

Advanced pressure management pilot project in Yilan Taiwan

Lin, Chih-hsien

Taiwan Water Corporation

1.Literature Review

2.Methodology

3.Results

4.Conclusion

Literature Review

Eerste River

PRV with an electronic controller in 2009

leakage savings 12%

burst pipes drop 50%

FAVAD theory

$$\bullet \ \frac{L_1}{L_0} = \left(\frac{H_1}{H_0}\right)^{N_1}$$

Country	Years	N ₁
UK	1977	1.13
Japan	1979	1.15
Brazil	1998	1.15
Taiwan TWD	2011	1.85

Why traditional PRV can not pressure management well ?

Fixed outlet pressure for the peak demand

•the off-peak periods pressure will be too high

Check PRV usually 1 times/3years

•must be satisfied the 3-years period max demand

The operator may adjust the target value higher for specific needs

•forget to restore it

Reducing the pressure modes

1. Fixed outlet pressure control 2.Timemodulated pressure control

Provide Water reducing vite Provid

(copy from Hamilton, S., McKenzie, R's paper)

3.Flow modulated pressure control 4.Closed loop and hybrid control

Results

- The pilot project, two fields in Yilan, Taiwan
 - Dajin
 - Nanfang'ao

Results(1)

Dajin (first area)

- about 200 households
- farming demand pattern
- ø100mm PRV
- September 2014 installed
- set time control mode

Dajin test results (before and after)

Dajin test discuss

Test around 1 month

Total water use 232→154m3/day

Saving 33.6%

Results(2)

Nanfang'ao (second area)

- about 2,400 households
- Ishing village demand pattern
- ø Ø300mm PRV
- March 2015 installed, test twice
- set closed-loop control mode
- critical point at Nan'an Junior High School

Nanfang'ao test 1 results (inlet and outlet)

2015/5/19~2015/5/26 PRV pressure

14

Nanfang'ao test 1 results (before and after)

♦ PRV outlet pressure

Nanfang'ao test 1 results (before and after)

Critical point pressure at Nan'an Junior High School

Nanfang'ao test 2 results (before and after)

oritical point pressure at Nan'an Junior High School

Nanfang'ao test 2 results (before and after)

PRV outlet pressure and flow

Nanfang'ao test 2 discuss

Test around 1 week

Total water use 5,470→5,040CMD 7.87%↓

MNF 3,750→3,141.6CMD 16.2%↓

Discuss

Saving water

Cons

Mobile communication

Benefits

Conclusion

Pilot project worked well

Smooth pressure and fit the needs

Thank you for your attention

Better Water

Better Life