa) with a maximum
line pressure of around 1 MPa and a useable differential pres-
sure range of Ap of +1.3kPa was used for all 15 comparisons.
For the comparisons of three pairs of 2.cm? PCUs, of course
comparisons only up to a maximum pressure of 1 MPa were
carried out with this CDG. Secondly, a differential pressure
transmitter from Rosemount (Series 3051 S, u(Ap) = 0.25Pa)
with a maximum line pressure of around 13.8 MPa and a use-
able differential pressure range of +5.0kPa was applied for
the comparisons up to a maximum pressure of 7MPa. In
the overlap range of the two CDGs (0.3MPa to 1MPa), no
significant differences in the differential-pressure data were
observed.

The calibration of the MKS Baratron capacitance dia-
phragm sensor was done traceable to the PT'B primary standard
for low pressures applying a Furness Rosenberg FRS4, which
is a non-rotating force-balanced pressure balance [11]. The
Rosemount differential pressure transmitter was calibrated by
the twin pressure balance method [12] using two of the 20 cm?
PCUs. For each differential pressure Ap, it was switched
several times between Ap and zero pressure difference. This
allows the removal of the influence of drifts and is called in
[13] the ‘ABABA’ method.
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Table 1. Cross-float effective-area ratios (Ry) at zero pressure together with the associated relative uncertainties ugyj, number of single
samples (n5), number of pressure values (1), and number of measurement series (n,). For comparison purposes, the results obtained in the
first cross-float measurements campaign published in 2011 [1] are also listed together with the deviation from the actual results.

2014 2011

PCU/PCU; Ry upijin ppm  ng np I Ry upijin ppm  ARj; in ppm
1159/1162 1.00000368 042 159 8 4 1.00000342 0.64 —-0.26
1159/1163 0.999984 76 0.45 171 8 5 0.999984 41 0.67 —-0.35
1159/1341 9.99978201 0.74 294 7 8

1159/1342 9.99928323 0.79 231 7 8 9.999296 64 0.83 1.34
1159/1343 9.99956376 0.79 294 7 9 9.99957774 0.87 1.40
1162/1163 0.99998087 0.45 177 9 5 0.99998100 0.50 0.13
1162/1341 9.999747 38 0.70 315 7 8

1162/1342 9.99925406 0.76 294 7 7 9.99925931 0.84 0.53
1162/1343 9.99953286 0.80 294 7 7 9.99953954 0.87 0.67
1163/1341 9.99993519 0.69 252 7 6

1163/1342 9.99944028 0.70 168 7 4 9.999446 14 0.83 0.59
1163/1343 9.99972056 0.77 210 7 5 9.99973051 0.82 1.00
1341/1342 0.99995049 1.07 456 19 8

1341/1343 0.99997971 1.85 609 19 [1

1342/1343 1.000027 85 0.74 618 19 10 1.00002709 0.96 - 0.76

609618
456
294294
159171IIIIIIII I
R N B N R R R I SN
Figure 2. Complete scheme of the cross-float comparisons between S O N \x N o> \\ \"Jb‘ \\b N o \\b‘ \\,b‘ \\b \\'bb‘ \\“)b‘ \Q?‘
the 6 PCUs. \\"9 © x‘{’b p ‘30' x@' N x@' & ‘3’ o °>°‘ ¥

Overall, 4542 cross-float ratios Rj; (single samples) were
measured, see table 1 and figure 3, where for each comparison
pair at least 159 single samples were taken at 7 pressures or
more during at least 4 measurement series (individual auto-
mated cross-float processes). Thus, the data give sufficient
information on the repeatability and sensitivity of both the
PCUs and the CDGs. For comparison purposes, in table 1 the
results obtained in the first cross-float measurements cam-
paign are also listed. Their deviation from the actual results
is well within the expanded (coverage factor two) combined
uncertainty. An additional check is the requirement that the
complete product of the corresponding cross-float ratios
should be equal to one. This is sufficiently fulfilled for the
20cm? PCUs at a level of 0.2ppm, and for the 2cm? PCUSs
of 1ppm. These deviation levels are in accordance with the
complete uncertainty budget for the cross-float results, which
is given in table 2. The pressure dependence of the measured
effective areas A; is shown in figures 4 to 9 for the six PCUs.
In each case, the drawn A; values were deduced from the

Figure 3. Histogram of the single samples of cross-float
measurements of the 15PCU pairs.

single-sample cross-float ratios R;; using the synchronized A;
value of the respective counterpart that is given in section 4.
Since the A; values are primarily determined by the results
of the cross-float measurements with the 20cm? PCUs up to
0.76 MPa, the effective-area values A; obtained for the 2 ¢cm?
PCUs at higher pressures up to 7MPa are partly not sym-
metric to the synchronized areas, and many data are out of
the standard confidence interval. The distortion of the PCUs
under pressure is considered using the pressure dependent
coefficients 4:(p) = (A{(p) — Ap = 0Pa))/(Ai(p = O0Pa)p) = 1,
+ App listed in table 3.

4. Synchronization of effective areas

Compared with the dimensional data, the effective-area ratios
determined by the cross-float measurements provide additional
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Table 2. Type B uncertainty budget for the effective areas ratio Rizaz, 1162 of PCUs Nos. 1342 and 1162. The relative uncertainty
components are given in parts per million (ppm). The temperature of the PCUs was measured applying platinum resistance thermometers
(PRTS). The temperature inhomogeneity was estimated comparing the readings of two PRTs for each PCU.

Quantity Uncertainty up(Ry) in ppm
Room temperature 4.0-1071°C 0.010
Gas density fluid for height difference 1.0-1073 0.022
Residual pressure in 1162 2.0-1073Pa 0.004
Residual pressure in 1342 2.0-1073Pa 0.004
Height difference 2.8- 10~ 'mm 0.005
PRT calibration in 1162 6.0-1073°C 0.054
PRT calibration in 1342 6.0-1073°C 0.054
Temperature inhomogeneity in 1162 2.9.1072%°C 0.150
Temperature inhomogeneity in 1342 3.6-1072°C 0.190
Calibration uncertainty of CDG 1.0-107'Pa 0.208
Standard deviation of CDG 0.5-107'Pa 0.017
Thermal expansion coefficient of 1162 22-1077K"! 0.070
Thermal expansion coefficient of 1342 2.2-1077K! 0.060
Distortion coefficient of 1162 8.0- 108 MPa™! 0.042
Distortion coefficient of 1342 42108 MPa™! 0.022
Verticality of 1162 4.0-10'mmm™! 0.080
Verticality of 1342 4.0- 10" mmm™! 0.080
Cylinder + weight carrier mass of 1162 0.9-10"%kg 0.009
Cylinder + weight carrier mass of 1342 0.4-107%kg 0.042
Main ring weights of 1162 1.3-1073kg 0.086
Main ring weights of 1342 2.4-107%kg 0.510
0.63

Combined standard uncertainty

19.61016
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Figure 4. Effective area of the 20 cm? PCU No. 1159 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (coverage factor

k=1).

(redundant) data on the values of theeffective arcas of the PCUs.  As the criterion for the best synchronization, the minimization
Then it is of course desirable to determine the synchronized —of the sum S of squared weighted differences between the input
effective areas, which are as consistent as possible both with  and output data, i.e. between the initial Ay and the synchro-
the initial dimensional effective areas and with the cross-float  nized A; effective area of PCU No. i (i = 1, 2, ... n) as well as
ratios. A suitable synchronization method is described in [14].  between the ratios A/A; and the cross-float ratios Rj; (R;;= 1/Ry;,
The approach is based on the weighted least squares method.  R; = 1), is used:
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Figure 5. Effective area of the 20cm? PCU No. 1162 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (k = 1).
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Figure 6. Effective area of the 20cm? PCU No. 1163 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (k = 1).
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Agiltdi 2 ij=l

J#

Ry — AilA; Y
R,‘juRl'j ' (1)

The input data are the Ag; and Rj; together with their rela-
tive uncertainties ug; and ugy; (ug; = ugj;), whereas the output
data are the A;. The factor V2 before the second sum takes into
account that due to Ry = 1/R;;, the ratio R;; appears two times in
equation (1). Sum S is minimal if the derivative d5/0A; = 0 for
all A;. Apart from the factor two in the first term of numerator
and denominator, the differentiation of equation (1) leads to
the weighted mean

2 2 Ry,
@ A PR
=1 (AjfAgi)"Rijug;;

"
A= — : @
2.y
“h o (ATAG R
J#i

The factor two considers the fact that the input data for the
cross-float measurements may be correlated to some extent,
i.e. it increases the weight of the first term representing the
direct dimensional data.
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Figure 7. Effective area of the 2cm? PCU No. 1341 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (k = 1).
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Figure 8. Effective area of the 2cm? PCU No. 1342 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (k = 1).

Taking into account that the term (Aj/Aq;) R;; is near to one
((Aj/Ag) Ry = 1), one gets

2 o 1 o R 2A4;
=5t X - A = o 3)
Ug  j=1 URjj j=1 HURjj Ug;

J#i J#i

which is a system of linear equations M X A =Aq4 with the vec-

T
tors A = (A1, Agy oo An) andA(.=(ﬁ;', 2o, 2”—;) .The

2
g1 L) Uin

elements of the n X n matrix M contain only the uncertainty
estimates ug; and ug;; as well as the ratios R;;. This system can
be solved by applying Cramer’s rule:

det(M;)
Ai = 0
det(M)
where the n X n matrix M; results from M by replacing column
{ with vector Aq.
For the Type A relative standard uncertainty of the effec-
tive area A;, ua; = ua(A;)/A;, the following formula is given by
Sabuga and Priruenrom [14]:

4
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Figure 9. Effective area of the 2cm? PCU No. 1343 versus pressure deduced from the cross-float measurements with the other five PCUs.
The solid line shows the synchronized value given in table 4, and the dashed lines give the standard confidence interval (k = 1).

Table 3. Initial dimensional effective areas Ay; at zero pressure with the associated relative standard uncertainties (uy;) and pressure
distortion coefficients (A;; and A;5) based on dimensional measurements and, except for PCU 1341, calculated applying the finite element
method and the RGD theory [7, 8 ]. The Ag; value of PCU 1342 resulted from rather rough measurements. To get a reliable upper estimate,
the given uncertainty covers the possible deviation from the nominal value. The pressure distortion coefficient (341, ; for PCU 1341 was
calculated with the Lamé theory [10]. For the pressure distortion coefficients, the uncertainties estimated at the maximum pressure are

listed. With the exception of PCU 1341, the estimates u(4;) consider only the uncertainty components due to the dimensional input data and
the calculations. For PCUs 1342 and 1343, the pressure dependence of the cross-float ratio gives additional information, see text. For PCU
1341, the order of magnitude of u(4;) has been estimated from the difference between the results obtained applying the Lamé and RGD
theory, respectively, for PCUs 1342 and 1343.

PCU Ag; in cm? Hg; in ppm A in 10"5MPa~! Ay in 107°MPa~? u(A;) in 10~9MPa~!
1159 19.610112 0.7 6.854 —2.064 0.10
1162 19.610058 0.5 6.406 - 1.930 0.08
1163 19.610439 0.6 5.969 —2.147 0.10
1341 1.9610494 32 0.890 0.3
1342 1.961 500 0.999 0.028 0.034
1343 1.9610910 1.0 2.159 —0.042 0.029
n 2 the formula for correlated data has to be used. The combined
Ag—ANE |1 R’J Al/AJ alaf : S AL te o . :
( e ) +3 Z[ ™ ) relative standard ungeszrtamty of A; is of course given by u; =
0 P K wANA; =l + ul)”.
”,%i = / = . ®) Using the dimensional effective areas given in table 3 and
-1 Lz + 1 Z 1 the cross-float ratios given in table 1 together with the respec-
wi 2 =1 u,%,-j tive uncertainty estimates as input data for equations (4),
J#i the synchronized effective areas listed in table 4 have been

This is similar to the often used weighted standard devia-
tion of the mean, see for instance [15]. But since again the
data may be correlated to some extent, the factor » is added
to the numerator. This factor guarantees a maximum estima-
tion because u,; corresponding to equation (5) represents in
fact the uncertainty of a single result. The formulas for the
Type B relative standard uncertainty up; = ug(A;/A; of the
effective area A; result directly from equation (4) applying the
law of propagation of uncertainty. They are presented in [14]
(equations (9) to (14)). For obtaining a maximum estimate,

obtained. The Type A and B uncertainty components were
estimated applying equation (5) and the formulas published in
[14], respectively. Again, the new results are compared with
those of the first campaign. Figure 10 illustrates the progress
achieved by the synchronization.

To check the stability of the synchronization results, the
following numerical tests and changes in the input data have
been performed:

(i) Comparison of the results obtained applying the functions
of Microsoft Excel for solving equations (4) with those
obtained with a self-programmed MATLAB routine.

S311




Metrologia 52 (2015) S305

T Zandt et al

Table 4. Synchronized effective areas (4;) resulting from the second cross-float measurements campaign, their Type A (ua), Type B
(up,) and combined (1) relative standard uncertainties in ppm. For comparison purposes, the results obtained in the first cross-float
measurements campaign are also listed.

2014 2011
PCU A,' in cm2 UA; upi U; A,' in Cm2 UA; up; U;
1159 19.610118 0.44 0.69 0.81 19.610121 0.2 1.2 1.2
1162 19.610052 0.30 0.63 0.69 19.610056 0.2 1.1 1.1
1163 19.610425 0.54 0.66 0.86 19.610429 0.4 1.1 1.2
1341 1.9610547 0.53 0.80 0.96
1342 1.9611516 045 0.76 0.88 1.9611503 0.6 1.3 1.5
1343 1.9610957 1.42 0.78 1.62 1.9610952 0.9 1.3 1.6
16 |
. 1 Discrepancies in initial data l f Discrepancies in synchronised data |
I
o LA A RIAJAY-1T T IAJA-1TLT RI(AIA)-
E
g |
2]
£
©
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©
ki
<
5]
w
e
0
3
>
V]
o
% 5
14
S USSP
-12 §
AN = NM NODADND N NN QN —NOM NODDAND—ANND NN O
LLOYIS LI eICIIILIIS LOOYIT 220 LILIISLIID
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Figure 10. Left half: discrepancies between the dimensional (Ag;, Aq/Agy) and cross-float results (R). Right half: discrepancies between the
dimensional (Ag;), cross-float (R;), and synchronized results (A;). The vertical bars represent the confidence interval corresponding to the

standard uncertainties of Ag; (ug;) and A; (u;), respectively.

(ii) Comparison of the analytic solution of the synchro-
nization (equations (4)) with the iterative calculation
described in [1].

(iii) Change of the weighting in equations (2) and (3): omis-
sion of the factor 2.

(iv) Use of cross-float ratios measured at pressures up to only
1 MPa as input data for the synchronization to reduce the
influence of the pressure distortion coefficients.

In all four cases, the differences between the alterna-
tive synchronization results were well within the standard
uncertainty.

The values listed in table 4 show two important facts. First,
the deviations between the results of the two cross-float meas-
urements campaigns are well within the combined standard
uncertainty. Since the measurements of the first campaign
were performed with nitrogen as the measuring gas, this means

that the effective areas are equal for helium and nitrogen at a
level of order 1 ppm. Second, except for PCU No. 1343, the
resuls of the second campaign yielded uncertainties u;, which
are significantly smaller than those of the first campaign by
a factor of up to 1.7. This is especially important for PCU
No. 1342, which was used in the DCGT measurements for the
determination of the Boltzmann constant [16]. The reduction
of the uncertainties has mainly three causes: (1) The uncer-
tainties of several cross-float ratios are smaller, see table 1.
(2) The amount of data is essentially larger, not only due to
the adding of a sixth PCU. (3) The Type B components are
estimated applying formulas following directly from uncer-
tainty propagation, see the already in [14] presented smaller
uncertainty estimates.

Furthermore, it is worth mentioning the following details
concerning uncertainty estimates. The rough estimation
of the pressure distortion coefficient of PCU 1341 causes
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Table 5. Uncertainty budget for the measurement of a helium
pressure of 7MPa using PCU No. 1342 with an effective area of
2cm?,

2014 2011 [9]

u@p  uwp)p
Component inppm  in ppm
Zero-pressure effective area 0.8 1.5
Pressure-distortion coefficient 0.3 [.1
Mass measurement (piston, mass pieces) 0.1 0.1
Gravity acceleration 0.1 0.1
Temperature measurement 0.2 0.2
Verticality of the PCU 0.1 0.1
Combined standard uncertainty 0.9g 1.9

larger uncertainties of the cross-float ratios, especially those
obtained from the cross-float measurements with PCUs 1342
and 1343 at higher pressures up to 7MPa, see table 1. The
estimate of ug; for PCU 1343 is obviously too optimistic,
which causes the largest u,; estimate. On the contrary, the
very large estimate for ug; of PCU 1342, see table 3, makes
the first term of the numerator in equation (5) negligible and
thus #1342 very small. This is the reason why this PCU shows
the smallest uncertainty among the three 2cm? PCUs. Due to
the large uncertainty estimate, PCU 1342 does not really con-
tribute to the final effective-area values of the PCUs. Its effec-
tive area comes from the other PCUs, It might be, therefore,
reasonable to not include PCU 1342 in the synchronization,
and to calibrate this PCU against the other five PCUs with
the synchronized effective areas. But in this procedure, the
synchronization complicates the consideration of correlations.
Ignoring correlations, the procedure would yield an uncer-
tainty estimate for the weighted-mean value of Aj34 of only
0.55 ppm, which is smaller than the estimate given in table 4
by about one third. Thus, the inclusion of PCU 1342 in the
synchronization has the advantage that well-derived formulas
can be used for the uncertainty estimation, and a more reliable
estimate is achieved.

5. Uncertainty budget

For the determination of the Boltzmann constant by DCGT
described in [16], the PCU No. 1342 was used. Therefore, in
table 5, a complete uncertainty budget for the measurement of
a helium pressure of 7MPa using PCU No. 1342 is presented.
This budget is similar to that given in [9], but the first two
components are now essentially smaller. The relative standard
uncertainty of the zero-pressure effective area amounts now
to 0.8g ppm (instead of 1.5 ppm), see table 4. The component
caused by the uncertainty of the pressure distortion coefficient

is reduced from 1.1 ppm to 0.3 ppm. This component has been
estimated from the cross-float results obtained for the pair
of PCUs Nos. 1342 and 1343 shown in figure 8. The Aj34
values change by about 1ppm from the lowest pressures to
the maximum pressure of about 7MPa. This could be caused
by a mismatch of the pressure distortion coefficients calcu-
lated for the two PCUs. The application of a rectangular dis-
tribution to this change yields an estimate of about 0.3 ppm.,
The component caused by the temperature measurement was
estimated comparing the readings of two PRTs. The resulting
combined uncertainty of 0.93 ppm is clearly dominated by the
first component.

6. Conclusions and outlook

Comprehensive cross-float experiments and the synchroniza-
tion of the effective areas of a system of six special pressure
balances have decreased the uncertainty of the measurement
of absolute pressures up to 7MPa compared with previous
achievements presented in [1]. It is now possible to measure a
helium pressure of 7MPa with a relative standard uncertainty
of 1.0ppm applying a 2cm? piston-cylinder unit, the calibra-
tion of which is traceable to the SI base units. This result is of
crucial importance for dielectric-constant gas thermometry. It
decreases the uncertainty of the value of the Boltzmann con-
stant determined in 2013 [16] to 4.0 ppm, and a further reduc-
tion to below 3 ppm seems to be possible [4].
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