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CSIRO ENERGY

CSIRO Darwin

People
Locations 58
Business units 8

Budget S1B+

Top 1% of global institutions in 62% of our people hald
14 of 22 research fields i i
university degrees
v S500M+ annual
Industry focus: 1600 Australian 2000 doctorates revenue generated

companies, 350+ Multi-nationals 500 masters from external sources

Current portfolio, CSIRO’s lines of business

Impact
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BIOSECURITY
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Our track record: top inventions
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CSIRO Energy

Clean
energy
solutions

Fuels &  $120 millions
s - 310 researchers

Production, Transport,
Resource exploration conversion, transmission,
generation distribution

Carbon Grids &
capture & energy
storage efficiency
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Gasification, H2 production, and
‘Pre-combustion Capture’ R&D

Daniel Roberts | Research Group Leader

CSIRO ENERGY

CSIRO Gasification Research

Fundamental science supporting industrial application

ilot-scale R&D and
g studies

Gasification reaction science:

devolatilisation, char formation,
heterogeneous kinetics, high

Urban Waste temperature processes
R&D in support of technology
Coal ; development
Inorganic chemistry: slag formation and

Biomass e flow; mineral matter and trace element = ———> ] ]
transformations, speciation, and Matching feedstocks to gasifiers,

Agricultural Waste behaviour; chemistry of residues and feedstock requirements
ash

Lignites Supporting gasifier design,
Modelling: Gasification, gasifier, and optimisation, troubleshooting

process models

Scale: Technical and pilot-scale studies
of feedstock behaviour
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CSIRO Gasification Research

Supporting experiments allowing detailed
interrogation of the gasification process

Gasification behaviour data under
relevant gasification conditions

Lab scale facilities for
studying feedstock

. conversion behaviour
Entrained flow reactor for

studies of fuel gasification
behaviour at high temperatures
and pressures.

B Fixed bed biomass gasifier for
= studying gasification characteristics of
wood and other biomass wastes

Characterisation of inorganic
species to troubleshoot gasifier
operation and manage disposal or
reuse of residues

@

Preheating —_—
and mixing

* Entrained-flow reactor
Feeder

* Capable of 20 bar pressure,
1500°C wall temperature

 Coal feed rate of 1-5 kg/hr

* Gas mixtures of O,, CO,, H,0
and N,

* Adjustable sampling probe -
char and gas samples
collected at different
residence times (0.5-3s)

Three-section
reaction zone T~ L

Water quench \

Sampling probe
and gas analysis

Mineral Matter in Gasification
Slag viscosity, trace elements, and their impacts

Wall slag

Coarse slag

Volatile species (in syngas):
¢ requirements for syngas cleaning
Condensed phases (slag, fly ash):
* Syngas cleaning
* Operational: slag viscosity
¢ Utilisation/handling of waste
¢ Physical & chemical properties: trace elements, leaching

T ©

Quench water and/ or
Tapped slag gas cleaning




Gasification modelling
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Biomass and waste gasification

New facility for studying gasification behaviour of

biomass

e Designed for forestry waste

o Well-suited for green waste

Research gasifier

e Can be integrated with gas-to-liquid test facilities

e Can be integrated with a 25kW microturbine for power

generation

Gasifier operation
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Metal membranes

Syngas Stream =
High catalytic activity

Tolerance to H,S, CO, H,0
Low transport resistance
Thermal stability

Sepa ration of H 2 from Feed side catalytic layer Low cost

gasification, reforming or
ammonia-derived mixed

High permeability
Embrittlement resistance

t Core Low transport resistance
gas streams Thermal stability
Low cost
Permeate side catalytic layer High catalytic activity

Low transport resistance
Thermal stability

‘ ‘ “ ~ } High purity Hydrogen Low cost

Supported Pd membrane Layered V membrane
- Pd layer provides gas-tightness and H, separation - Pd layer provides H, separation
- Porous substrate provides strength « V provides gas-tightness and strength

Catalytic alloy layer (200 nm)

Pd-alloy layer (10 um) N

Dense V substrate (200 pm)
Porous substrate (2 mm)

Pd in outer layer: USD 2400 m2
Porous substrate: USD 5000 m
plus manufacturing costs

Catalytic alloy layer (200 nm)

100% H, purity

Vin substrate: USD 180 m?2
Catalytic layers: USD 100 m2
plus manufacturing costs

Must be >>10 pm to meet ISO14687

@



Layered V-based membranes

Embrittlement-resistant V-based alloy tube
(patent pending)

+ 9.5mm (3/8”) OD

* Catalytic surface coatings

* 300-350°C

* Very low cost (< $2000/m? plus vessel), much
cheaper than competing Pd-based membranes

* 100% pure H, (fuel cell compatible)

Mounting material

Vanadium

x5, 888 Sem 9888 18 45 SEI

Industrial trials: Gas Reforming
Coregas plant at Port Kembla 6/{/}

BLUESCOPE

Roforence No.: P00740-16

CERTIFICATE OF ANALYSIS

Hydrogen Purity ex CSIRO Tral Hydrogen Plant

+ Assessment of membrane performance for IGCC-CCS at EERC, Grand Forks ND
« Lignite-derived syngas

+ 30 bar, 350°C

+ US DOE program

T ©



Solar reforming, 2015

+» Low temperature membrane reformer for solar-assisted H, production
» High methane conversion at 20 bar, 550°C (c.f. 800°C)

* In situ H, extraction (no downstream separation required

« Solar-thermal integration

« Partnership with ARENA

Catalyst bed Reactor shell

Natural gas + steam

; .A‘t—) H,-depleted syngas

¥
Membrane

CH, +2H,0 2 CO, + 4H,

. ©



Carbon dioxide storage

Lincoln Paterson | CSIRO Fellow
24 October 2016

ENERGY FLAGSHIP

Australian energy production

Australian energy production, by fuel type
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Source: Department of Industry and Science (2015) Australian Energy Statistics, Table J.

Australian electricity generation

Australian electricity generation, by fuel type
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Source: Department of Industry and Science (2015) Australian Energy Statistics, Table O.
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Carbon diexid

Carbon dioxide storage

* CSIRO is currently working on:

* Supporting the evaluation of Australian storage sites (especially the SW Hub,
CarbonNet, and Surat Basin sites).

= Modelling the injection of injected CO, plumes.

* Devising and applying methods to monitor the injected CO, to ensure it
remains safe and secure.

* Examining movement of groundwater in the vicinity of potential storage
sites.

* Engaging in international collaboration on CO, storage.

* CSIRQ is a core research participant in the Cooperative Research Centre for
Greenhouse Gas Technologies {(CO2CRC} and the National Geosequestration
Laboratory (NGL).

Carben dioxide storage | Linceln Patersen

CO2CRC Otway Project

CO2\CRC

Carbon dioxi age nceln sof %




CO2CRC Otway Project

Carbon dioxide storage | Lincoln Paterson

Enhanced coal seam gas recovery with CO,
at Liulin




Reservoir simulation of injected CO,
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Permeability realisation 1

Carbon dickide storage | Linceln Patersen

Designing CO, wells

Developing recommendations fo
well location, testing and
instrumentation options for:

* Risk reduction and site
characterisation, to define the CO,
storage complex (containment and
reservoir).

* Research and middle to long-term

monitoring (e.g. deploy new
instruments, implement new testing
program, implement new injection
technigues).

Carbon dicxide storage | Linceln Paterson

Wellbore conditions
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Option 2:
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Option 3
Passive Investigation

{Not shown: DTS, Utubes)

@

a CO, well
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Integrity of wellbore cement

Cement degradation

Cement Calcium Amorphous
{portlandite) Carbonate silica gel

+ Laboratory experiments of cement
degradation

* Reactive geochemistry simulations

* Predictions of well cement degradation
under reservoir conditions

Carbon dioxide storage | Lincoln Patersen

Otway project experience book

GEOLOGICALLY Publisher: CSIRO PUBLISHING

STORING CARBON Hardback - August 2014
OTV\;_ISYAES:J'}E(:;REOX'\Q;I;:ENCE ISBN: 9781486302307
AU $140.00

http://www.publish.csiro.au/pid/7317.htm

EDITOR: PETER J COOK




An overview of Emissions Management and
CO, Capture research at CSIRO

Ashleigh Cousins
24 October 2016

CSIRO ENERGY

Electricity production in Australia
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3 | Presentation title | Presenter name &

Australian coal fired power stations

| |Blackcoal [Brown coal

Average efficiency 35.6 25.7 (_E' 150 N
[% HHV] § Australia
CO, emission 0.9 13 7

E. 100
[tonne/MWh] s = Fuel costs
SO, concentration 0.5-1.7 0.2-0.7 E = O&M costs
[g/m?] g s
NO, concentration 0.4-1.5 0.2-04 2 = Capital cost
[g/m?] ] .

o
Particulate matter 10— 100 10 — 60 No CO, Capture 90 % CO, Capture
[mg/m?] \_ _/
Flue gas temperature 120 180
[°C]

Data derived from CCS0 — technology assessment report 62




PCC equipment costs overview

M FGD + SCR

M Pre-treatment

m Blower

M Absorber

W Heat exchangers
W Stripper/Reboiler
W Compressor

e ©

CSIRO’s PCC program

Learning by doing Learning by searching

; |

. ( Research & )
Pilot plants
P Development

AGL Loy Yang Powe
CISRO pliot plSi ) Novel processes
PICA pilot plant Amines e e (e
Delta Electricity _ ; -
Vales Point pilot plant Adsorbents Envllronmental
( > ( impacts )

Stanwell = N
Tarong pilot plant Membranes

China Huaneng
Beljing
Changchun

D

CSIRO’s chemical absorbent research program
Graeme Puxty

~

e Absorbent formulations based on readily available compounds
—typically aqueous amines and low cost additives

s Advanced aqueocus ammonia

« New compounds designed specifically for CO, capture — new
amine compounds

i |
* New absorbent systems and associated process concepts:

» Light-swing absorbents

# Phase change absorbents
Long-term [




Rotating liquid sheet contactor
Leigh Wardhaugh

Basic principles

e Surface area of stabilized liquid sheet greater than that resulting droplets
e Rotating liquid surface proven experimentally to pump gas

e Centrifugal + liquid pumping force creates interfacial area

Advantages
e Higher gas velocities possible
e Liquid entrainment significantly reduced

e Suitable for viscous solvents

Challenges
e Scale-up to commercial scale
e Liquid residence time low

Integrated single stream SO, and CO, capture
Ashleigh Cousins
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Beyad et al., International Journal of Greenhouse Gas Control 31 (2014) 205-213

Aqueous ammonia
Hai Yu

> Indestructible liquid absorbent

» Chemical well-known to electricity
industry

> Suited for “contaminated” feed gases

»~ Fertiliser by-product

» Product CO, at elevated pressure

> Technical feasibility demonstrated in pilot
plant but no cost advantage

» Addressing challenges:

O Mass transfer promotion, temperature increase { 3\

O Vapour suppressors

O Further integration of pretreatment and water
wash

O Process design

s



Solid sorbent CO, capture unit at Vales Point
Ramesh Thiruvenkatachari

> Objective
O Evaluate the stability of honeycomb CF composite
monolithic adsorbents using the real flue gas
O Understand the effect of real flue gas characteristics
on the operation and performance of the CO,
capture unit

» Results

O Excellent stability to real flue gas over 200
experiments :

U €O, adsorption efficiency consistently over 98%

U €O, desorption efficiency between 90-95% 4

U Near complete removal of SO, and NO,

O Could be pretreatment unit for amine based
PCC

Emission issues addressed via integrated

approach
Merched Azzi

1. Formation of potentially harmful components
e Absorbent degradation in absorber
e Absorbent degradation in desorber

2. Emission analysis
e Estimation of concentrations using process models
e Actual measurements in pilot plants

3. Dispersion
* Smog chamber to investigate atmospheric degradation
e Updating dispersion models with atmospheric chemistry

e

Piloting PCC Technologies in Australia

ectrici
Taea e Yang
Dett 1o M $hes poi
P> B Solid Vales Point
Electri city Sorbents
nmorah

Thermal

1 1 1 | 1 1 1 1 | 1 1 | | 1
' 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Establishment of capability
and infrastructure
-Preparing for deployment
- Next-generation PCC

.




Pilot plant summary
Aaron Cottrell

m N e -

Solvent Amine Ammonia/ Amine Amine
Amine
Flue gas source Brown coal Black coal Black coal Brown coal
Scale 50 kg/hr CO, 300 kg/hr CO, 100 kg/hr CO, 50 kg/hr CO,
Focus Solvent Ammonia Process Duration
benchmarking operation optimisation evaluation
Other Emission study Pressurised Pressurised
activities combined absorption stripping
CO,/SO, capture Solarthermal Corrosion
integration Degradation

N

Solar thermal energy for absorbent regeneration
James McGregor

> Avoiding interface with existing Pilot plant at VVales Point power
steam cycle station

> More effective in terms of CO- > Integrated with existing PCC pilot
emission reduction plant

> Introduction of flexibility into the > 65 kW, solar array

capture process

PICA project

Aaron Cottrell

Project aims:

> 40% lower cost compared to the MEA base

case
OAdvanced packing materials, liquid absorbent and

process

> Long-term performance evaluation both IHI
Corporation and CSIRO developed
technologies

> Supporting large-scale CCS as an affordable,
secure and environmentally benign option
for power generation

NAGL
Realize your dreams [l 1\ NOVATIQ N



Process Development Facility
Dan Maher

» Located at Newcastle
Energy Technology Labs

» Scale between Lab
bench scale and Pilot
scale

- Modular design
- Flexible operation

 Ventilated & bunded
space

- “Controlled” environment

Outlook for PCC in Australia — Next steps

» Qualification of new liquid absorbents towards
deployment

* Formulations and designer amines
+ Optimisation of process design

» Development of SO,/CO, process concept
> Focus on process and equipment innovation
> Solar thermal integration demonstration

> Continued efforts in next-gen technologies
* Adsorbents, membranes
* Advanced liquid absorbent systems
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