Length, Angle and Dimensions

The Consultative Committee for Length (CCL)

The CCL provides a global forum for NMIs on best practices, state of the art and innovations

Established nine technical discussion groups for new research ideas, opinions, feedback on standards

CONFERENCES:

- MacroScale conferences in 2014 and in 2017 Dimensional metrology
- SPIE Advanced Lithography (AL) Metrology, Inspection, and Process Control
- Frontiers of Characterization and Metrology for Nanoelectronics
- **BAM-PTB Nano Workshop 2018**
- NanoScale Seminars in 2013 and 2016 Quantitative Microscopy

Precision engineering and dimensional metrology are key to three SI re-definitions based on fundamental constants: form and dimension of Avogadro spheres and Boltzmann resonators, Planck balance interferometry

The CCL improves continuously the global comparability of measurements

The CCL is the focus for TRACEABILITY in dimensional measurements

- Guidance documentation for comparisons and CMC validation published on the BIPM website for Open Access
- Introduction of a new "flexible" 1D CMC
- Harmonized terminology for dimensional metrology in 13 languages **DimVim**
- **CMC foresight:** anticipating workload with corrective actions after comparison reports

New routes to traceability

- Lattice parameter of silicon included in revision of the MeP for the metre to provide new traceability routes for dimensional nanometrology: x-ray interferometry for displacement generation and measurement, mono-atomic silicon steps for SPM calibration and silicon pillars for TEM calibration
- Develop and validate traceability routes for *in situ* metrology
- Extend the traceability of the metre to extreme scales: sub-nanometre and geodetic (kilometre)
- Update list of frequency values for use in metre realizations and secondary realizations of the second
- Support industry's transition to non-contact measurement to enable faster and cheaper production
- Coordinate pre-normative research into novel coordinate metrology systems such as X-ray CT, micro CMMs

A new style of efficient inter-RMO comparison has been devised and is operational. It is intended to reduce the comparison workload

Traceability in dimensional measurements underpins all manufacturing, engineering and assembly industries world-wide, ensuring compatibility and interchangeability of parts.

Seven CCL Key Comparisons - 46 comparisons 'active'

- (short gauge blocks) • CCL-K1
- (long gauge blocks) • CCL-K2
- CCL-K3 (angle)
- CCL-K4 (diameter)
- CCL-K5 (step gauge)
- (ball plate) • CCL-K6
- (laser frequency/vacuum wavelength) • CCL-K11

Example of outreach of the CCL-K1 KC

Total Number of CMCs - 1641

- **187** Laser
- 1454 Dimensional metrology

The CCL facilitates dialogue between NMIs and established stakeholders

- Standards organizations (for example ISO) -Significant CCL member presence
- Semiconductor manufacture, Military, Automotive industry
- Aerospace industry key needs are accuracy and traceability for parts up to 40 m in size.

(geodetic measurement for particle accelerators, interferometry for satellite missions, etc.) Energy generation (wind, civil nuclear) - The key requirements for better accuracy and in situ calibration are speeding up Manufacturing.

Mesures