

Queensland Centre for Advanced Technologies (QCAT)

Welcome, safety and CSIRO

24 October 2016

CSIRO ENERGY

Current portfolio, CSIRO's lines of business

VACCINE

TOTAL
WELLBEING DIET

Gasification of coal, biomass, and waste

CSIRO Gasification Research

Fundamental science supporting industrial application

CSIRO Gasification Research

Supporting experiments allowing detailed interrogation of the gasification process

Characterisation of inorganic species to troubleshoot gasifier operation and manage disposal or reuse of residues

High Pressure Entrained Flow Reactor (PEFR)

- Entrained-flow reactor
- Capable of 20 bar pressure. 1500°C wall temperature
- Coal feed rate of 1-5 kg/hr
- Gas mixtures of O₂, CO₂, H₂O and N₂
- · Adjustable sampling probe char and gas samples collected at different residence times (0.5-3s)

Mineral Matter in Gasification

Slag viscosity, trace elements, and their impacts

Volatile species (in syngas):

- requirements for syngas cleaning Condensed phases (slag, fly ash):
 - Syngas cleaning
 - · Operational: slag viscosity
 - Utilisation/handling of waste
 - · Physical & chemical properties: trace elements, leaching

Gasification modelling

Biomass and waste gasification

New facility for studying gasification behaviour of biomass

- Designed for forestry waste
- Well-suited for green waste

Research gasifier

- Can be integrated with gas-to-liquid test facilities
- Can be integrated with a 25kW microturbine for power generation

Gasifier operation

Top air	Primary air	Secondary air	Total air (kg/hr)
0	39	29	68
0	44	34	78
0	48	40	88
0	53	45	98
0	58	50	108

Metal membranes and membrane reactors

Metal membranes

Separation of H₂ from gasification, reforming or ammonia-derived mixed gas streams

Supported Pd membrane

- Pd layer provides gas-tightness and H₂ separation
 Porous substrate provides strength

Must be >>10 µm to meet ISO14687

Layered V membrane

Pd layer provides H₂ separation
 V provides gas-tightness and strength

V in substrate: USD 180 m⁻² Catalytic layers: USD 100 m⁻² plus manufacturing costs

Layered V-based membranes

- Embrittlement-resistant V-based alloy tube
 (natent pending)
- (patent pending)
 9.5 mm (3/8") OD
- · Catalytic surface coatings
- 300-350°C
- Very low cost (< \$2000/m² plus vessel), much cheaper than competing Pd-based membranes
- 100% pure H₂ (fuel cell compatible)

Industrial trials: Gas Reforming

Coregas plant at Port Kembla

Page 1
For enquires please con
Nine Coetts.
(30) 4275

Hydrogen Purity ex CSIRO Trial Hydrogen Plant

a controller has been instand a thout any administration or connectors and shall not be reproduced section.

The following swepter collected by the laboratory have been analysed with the following results.

Laboratory Number: 16-015359

Call of Samples (South Call of Samples)

Samples (South Call of Samples)

Samples (South Call of Samples)

Lignite gasification trials, 2015

- Assessment of membrane performance for IGCC-CCS at EERC, Grand Forks ND
- · Lignite-derived syngas
- 30 bar, 350°C
- US DOE program

Solar reforming, 2015

- Low temperature membrane reformer for solar-assisted $\rm H_2$ production High methane conversion at 20 bar, 550°C (c.f. 800°C) In situ $\rm H_2$ extraction (no downstream separation required Solar-thermal integration Partnership with ARENA

 $CH_4 + 2H_2O \rightleftharpoons CO_2 + 4H_2$

Carbon dioxide storage

Lincoln Paterson | CSIRO Fellow 24 October 2016

ENERGY FLAGSHIP

Australian energy production

Source: Department of Industry and Science (2015) Australian Energy Statistics, Table J.

Carbon dioxide storage | Lincoln Patersor

Australian electricity generation

Source: Department of Industry and Science (2015) Australian Energy Statistics, Table O.

ıll||ı CSIRO

Carbon dioxide storage

- CSIRO is currently working on:
 - Supporting the evaluation of Australian storage sites (especially the SW Hub, CarbonNet, and Surat Basin sites).
 - Modelling the injection of injected CO₂ plumes.
 - \bullet Devising and applying methods to monitor the injected ${\rm CO_2}$ to ensure it remains safe and secure.
 - Examining movement of groundwater in the vicinity of potential storage sites.
 - Engaging in international collaboration on CO₂ storage.
- CSIRO is a core research participant in the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) and the National Geosequestration Laboratory (NGL).

Carbon dioxide storage | Lincoln Paterson

CO2CRC Otway Project

CO2 CRC

CO2CRC Otway Project

CO2 CRC

Carbon dioxide storage | Lincoln Paterson

Example of a CO₂ well

Carbon dioxide storage | Lincoln Paterson

Enhanced coal seam gas recovery with CO₂ at Liulin

Reservoir simulation of injected CO₂

Carbon dioxide storage | Lincoln Patersor

Designing CO₂ wells

Developing recommendations for well location, testing and instrumentation options for:

- Risk reduction and site characterisation, to define the CO₂ storage complex (containment and reservoir).
- Research and middle to long-term monitoring (e.g. deploy new instruments, implement new testing program, implement new injection techniques).

Carbon dioxide storage | Lincoln Paterson

Wellbore conditions

Wellhead (surface) conditions

Pressure and temperature in a CO₂ well

Integrity of wellbore cement

Cement degradation

Cement (portlandite) Calcium Carbonat Amorphous silica gel

- Laboratory experiments of cement degradation
- · Reactive geochemistry simulations
- Predictions of well cement degradation under reservoir conditions

Carbon dioxide storage | Lincoln Paterson

Otway project experience book

Publisher: CSIRO PUBLISHING

Hardback - August 2014

ISBN: 9781486302307

AU \$140.00

http://www.publish.csiro.au/pid/7317.htm

Electricity production in Australia

3 | Presentation title | Presenter name

Australian coal fired power stations

	Black coal	Brown coal
Average efficiency [% HHV]	35.6	25.7
CO ₂ emission [tonne/MWh]	0.9	1.3
SO ₂ concentration [g/m³]	0.5 – 1.7	0.2 – 0.7
NO_x concentration [g/m ³]	0.4 – 1.5	0.2 – 0.4
Particulate matter [mg/m³]	10 – 100	10-60
Flue gas temperature [°C]	120	180
	120	180

Data derived from CCSD – technology assessment report 62

PCC equipment costs overview

CSIRO's PCC program

CSIRO's chemical absorbent research program

Graeme Puxty

Rotating liquid sheet contactor

Leigh Wardhaugh

Basic principles

- Surface area of stabilized liquid sheet greater than that resulting droplets
- Rotating liquid surface proven experimentally to pump gas
- Centrifugal + liquid pumping force creates interfacial area

Advantages

- · Higher gas velocities possible
- · Liquid entrainment significantly reduced
- Suitable for viscous solvents

Challenges

- · Scale-up to commercial scale
- · Liquid residence time low

Wardhaugh et al, Greenhouse Gas Sci Technol. 5:198–209 (2015)

Integrated single stream SO_2 and CO_2 capture Ashleigh Cousins

Puxty et al. 2012, WO2012_097406

Aqueous ammonia

Hai Yu

- Indestructible liquid absorbent
- Chemical well-known to electricity industry
- Suited for "contaminated" feed gases
- Fertiliser by-product
- Product CO₂ at elevated pressure
- Technical feasibility demonstrated in pilot plant but no cost advantage
- > Addressing challenges:
 - ☐ Mass transfer promotion, temperature increase
 - Vapour suppressors
 - Further integration of pretreatment and water wash
 - □ Process design

Solid sorbent CO₂ capture unit at Vales Point

Ramesh Thiruvenkatachari

> Objective

- ☐ Evaluate the stability of honeycomb CF composite monolithic adsorbents using the real flue gas
- ☐ Understand the effect of real flue gas characteristics on the operation and performance of the CO₂ capture unit

> Results

- ☐ Excellent stability to real flue gas over 200 experiments
- ☐ CO₂ adsorption efficiency consistently over 98%
- \square CO₂ desorption efficiency between 90-95%
- ☐ Near complete removal of SO₂ and NO_x
- ☐ Could be pretreatment unit for amine based PCC

Thiruvenkatachari et al. IJGGC 42 (2015) 415–423

Emission issues addressed via integrated approach

Merched Azzi

- Absorbent degradation in absorber
- Absorbent degradation in desorber

2. Emission analysis

- · Estimation of concentrations using process models
- · Actual measurements in pilot plants

3. Dispersion

- Smog chamber to investigate atmospheric degradation
- Updating dispersion models with atmospheric chemistry

Piloting PCC Technologies in Australia

Preparing for deployment
- Next-generation PCC

CCS demo's

Pilot plant summary

Aaron Cottrell

Plant	Loy Yang	Vales Point	Tarong	PICA
Solvent	Amine	Ammonia/ Amine	Amine	Amine
Flue gas source	Brown coal	Black coal	Black coal	Brown coal
Scale	50 kg/hr CO ₂	300 kg/hr CO ₂	100 kg/hr CO ₂	50 kg/hr CO ₂
Focus	Solvent benchmarking	Ammonia operation	Process optimisation	Duration evaluation
Other activities	Emission study Combined CO ₂ /SO ₂ capture	Pressurised absorption Solar thermal integration	Pressurised stripping Corrosion Degradation	

Solar thermal energy for absorbent regeneration

James McGregor

- Avoiding interface with existing steam cycle
- More effective in terms of CO₂emission reduction
- > Introduction of flexibility into the capture process

Pilot plant at Vales Point power station

- Integrated with existing PCC pilot plant
- > 65 kW_{th} solar array

http://arena.gov.au/files/2015/08/3-A006-Final-Report-and-Lessons-Learnt.pdf

PICA project

Aaron Cottrell

Project aims:

- > 40% lower cost compared to the MEA base case
- ☐Advanced packing materials, liquid absorbent and
- Long-term performance evaluation both IHI Corporation and CSIRO developed technologies
- Supporting large-scale CCS as an affordable, secure and environmentally benign option for power generation

PCC IHI CSIRO AGL

Process Development Facility

Dan Maher

- Located at Newcastle Energy Technology Labs
- Scale between Lab bench scale and Pilot scale
- Modular design
- Flexible operation
- Ventilated & bunded space
- "Controlled" environment

Outlook for PCC in Australia – Next steps

- Qualification of new liquid absorbents towards deployment
 - Formulations and designer amines
 - · Optimisation of process design
- Development of SO₂/CO₂ process concept
- Focus on process and equipment innovation
- Solar thermal integration demonstration
- Continued efforts in next-gen technologies
 - Adsorbents, membranes
 - Advanced liquid absorbent systems

