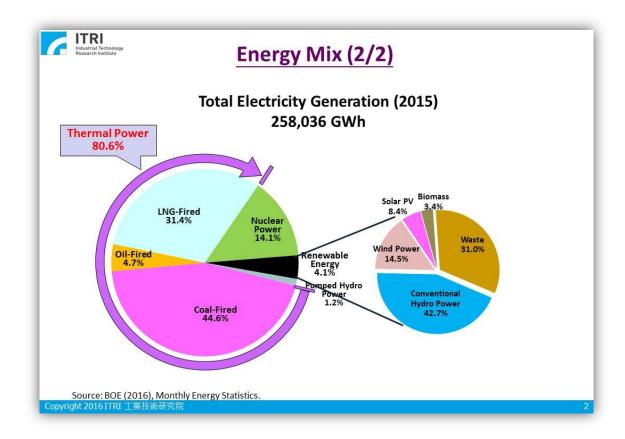
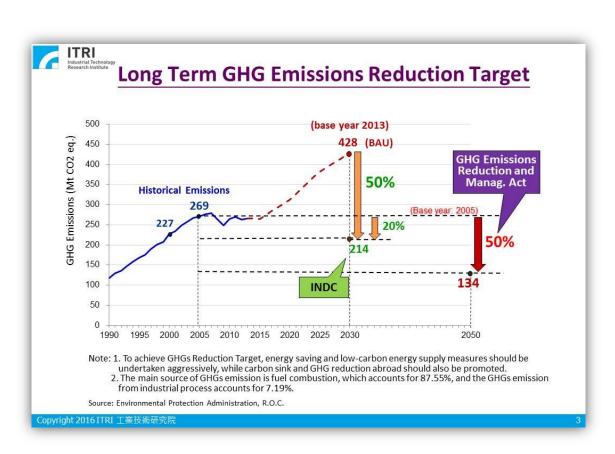
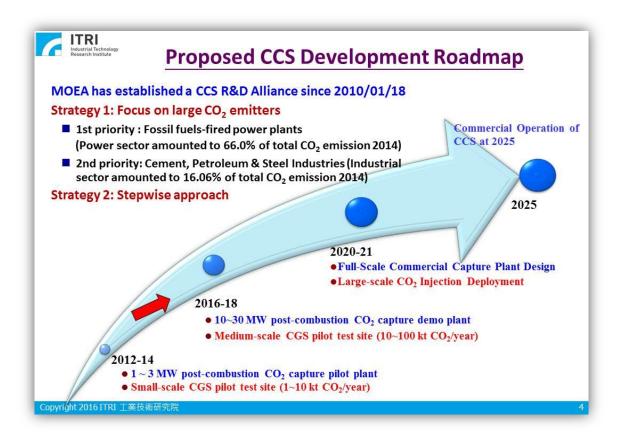
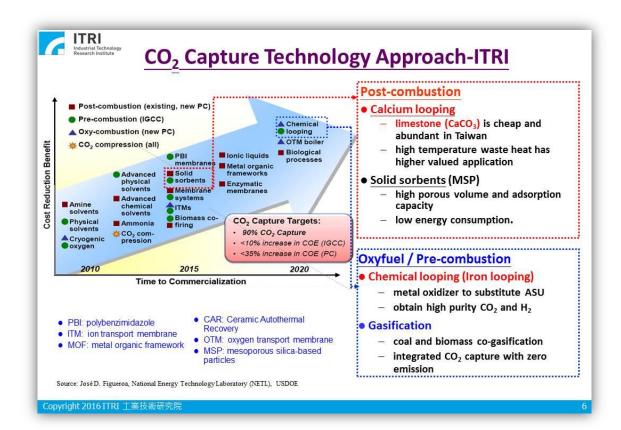

The Status of CCS Development in Taiwan

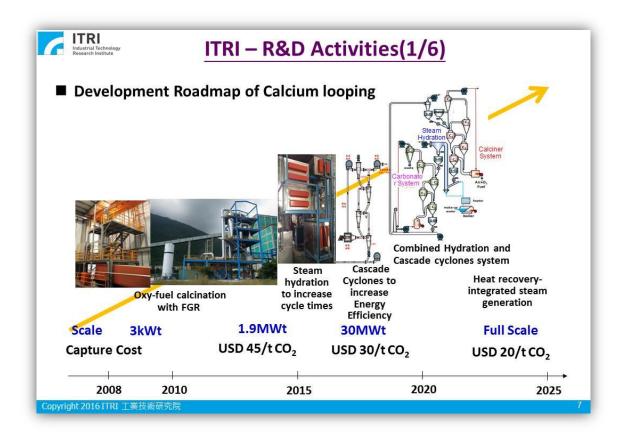

Heng-Wen Hsu


Green Energy and Environment Laboratories Industrial Technology Research Institute, Taiwan


2016/10/24

Copyright 2016 ITRI 工業技術研究院





CCS Technology Development

Copyright 2016 ITRI 工業技術研究院

ITRI – R&D Activities(2/6)

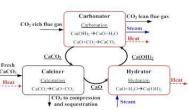
- Establish the world's largest pilot plant for carbon dioxide capture using calcium looping in 2013
 - Scale: ~ 1.9 MWt (flue gas: 3.1 t/hr, capture rate: 1ton CO2/hr)co2+cao-
 - Carbonator: Fluidized bed
 - Calciner: rotary kiln (oxy-fuel combustion and flue gas recirculation)
 - · Accumulation operation time about 2600hr, Continuous run time>106hr
 - Capture efficiency> 90% and calcination efficiency> 80%
 - · Deactivated adsorbent completely serves as cement raw material
- Won the 2014 R&D 100 Awards in the "Environmental Technologies" category

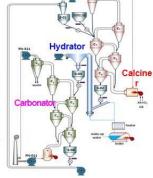
Ca-Looping test facility site located Hoping Cement plant

1.9MWt Pilot Plant & 500kWt New Generation System

CaCO₃

CO2 + CaO

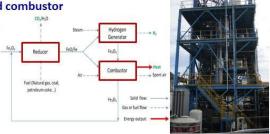

ITRI – R&D Activities(3/6)


■ New Generation Cal-Looping System

- the calcium looping system
 - Convert CaO to Ca(OH)₂ via steam hydration
 - Sorbent reactivate its activity to increase conversion rate
 - Decrease sorbent circulation amount (reactor size)
- Integrate a steam hydration process into
 Utilize cascade cyclones to develop a new calcium looping system
 - Combine calcination and carbonation in a cascade cyclones system
 - Enhance heat exchange performance
 - Reduce the land acquisition demand

Established 500kWt Test Facility

- Carbonator: Cascade cyclone
- Hydrator: Entrained-bed
- Calciner: Cascade cyclone and Oxy-fuel combustion
- 0.16 ton/hr CO₂ capture capacity



ITRI - R&D Activities(4/6)

■ Iron Based Looping Process for CO₂ Capture and H₂ Generation

- 30 kWt Iron Looping System in southern Taiwan
 - √ Main components: reducer, oxidizer and combustor
 - ✓ Counter-current moving bed for oxygen carrier
 - √ Gas and Solid fuel feedstock design
 - √ ~99% CO₂ generated from the reducer, while methane could be completely consumed by oxygen carrier
 - √ ~95% H₂ generated from the oxidizer

30 kWt Iron Looping System

Amine-Functionalized Mesoporous Silica Particles (MSP) Adsorption

- Development of various modification technology, the adsorption capacity more than 120mg CO₂/g
- Establish a pilot-scale spray drying manufacturing system, production rate of MSP is 1 kg/h
- · Setup a bench-scale fixed-bed adsorption system
 - √ Gas Flow rate: 5~100 L/min, loading: 200 g~1 kg of MSP

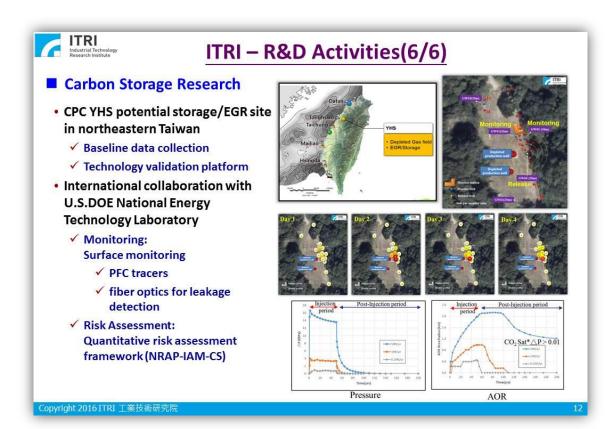
Copyright 2016 ITRI 工業技術研究院

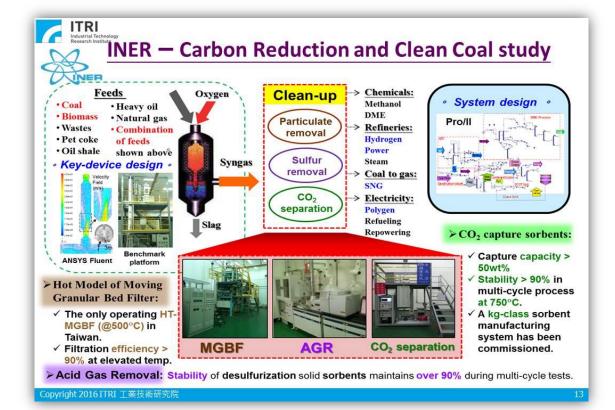
10

ITRI – R&D Activities(5/6)

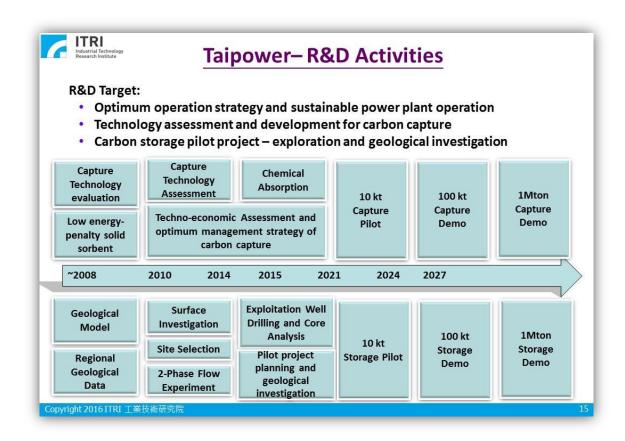
■ ITRI's Experience in Coal Gasification

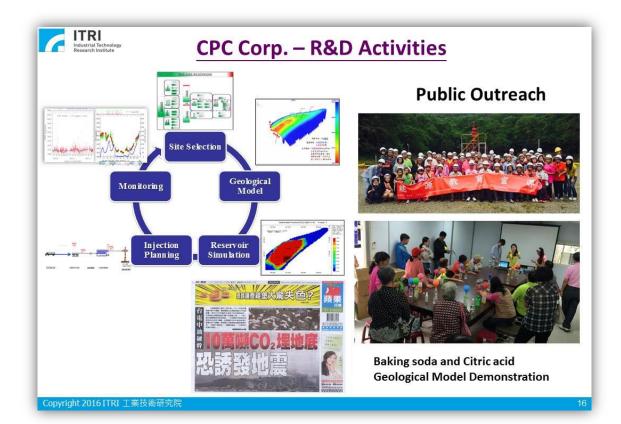
- Pressured gasification experimental system in Taiwan
 - √ 2 tons coal/day entrained-flow gasifier
 - Oxygen blown, dry and slurry feedstock, operating pressure below 10bar
- Gasification characteristics for coal and petroleum coke
 - Testing of gasification characteristics for six types of coals and CPC's petroleum coke
 - ✓ Carbon conversion rate and cold gasification efficiency are 95% and 75%, respectively
- · Technology focuses on
 - √ 50~100 tons coal/day gasification system design and planning
 - ✓ Feeding technology
 - ✓ Biomass co-gasification technology
 - ✓ System control & simulation

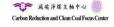



Industrial Furnace

ITRI's Gasification Plant (located at Kaohsiung)


Copyright 2016 ITRI 工業技術研究院


1



National Energy Program-Phase II Carbon Reduction and Clean Coal Focus Center

- Mission
 - 1. Development of advanced combustion systems
 - 2. Development of CCSU technologies
- Cooperation among industry, academia and research institute to build up pilot plants at large CO₂ emission sites and establishment of CCSU industries
- 4. Promotion of international collaboration

Development of CO₂ capture technologies

- √One CO₂ capture demonstration plant using chemical absorption in RPB and PB (1 ton/day) at Formosa Petrochemical (technology is transferred from NTHU)
- √ The research of CO₂ capture using chemical absorption and adsorption by mesoporous adsorbents grafted with amines is being carried out by ChangChun Petrochemical Group and NTHU

Development of CO₂ utilization technologies

- ✓ One demonstration plant for cultivation of microalgae using the captured CO₂ has been built and in operation at Greenyn Biotechnology (technology is transferred from NCKU)
- ✓ The research is being carried out by ChangChun Petrochemical Group and NTHU

Development of CO₂ storage technologies

✓ Several universities, Taipower and China Petroleum Corp are integrated to explore the CO₂ storage potential sites and storage capacity as well as to establish the monitoring technology

Development of advanced combustion systems

- √ 1 kW moving-bed CLP (NTUT) have been built
- √ 100 kW oxy-fuel combustion furnace has tested using multiple feedstock (NCKU)
- √ 1 kW solid oxide fuel cell (SOFC) system (NCKU)
- √ The establishment of MW gasification plant in Coastal Industrial Park is being assessed

Copyright 2016 ITRI 工業技術研究院

17

Closing Remarks

- As almost 90% of the Taiwan's total energy supply come from fossil fuels and 44.7% of power generation from coal, CCS technologies are needed here for reducing the CO₂ emission while burning fossil fuels.
- In particular, CCS is envisioned to play a very important role for Taiwan's situation.
 - Speed-up of the RD&D is necessary.
 - Urgent needs for policy and regulatory framework to guide the CCS development and deployment.
- It is also important to cooperate with industries for CCS technologies.
- International cooperation and information exchange are essential to expediting the global CCS technology development and deployment.
- Public outreach and acceptance to CO₂ geo-sequestration, however, is a critical issue that can not be ignored.

Copyright 2016 ITRI 工業技術研究院

10