出國報告(出國類別:研習)

美國參考物質製備之程序、技術及 管理制度研習

服務機關:行政院環境保護署環境檢驗所

姓名職稱:巫月春 主任秘書

派赴國家:美國

出國期間:105年9月14日至9月24日

報告日期:105年12月6日

摘要

本次研習前往美國國家標準技術研究所(National Institute of Standards and Technology, NIST)馬里蘭州蓋瑟斯堡(Gaithersburg)及南卡羅來納州查理斯頓市(Charleston)研習,透過與負責美國土壤或底泥基質之參考物質研發部門之量測實驗室化學科學部門無機化學計量組及統計相關科學家進行研討,以了解美國標準技術研究所對於環境土壤或底泥基質標準物質製備技術,及其參考物質化學成分濃度、均勻度、穩定度、保存、運送等評估規範與管理制度,作為國內環境品質管制或盲樣製備與管理之參考。此外,國內環境檢測實驗室常購買美國商業機構製備之品管樣品,作為人員能力評估或檢測品質管制樣品,此次亦將參訪美國 SIGMA-ALDRICH 及 ERA 兩家土壤及水質參考物質製備機構及能力測試提供商業機構,就其能力試驗商品製備、確認、結果評估與其產品說明文件等之技術實務進行較深入之研討,解開我們對其品管樣品濃度確認證書所提供之數據範圍之疑惑與誤用。

目 錄

壹、	、目的	1
貳、	、過程	1
_	一、研習期間	1
_	二、研習内容	3
	(一) SIGMA-ALDRICH/RTC 公司	3
	(二) ERA 公司(Environmental Resource Associates, Inc.)	6
	(三) 美國 NIST 材料量測實驗室化學科學部門無機化學量測組	9
	(四) 美國 NIST 查理斯頓市辦公區化學科學部門環境化學科學組	22
參、	、心得	24
肆、	、建議	25
附	錄	27

壹、目的

本所常需購置國外參考物質(SRM)或驗證物質(CRM)作為各縣市環保局及檢測機構檢測能力之評估,但由於國內各地土壤組成不同,再加上土壤污染管制標準之限制,使得國際上能夠包含國內土壤基質及王水消化前處理之土壤類能力評估之參考物質(SRM)或驗證物質(CRM)不多,因此本所近期(自 104 至 106 年)規劃製備本土之土壤與底泥檢測能力評估之樣品,本次研習前往美國國家標準技術研究所參訪而有機會了解美國標準技術研究所環境標準物質技術資料及參考物質濃度驗證均勻度、穩定度、保存、運送等評估規範與管理制度,作為國內環境品質管製或盲樣製備與管理之參考。

此外,因國內環境檢測實驗室常購買美國商業機構製備之品管樣品,作為人員能力評估或檢測品質管制樣品,此次亦將參訪美國兩家土壤及水質參考物質製備機構及能力測試提供機構,就其能力試驗樣品製備、確認、結果評估與其產品說明文件等之技術實務進行較深入之研討,頓時解開了我們對該產品數據的疑義。

貳、過程

一、**研習期間**:105 年 9 月 14 日至 24 日

(一) 105 年 9 月 14 日 起程赴美 桃園搭機至美國加州洛杉磯,轉機到科羅拉多州丹佛市,搭車至懷俄明州 (Wyoming)拉勒米(Laramie)市

(二) 105年9月15日 拜訪 SIGMA-ALDRICH 公司

參訪議題:土壤及水質參考物質製備機構及能力測試提供者(PT Provider) 運作實務

受訪人: Christopher Rucinski 等人

(三) 105 年 9 月 16 拜訪 ERA 公司(科羅拉多州 Golden 市)

參訪議題:土壤及水質參考物質製備機構及能力測試提供者(PT Provider) 運作實務

受訪人: Melissa L. Wright 等人

- (四)105年9月17日 搭機前往美國華盛頓特區
- (五)105年9月18日 假日(整理資料)
- (六) 105 年 9 月 19 日 參訪美國 NIST(Gaithersburg 辦公區) 物質量測實驗室 化學科學部門無機化學計量組(NIST, Inorganic Chemical Measurement Group, Chemical Sciences Division Material Measurement Laboratory)

參訪議題:環境參考物質量測技術與方法

受訪人: Dr. Michael R. Winchester 等人

(七) 105 年 9 月 20 日 繼續拜訪 NIST 物質量測實驗室化學科學部門無機化學量 測組及資訊技術實驗室統計工程部門數學統計專家(Statistical Engineering Division Information Technology Laboratory Mathematical Statistician)

參訪議題:環境參考物質量測技術與方法及參考或確認物質(SRM/CRM)的 統計及計算方法

受訪人: Dr. Michael R. Winchester 及 James Yen(統計)等人

- (八) 105 年 9 月 21 日上午 搭機至南卡羅萊納州查理斯頓市(Charleston, South Carolina)
- (九) 105 年 9 月 21 日下午及 9 月 22 日上午 拜訪 NIST 查理斯頓市辦公區化學科學部門環境化學科學組(NIST at Charleston, South Carolina Chemical Sciences Division Environmental Chemical Science)

參訪議題:十壤及底泥 SRM 製備

受訪人: Dr. Steven J. Christopher 等人

(十)105年9月22日下午返程(查理斯頓搭機至紐約)

(十一) 105 年 9 月 23 日至 24 日 返程(紐約至桃園)

二、研習内容

(一) SIGMA-ALDRICH/RTC 公司

國內取得國際測試實驗室認證規節 ISO/IEC 17025 認證體系之環境實驗 室所孰知的美國測試領域能力試驗機構 RTC 公司,係位於美國懷俄明州拉 勒米市(Laramie, WY USA),數年前與美國 SIGMA-ALDRICH 公司合併, 併入後RTC公司成為SIGMA-ALDRICH區域部門,主要業務仍為辦理美國 或美國以外之能力試驗及檢測品管樣品之製造與銷售。在美國環保署 (USEPA)國家環境實驗室認證組織(The NELAC Institute,簡稱 TNI,其中 NELAC 為 National Environmental Laboratory Accreditation Conference 縮寫) 能力測試提供者(Proficiency Testing Provider,簡稱 PT Provider) 登錄名稱則 為"MilliporeSigma" (TNI PT Provider Code 為 TNIPTP41)詳見附錄 1 及附錄 2。目前該部門(以下簡稱 RTC)員工人數為 28 人,年營業額 1200 萬美元。 主要收入來自參加能力試驗者所繳費用及其所販售之品管樣品(即為經能力 試驗後所剩樣品)。RTC 每年會辦理數次(一般約 4 次)符合 USEPA 或 ISO/IEC 17025 之美國國內或國際能力試驗,在辦理能力試驗前一年半即會 在該公司網站上公布其能力試驗期程與項目資訊,接受美國國內或國外之測 試實驗室報名參加能力試驗。測試時,各參與實驗室進行樣品分析期限為45 天,RTC 會在收到各實驗室測試結果後 21 天內完成測試結果的統計分析, 每次參加測試之實驗室家數最少要有 4~8 家,理想是 20 家以上。如果是美 國國內能力試驗,參加能力試驗之實驗數家數可達百家;若參加的家數不足 時,RTC公司甚至會付費邀請某些實驗室參加測試,以符合統計要求。

RTC 美國國內能力試驗樣品製備及結果統計主要係依據 USEPA 規範之製備樣品及統計結果。USEPA 會具體規範各介質(例如飲用水、放流水、土壤、廢棄物...等)能力試驗樣品配製項目、濃度範圍及結果統計方法。RTC 通常每 3 個月會製備一批次能力試驗樣品,每批次樣品約有 300 瓶,同一次測試,樣品具有多批次,這些樣品寄發給付費參加能力試驗的實驗室測試後,依照 USEPA NELAC 統計規範或國際能力試驗規範 ISO 34 至 35 進

行統計分析,除將結果通知參加者外,各該批次所剩樣品即成為 RTC 之品管樣品(產品標示 CRM, Certificate Reference Material)。RTC 公司曾於 2003年(92年)與國內代理商和合作,由國內代理商提供國內台中及彰化地區重金屬污染場址之土壤,製備成能力測試樣品,這些樣品並由當時取得本署土壤重金屬許可之檢測機構 23 家檢驗室進行能力試驗,此測試後之樣品至今仍常被國內土壤實驗室做為技術或績效評估之品管樣品(CRM045-050及 CRM046-050)。

RTC 公司所製備與銷售的品管樣品會提供此樣品之性質與應用、製備、分析、結果評估與其他資訊等證明文件(Certificate of Analysis,簡稱 CoA),以其編號 CRM026-050 之土壤品管樣品(附錄 3)為例,重點摘要說明如下:

- 1. 本樣品取自美國洛磯山脈輕微污染場址之天然土壤基質含砷、鎘、鉻、銅、鉛、汞、鎳及鋅等 8 種金屬之 CRM,樣品經風乾、過篩及均勻化處理後,每一瓶裝填重量約 50 克。此批樣品經 26 家檢驗室以 USEPA SW846 Method 3050 6010(ICP)及 7060(AA)檢測分析,分析濃度資訊則是依據 USEPA/AALA RM-03 及 ISO 34 至 35 進行統計分析之結果。
- 樣品經均勻度測試濃度確認,取樣時須將樣品混合均勻後再稱取1克, 精秤至0.1克,分析結果並以乾基計算。
- 3. 結果評估:確認參考值係以 USEPA SW846 Method 7060A 分析砷、USEPA SW846 Method 7471B 分析汞、王水消化 DIN 38414-S7 分析鎘、鉻、銅、鉛、鎳及鋅等 6 種重金屬元素進行實驗室間測試,統計方法是USEPA BIWEIGHT Method,信賴區間為 95%。

前述所舉樣品常為國內環境測試實驗室引用於真實樣品分析時之品管樣品或本所辦理檢測機構之許可管理時之技術能力評估樣品,長期來我們採用之合格範圍為其 CoA 上之 Confidence Interval(CI),本次參訪研習時,特別針對這些數據請教 RTC Site Manager—Christopher Rucinski 先生,釐清 CoA 上之 Confidence Interval(CI)是依據 USEPA NELAC 能力試驗提供者在試驗樣品「Assigned Value」研究之品質管制規範(附錄 6),USEPA NELAC 對此之規範為 1 倍相對標準差以內,RTC 公司將此 CI 顯示於報告中主要

是展現本 CRM 樣品製備時之濃度確認分析數據品質之良莠;26 家國際實驗室能力測試之結果,以 Grubb Test 方法去除離群值(Outliner),採用 Z-SCORE 統計方法得到之範圍列為 CoA 上之 Prediction Interval(PI) 即為一般的3倍 SD,這個回答終於解開我們長期以來對合格範圍很窄及 CI 如何而來的困惑。另外,此次 Christopher Rucinski 也介紹 RTC 在樣品製備上,除直接採自然受污染場址之天然基質樣品,也會採用外添加污染物方式,其添加技術以有機農藥樣品為例,將農藥標準品溶於丙酮中,再添加於過100 mesh 篩網之天然土壤樣品,標準溶液量需要蓋過土壤,將樣品至於排煙櫃,將丙酮慢慢吹乾即可得到濃度均勻分布之有機農藥之土壤基質樣品。這個製備方法將可提供國內未來發展含基質盲樣之參考,也是本次參訪重要收穫。

圖 1 參訪位於美國懷俄明州拉勒米市(Laramie, WY)的土壤及水質參考物質製備機構及能力測試商業機構 SIGMA-ALDRICH/RTC公司,主要訪談對象為 Christopher Rucinski (Site Manager 右 1)及 Patrick Brumfied (Product Manage 右 2)

(二) ERA 公司(Environmental Resource Associates, Inc.)

ERA 公司也是國內取得國際測試實驗室認證規範 ISO/IEC 17025 認證 體系之環境實驗室孰知的美國測試領域能力試驗機構,它位於美國科羅拉 多州 Golden 市,數年前將美國另一家性質相同的製造與銷售品管樣品公司 APG 併入,幾年前又再與另一家儀器公司-WATERS 公司合併。合併後 ERA 公司還是以辦理能力測試及品管樣品之製造銷售業務為主,在 USEPA 國 家環境實驗室認證組織(TNI)能力測試提供者(PT Provider) 登錄名稱則為 " Environmental Resource Associates, Inc." (TNI PT Provider Code 為 TNIPTP21) 詳見附錄 1 及 $5 \circ$ ERA 公司規模較 RTC 大,員工人數為 74 人, 主要營業項目也是舉辦美國國內及國際能力試驗及其品管樣品販售(亦為 經能力試驗後所剩樣品)。ERA 公司每年辦理數次、類別及批次皆比 RTC 公司多且廣,幾乎是每個月均有辦理,這些資訊均可以從該公司網站上查 得(目前可以查到2018年初的能力測試計畫)。參加測試之實驗室家數最少 要求為7家,ERA公司有一項較快速提供結果之能力試驗,其最快可以在 參加者將檢測數據送達之 10 天內給統計分析報告(這種測試 ERA 稱為 「QUICK PT」,它是利用經能力測試過之所剩之樣品與統計結果,來評估 QUICK PT 參加者之能力試驗結果),其測試相關規範亦符合 USEPA 或 ISO/IEC 17025 之美國國內或國際能力試驗。

USEPA NELAC 對能力試驗提供者所配製基質、配製濃度範圍及能力 測試合格範圍均有明確規範。詳見附錄 4~5(飲用水、放流水)。表列各規範 說明如下:

- 1.「Conc Range」即是能力試驗樣品須配製之濃度範圍,以附錄 4 表之飲用水中銅為例,測試樣品中銅的配製濃度範圍應介於「50-2000」 ug/L 間。
- 2. 「Acceptance Criteria」之「a」及「b」是 NELAC 根據過去一段時間各能力試驗公司所配置樣品配製濃度結果統計出不同濃度經由線性回歸分析得到配製濃度值之截距(b)與斜率(a);「c」及「d」根據過去能力測試,在

規定濃度範圍內各樣品測試結果之 SD 統計出不同濃度經由線性回歸分析得 SD 之截距(c)與斜率(d)。實際應用情況,例如:某公司配製廢水中 $100\,\mathrm{ug/L}$ 的砷,由表 5 查得其 a=0.9916,b=1.2647,c=0.0422,d=5.1741 此時預估配製之平均濃度為 $100\,\mathrm{ug/L} * 0.9916 + 1.2647 = 100.4\,\mathrm{ug/L}$, 100.4 * 0.0422 + 5.1741 = 9.4%(此即為 $1\mathrm{SD}$ 的範圍) 3 * 9.4% = 28.2% 能力試驗之 Acceptance Criteria 即為 100.4 + 28.2%至 100.4 - 28.2%。一般 NELAC 對飲用水 Acceptance Criteria 訂為 $2\mathrm{SD}$,放流水為 $3\mathrm{SD}$,甚至 有些項目 NELAC 即規定一個固定百分比之範圍,例如飲用水中銅測試 樣品濃度範圍應介於「50-2000」 $\mathrm{ug/L}$ 間其能力測試合格範圍均為配製濃度之 10%。

3.「NELAC PTRL」是指 NELAC 要求參加能力測試的實驗室回報極限值, 意思是若能力測試樣品製備時並未添加此項目標物,實驗室回報超過 PTRL 之數據,即顯示該檢驗室有背景污染問題。以飲用水中砷為例,測 試樣品製備時若未添加砷標準品,檢驗室回報樣品砷之濃度應小於 3.5 ug/L,大於 3.5 ug/L 時,顯示受測試之檢驗室應檢討系統中砷污染來源。

ERA公司製備樣品採外添加方式,其土壤樣品基質是採取自科羅拉多州內較乾淨(未受污染)的土壤,將其研磨至 20~100 mesh 後,再外添加金屬或其他標準品製備成待測樣品。經能力測試過之樣品即成為 ERA公司其另一項產品—品管樣品,該公司稱為 RM(Reference Material),本所較常使用其水質有機項目之樣品,本次參訪就其 CoA 文件上相關參數之意義進行討論,以其 WatRTM Pollution Volatiles 710(如附錄 6)為例,說明如下:

- 1.「Certified Value」一般是配製值或 USEPA Assigned Value(即前述之預估配製之平均濃度)其中「Acetone」為「<3.9 ug/L」意思是指本樣品中並未添加 Acetone,測試時此樣品之 Acetone 含量檢測值應該小於 3.9 ug/L(此即為 NELAC PTRL)。
- 2. 「QC Performance Acceptance Limits」是 ERA 公司根據該公司此項目 過去測試累積資料庫中濃度、基質(若是土壤樣品粒徑一會納入考量)

相同或相似者之統計範圍,提供給檢測者進行內部品質控管之參考。

- 3.「PT Performance Acceptance Limits」指此批號樣品進行能力測試之結果可被接受範圍,此範圍係依據國際或 NELAC 規定所統計或計算而得。
- 4.「Proficiency Testing Study」之「Mean」、「Recovery」及「n」是指 ERA 公司本身進行能力試驗計畫所執行之樣品測值之平均值、回收率及實驗次數等。
- 5.「NIST Traceability」之「SRM Number」及「Recovery」為 ERA 公司 於能力試驗計畫時併同分析濃度相近 NIST 的 SRM 所得回收率數據, 主要係佐證該公司的確認值(Certified Value)品質之良莠。

圖 2 參訪位於美國科羅 拉多州 Golden 市的另一 家土壤及水質參考物質 製備機構及能力測試樣 品公司 ERA 公司(其為 WATERS 公司之子企業, 辦公室門口招牌掛的是 WATERS; 訪談對象為 Melissa L. Wright (Senior Account Manager 右 3)及 Michael Blades (Technical Manage 左 1, 他目前兼任 NELAC 能力 試驗委員會委員) (三) 美國 NIST 材料量測實驗室化學科學部門無機化學量測組(Inorganic Chemical Metrology Group, Chemical Sciences Division Material Measurement Laboratory)及資訊技術實驗室統計工程部門數學統計專家(Statistical Engineering Division Information Technology Laboratory Mathematical Statistician)

美國國家標準與技術研究所(NIST)成立於 1901 年,現為美國商務部 的所屬研究機關,主要任務為藉由加強量測科學、標準與科技之發展,提升美 國企業創新能力與強化產業競爭力,進而達成強化經濟安全與提升生活品質的 目標,總部位於馬里蘭州的蓋瑟斯堡(Gaithersburg),另外有部分設施則在科 羅拉多州的博爾德市(Boulder)。職員人數約有3000名,NIST所設立的實驗 室亦廣納來自全球各地從事研究工作的專家,因此在蓋瑟斯堡辦公區之人數有 六七千人。NIST 主要有 5 個實驗室、2 個中心及 3 個外部計畫組成,分別為 物理測量實驗室 (Physical Measurement Laboratory, PML)、通信技術實驗室 (Communications Technology Laboratory, CTL)、工程實驗室 Engineering Laboratory, EL)、資訊技術實驗室(Information Technology Laboratory, ITL)、材 料測量實驗室(Material Measurement Laboratory, MML)、中子研究中心(Center for Neutron Research, NCNR)、奈米科學技術中心 (Center for Nanoscale Science and Technology, CNST) 及 Baldrige 績效卓越計畫(Baldrige Performance Excellence Program)、Hollings 製造業拓展夥伴(Hollings Manufacturing Extension Partnership, MEP)、進階製造辦公室(Advanced Manufacturing Office, AMO)等,其組織架構圖如附錄 7。其中材料測量實驗室是 NIST 兩個計量實 驗室之一,該實驗室負責化學、生物和材料科學方面的國家參考實驗室。業務 範圍從工業、生物和環境材料和製程的組成、結構和性質之基礎和應用科學研 究到開發和傳輸工具,包括參考測量程序,認證參考物質等。目前可提供超過 1300 項具有良好特性(物質之物理、化學或生物特性)的組成或性質的標準參 考物質,作為儀器校準或開發新的測量方法所需。材料測量實驗室部門下有8 個單位,分別為應用化學材料部(Applied Chemicals and Materials Division)、 生物分子測量部門(Biomolecular Measurement Division)、生物系統和生物材

料部門 (Biosystems and Biomaterials Division)、化學科學部門 (Chemical Sciences Division)、物質測量科學部門(Materials Measurement Science Division)、 材料科學與工程部門(Materials Science and Engineering Division)、數據與資訊 辦公室(Office of Data and Informatics)及參考物質辦公室(Office of Reference Material) 等單位。其中化學科學部門主要產品和服務是品質保證計畫及參考 物質,部門再細分成: 化學資訊研究組(Chemical Informatics Research Group)、 化學程序與核測量組(Chemical Process and Nuclear Measurements Group)、環 境化學科學(Environmental Chemical Sciences Group)、環境樣品儲存組 (Environmental Specimen Bank Group)、氣體感測計量組(Gas Sensing Metrology Group)、無機化學量測組(Inorganic Measurement Science Group)、有機化學量 測組(Organic Chemical Measurement Science Group)等。其無機測量組負責 pH、 電分析、X射線、光學和質譜以及傳統分析方法開發,無機和有機金屬物質的 鑑定和測量技術評估與應用。此次主要拜訪對象為無機化學量測組主管同仁及 資訊技術實驗室(ITL)之統計工程專家,透過實驗室參觀與人員訪談討論方式, 藉此了解美國環境參考物質特性量測技術方法、統計計算及確認等議題之運作 實務。

ISO Guide 30 規範參考物質(Reference Material, RM)是指相對於一種或多種特定性質足夠均勻和穩定的材料,其已被確定為適合其在測量過程中的預期用途。RM 在性質上可以是定量或定性,例如物質或物種的身份,用途可以包括測量系統校準、測量程序的評估、作為另一物物質之指定值或品質管制。確認參考物質(CRM)則是參考物質之特徵在於對一個或多個指定性質的計量有效的程序,伴隨有提供指定特性數值及不確定性和計量上可追溯性陳述之證書。據此,NIST 對其標準參考物質(Standard Reference Material, SRM)亦有進一步定義,摘要如下:

1. NIST Standard Reference Material®(SRM):由 NIST 發布符合認證標準 且附證書或分析證書,報告其特性結果及適當使用的資訊之 CRM,具有 良好的性能,使用最先進的測量方法或技術來確定化學組成和/或物理性質。使用 SRM 有三個主要目的:(1)幫助開發準確的分析方法(2)校準

用於促進貨物交換的測量系統,進行品質控制,確定性能特性或在最先進的極限測量性能(3)確保測量品質保證計畫的長期完整性。而"NIST Standard Reference Material® (SRM)"包含"SRM"的菱形標誌,在美國是有專利和商標局註冊的。

- 2. **NIST Reference Material (RM)**:由 NIST 發布具有調查報告(不是證書) 作為(1)科學或技術研究(2)確定原形參考物質之功效(3)提供均勻 和穩定的物質使不同實驗室的研究者能夠確保他們正在研究相同物質(4) 確保在由 NIST 以外的組織生產和認證的物質被定義為符合公共利益使用。 NIST 的 RM 可以滿足 ISO 的 RM 與 CRM 定義(取決於生產的組織)。
- 3. NIST Traceable Reference Material TM (NTRMTM): 一種商業化生產的參考物質,與現有 NIST 標準化學測量具良好追溯性; 通過 NIST 定義的標準和協議建立連接可追溯性,以滿足要服務的計量,符合這些要求的參考物質生產廠商允許使用 NTRM 商標。NIST NTRM 可以被監管機構認為等同於 CRM。
- 4. **NIST Certified Value**: NIST 對 SRM 證書或分析證書報告數值之準確性 具有最高自信,因為所有已知或可疑的偏差來源已經被 NIST 充分調查或 計算。
- 5. **NIST Reference Value**:在 NIST 證書、分析證書或調查報告中提供其真實值之最佳估計,其中對所有已知或可疑之偏差來源未有完整調查。
- 6. **NIST SRM Certificate or Certificate of Analysis**: NIST SRM 證書是包含物質名稱、物質描述和預期目的文件、美國商務部標章、認證機構名稱、物質使用與儲存說明、量測不確定度、檢測方法、有效期限及其他技術被認為是正確使用的必要資訊等等。
- 7. **NIST RM Report of Investigation**: NIST 發行之 RM 文件,内容包括物質正確使用之技術資訊、美國商務部的標章以及授權發布之 NIST 官員姓名與職稱。此種文件沒有提供 NIST 的認證值,報告的內容的作者可能是由NIST 以外的組織之成員。

8. **NIST Report of Analysis (ROA)**: NIST 分析報告內容包括所使用之基礎 材料、SRM 之製造和認證方法程序、外部合作對象、物質之使用說明、特 殊包裝、處理和儲存說明,以及穩定性測試計劃。通常 ROA 僅供內部 NIST 使用。

表 1 NIST 化學品 SRM 或 RM Value-Assignment 數據品質評估分類

	Mode	Certified Value	Reference Value	Information Value
1	Certification at NIST Using a Single Primary Method with Confirmation by Other Method(s)	Y		
2	Certification at NIST Using Two Independent Critically-Evaluated Methods	Y	Y	
3	Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories	Y	Y	
4	Value-Assignment Based On Measurements by Two or More Laboratories Using Different Methods in Collaboration with NIST		Y	Y
5	Value-Assignment Based on a Method- Specific Protocol		Y	Y
6	Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method		Y	Y
7	Value-Assignment Based on Selected Data from Interlaboratory Studies		Y	Y

在美國工業、學術界或政府機關使用 NIST SRM 來促進商業、貿易、研究與開發。目前 NIST 的 SRM 可用於工業材料生產與分析、環境分析、健康測量、科學和計量學等基本測量領域。此外,NIST 出版了許多有關 SRM 開發、分析與使用之文獻資料可供各界參考。2000 年發行的『NIST Special Publication 260-136 Standard Reference Materials Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements』(如附錄 8)。表 1 為 NIST 依量測方法將其化學品的 SRM 或 RM 之指定值(value-assigning)數據品質成分 NIST Certified Value、NIST Reference Value 及 NIST Information Value 等 3 個等級。「NIST Certified Value」表示 NIST 在其準確性具有最高自信的數據,即所有已知的或疑似來源的偏差已經被 NIST 充分調查或解釋;「NIST Reference Value」是 NIST 對真實值做了最佳估計,其中所有已知或疑似來源的偏差並沒有得到 NIST 充分調查。「NIST Information Value」是對 SRM/RM 使用者感興趣和使用的數值,但用於評估與該值相關的不確定度資訊不足。

在用於化學品的 SRM 的 Value-Assignment 歸類模式是基於 NIST 專業人員過去對特定基質或分析目標物的經驗與知識、當時測量能力及分析方法的數據品質、量測結果及物質的預期用途等因素決定。SRM 的量測數值最終指定 Certified Value、Reference Value 或 Information Value 都基於特定值歸類模式以及所得數據相對於此物質的預期用途的品質評估。提供 SRM 認證值的技術和方法要經過嚴謹的評估並且該基質分析之準確性經證明、評估和解決這些方法的潛在誤差來源"基於比率"(儀器使用檢量線)的方法,使用高純度,良好表徵的主要參考化合物或物種作為其校準的基礎(直接或通過重量分析法校準溶液,例如 NIST 元素溶液 SRM)。NIST 對於量測方法及其測試的細節均詳細記錄於其內部分析報告(NIST Report of Analysis),並且經常在該領域的技術期刊中發表。當採用外部實驗室的量測驗證結果時,由 NIST 化學科學技術實驗室(CSTL)負責選擇外部實驗室,並對這些報告數據進行技術評估。無論是在 NIST 內部還是由任何外部合作實驗室執行確認,若有來自其他國家計量

實驗室合適的 SRM 或 CRM 可用時,必須一併進行 RM 或 CRM 的分析。各類模式使用時機:

- Certification at NIST Using a Single Primary Method with Confirmation by Other Method(s)
 - a. 該方法與該基質之所有潛在的重要誤差來源都已明確評估,即在分析報告中提供了可能且合理的其他誤差來源以及為什麼在這種特殊情況下不期望它們具有顯著性。
 - b. 以另一個方法進行確認,而確認的方法至少須通過下列條件之一,但原 級方法(Primary Method)和任何確認方法之間的一致性要求,必須在 實驗計畫中先明定:(1)檢測其他基質與濃度相似之 SRM 或 CRM(2) NIST 認為適當的第二種技術(3)選擇具有經驗之外部合作實驗室的測 量結果。
- 2. Certification at NIST Using Two Independent Critically-Evaluated Methods

NIST 使用兩個或多個精確評估的獨立方法,方法獨立性很重要,雖然很少有兩種分析方法具有完全不同的誤差和變異性來源,但須選擇誤差源最顯著不同的方法,例如:

- a. 選擇盡量減少樣品製備和最終測量步驟的方法。
- b. 依產生的不同的物理、光譜或化學現象定量的方法。
- c. 所選擇的方法/程序對樣品基質中感興趣的分析物具有符合需求的精密度 與準確度。
- d. 對確認所使用方法間的要求須先確認,並記錄於實驗計畫中。
- Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories

在 NIST 沒有合適的第二獨立方法的情況時,須仔細選擇外部合作實驗室進行確認的過程。理想情況下,這種合作始於實驗設計過程的開始,NIST 和外部實驗室分析人員都能夠協調測量的細節、數據分析和報告要求,並注意以下事項:

a. NIST 的方法和外部合作實驗室的方法,必須有經過嚴謹評估並證明在樣

品基質條件下,可提供準確的結果。

- b. 外部合作實驗室使用的方法,應不同於 NIST 所使用的方法。
- c. 外部合作實驗室的數據報告應包括實驗計畫及不確定度重要來源評估資訊。
- Value-Assignment Based on Measurements by Two or More Laboratories Using Different Methods in Collaboration with NIST

在 NIST 沒有合適量測方法的情況下,以兩個或更多個與 NIST 合作實驗室使用不同方法進行測量所得。此模式可以提供 SRM NIST Reference Value 或Information Value。此模式之要求:

- a. 外部合作實驗室的方法對此基質之準確性經證明。
- b. 外部合作實驗室提供的分析涉及至少兩種不同的方法(見表 1 Mode 2)。
- c. 除非大量實驗室/方法提交數據,否則外部合作實驗室的數據報告應包含足 夠的資訊,以評估所有重要的不確定性來源。
- 5. Value-Assignment Based on a Method-Specific Protocol

- a. 所使用經認可適用於測量該基質之分析物種(或性質)的方法。
- b. 只使用來自經驗豐富的實驗者的數據。
- c. 使用 NIST 或外部實驗室協議的特定方法進行測量。
- d. 特定方法的 Value-Assignment, 需要有三個以上對方法有豐富經驗的參加者。
- 6. Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method 在某些情况下,使用者的預期用途不需要 NIST 認證值作為指定值。此模式可提供 NIST Reference Value 或 Information Value。
 - a. 使用 NIST 模式 2 的方法中使用的方法(Two Independent NIST Methods), 即該方法可能在過去已經被用作 SRM 認證的幾種方法之一,但在這種情

況下是唯一使用的方法。

- b. 外部實驗室使用的方法須證實能夠在此基質中能提供適當的精密度和準確 度。
- c. 外部協作實驗室的數據報告應包含足夠的資訊,以評估重要的不確定性來源。
- 7. Value-Assignment Based on Selected Data from Interlaboratory Studies

此模式允許 NIST 利用以參考物質的 value-assignment 為的目外之而實驗室 間量測研究。在此模式下:

- a. 特定研究必須有良好的文件記錄,並由信譽良好的單位來組織。
- b. NIST 的化學科學和技術實驗室負責評估分析程序的適當性,以確定 value-assignment 所選用之數據。

本次參訪過程 Dr. Michael R.Winchester 特別安排我們進一步了解其 Primary Method 之儀器與技術,包括 XRF、INAA、ICP、ICP-MS、ID-ICP-MS、 滴定法(採重量法,即滴定時不以體積計算)、庫倫計等等,這些方法有的是基 礎量的量測方法,有的是 NIST 專家自行研究能確認其量測不確定度之各貢獻 來源,或此量測技術經發表或參加國際比測所得結果良好,專家對此檢測方法 技術所得之確認值非常有信心。過程中只要我們對 Primary Method 有任何疑 義,他們就立刻可以提供很多他們在國際研討會議或期刊上發表之研究論文, 顯見他們不是自我感覺良好而已。例如 XRF 方法,若該元素有 NIST 的參考 物質,專家們即利用高溫熔融法將參考物質與LiBO2於高溫加熱熔融打錠,製 成5至6個不同濃度之檢量線,進行定量分析,且每加入一個元素即做一次檢 測定,再利用數學模式計算基質干擾效應,因此他們認為 XRF 方法所有檢測 過程之誤差,均可以被控制,所以把 XRF 歸為 Primary Method。另一個有趣 的事是 NIST 負責滴定法的專家(Tom),在滴定分析時不是體積法而是採重量 法,即滴定時,以精密天平來秤取前後重量差計算其濃度,因為他認為體積法 誤差較大,且秤重時以泡泡紙包覆滴定溶液瓶(隔熱)方式稱取重量,他發現手 部操作秤重時中,手中溫度會影響滴定溶液秤重量,顯見其實是非常注重這些 分析的誤差小細節,再次證實其數據的準確度不是僅來自於其自信心。對於

SRM 文件中所提供之分析數據報告分類模式除參照前述7種模式進行分類外,NIST 負責此 SRM 計畫之專家仍有主觀判斷之空間,甚至有的 SRM 第二驗證確認實驗室是美國政府另一個研究機關—美國地質調查局(USGS)所執行,NIST 專家依然認為無法歸類 Certified Values,但無論如何,此 SRM 文件中所列數據歸類為 Certified Values 、Reference Value 或 Information Value 均會在其『Report of Analysis 』中敘明(Report of Analysis 應該記錄之內容詳見本報告的 11 頁)。參訪時並以 NIST SRM 2709a 為例進行討論(其 Certificate of Analysis 文件如附錄 9),訪談紀要如下:

- 1. 這批號 SRM 規劃為 5 年需求量,由 NIST 委託 USGS 採集 California San Joaquin 地區 3 個場址的休耕地農業土壤,每個場址採集面積約 4m²,採集 時先去除表層植被,共採 20 桶(每桶容量為 5 加侖之樹膠桶)送入 USGS 實驗室,在室溫下乾燥後篩分,移除大於 2mm 之粗顆粒後所剩土壤約 50 kg,分批以球磨機進行研磨(≥95%的粉末通過 200 mesh 篩網)及 V 型混合器混合均匀及輻射滅菌後裝瓶,每瓶含有 50 克,共製備 2650 瓶。
- 2. USGS 於每 100 個瓶為批次進行一次均勻性測試,測試方法為 X 射線熒光 光譜法(WD-XRF)、感應耦合電漿發射光譜法(ICP-OES)、感應耦合電漿 質譜法(ICP-MS)等方法,NIST 也進行均勻性評估。
- 3. 樣品分析:使用 XRF 及中子活化法(INAA)評估瓶裝 SRM 中所選擇的元素的均勻性。在少數情況下,由統計學觀察到均勻度有顯著差異,對於大多數元素,SRM 不均勻性的估計相對標準偏差≤1%、鈣約為 2%,鉻約為 3%,汞有較顯著的不均勻性(詳見該 COA 之表 2)。在 NIST(Gaithersburg,MD)和 USGS(Denver,CO)進行該 SRM 的分析結果如該 COA 之表 1、表 2和表 3 所示之 Certified Values、Reference Values 及 Information Values。用於每個的分析技術元素列於該 COA 之表 4,包括 XRF、INAA、PGAA、ICP-OES、ICP-MS、ID-ICP-MS、CV-ID-ICP-MS、CCT-ICP-MS等方法;分析人員列在該 COA 之表 5 和表 6 中。確認分析時整批取 6 個樣品,每個樣品進行二重覆分析,使用 2 個獨立方法時,每個方法取 6 個樣品,每個樣品進行二重覆分析。

- 3. Certified Values: 共有鋁等 19 種元素,如該 Certificate of Analysis 文件之該 COA 之表 1。除鎘及鉛外,所有元素的 Certified Value 是兩個或三個分析結果平均值,。此 Certified Values 基於嚴謹獨立分析技術所得的結果,NIST 對其準確度具有最高自信心,認為其中所有已知或可疑的偏差來源已經調查或考慮了。訪談中發現,鎘和鉛這個元素 NIST 只用 ID/ICP/MS 單一方法檢測即歸類在 Certified Value,並不符合前述 1~3 的歸類模式,經詢問 Dr. Michael R. Winchester 表示,鉛的歸類是由負責此專案的專家主觀判斷,專案專家認為 ID/ICP/MS 方法檢測結果是非常確定而有高度自信認為正確無誤,因其已經對所有不確定性來源進行了完整的評估。當下隨即指著實驗室牆上所貼著國際研討會所發表之技術論文及國際比對之優異結果,佐證其自信心是有所本的。相對的,也有部分元素雖經 USGS 獨立方法確認,卻不歸在 Certified Values 群,而是歸在 Reference Values 群,個人非常好奇問,難道 NIST 不相信 USGS 的分析數據? Dr. Michael R. Winchester 想了一下,回答因為 USGS 的分析結果報告沒有量測不確定度數據。
- 4. Reference Values 共有砷等 15 種元素,係由 NIST 以單一方法分析所得,Reference Values 是對真實值的最佳估計值,提供之量測不確定度可能未包括所有來源;其中,汞的 Reference Value 係取 6 瓶樣品以 ID-CV-ICP-MS 分析結果之平均值表示。結果顯示其有不均勻之情況;濃度範圍從 0.8mg/kg 至 1.1mg/kg。
- 5 Information Values 有硼等 10 種元素,由 NIST 以單一方法分析所得,這些值並沒有提供量測不確定度之數值。
- 6.這批土壤樣品 NIST 並提供以 US EPA 認可之 8 個土壤檢測合約實驗室以 Methods 200.7 and 3050B 進行溶出程序以混合酸消化或熔融檢測之 Certified Values、Reference Values 及 Information Values,其中 7 個使用 USEPA 方法 200.7;其餘實驗室使用 USEPA SW-846 方法 3050B 用於土壤樣品的製備,以 ICP-OES)測定各元素含量,8 個實驗室中有 6 個提供了重複分析數據,這 些結果以平均值作統計。結果如該 COA 之表 A1。(這種州政府或聯邦 EPA 需求的溶出試驗方法,其確認證書是以附錄方式提供元素的測值,稱之為

Procedure defined)

值得一提的是 NIST 在 Gaithersburg 有一座核子反應爐,因此中子活化分析技術幾乎是他們大部元素的定量方法,反應爐之中子經由 D_2O 冷卻照射樣品,讓樣品受中子撞擊活化後,產生連鎖反應,在不同時間下量測樣品中各元素 γ 射線強度定量樣品,這也是為何這麼多研究人員匯集在 Gaithersburg 辦公區作研究之原因。也因此造成 Gaithersburg 辦公區空氣中鉛的背景值較其他地區高的緣故,因此數年前 NIST 將一部分重金屬 SRM 製備業務移至南卡羅萊納州查理斯頓市(Charleston, South Carolina)的原因之一。

圖 3 位於馬里蘭州蓋瑟斯堡(Gaithersburg)NIST總部,本次參訪的材料量測實驗室化學科學部門無機化學量測組位於該辦公區 Building 227。

圖 4 位於中間的是材料量測實驗室化學科學部門無機化學量測組 Supervisory Research Chemist Leader — Dr. Michael R. Winchester

圖 5 與資訊技術實驗室統計工程部門數學統計專家(Statistical Engineering Division Information Technology Laboratory Mathematical Statistician)討論參考物質濃度確認之統計問題;右 1 是 Chief Statistician—Dr. Antonio Possolo,右 3 是 Dr.James Yen,他 3 歲時由台灣移民美國,略聽得懂台語

圖 6 在 NIST 馬里蘭州 蓋瑟斯堡 (Gaithersburg)總部餐廳附近園區的這顆蘋果樹,是源自於牛頓發現萬有引力的那顆樹上長了許多蘋果 小很多,大小約比葡萄,大一點。樹下設有桌椅,只是不知是不是期待有另一個牛頓出現

圖 7 NIST 材料量測實驗室化學科學部門無機化學量測組的專家們,對 其參考物質成份確認值之分析技術非常有自信,實驗室牆上貼滿他們發表 期刊論文,參加國際研討會或國際比測結果良好的壁報

(四) 美國 NIST 查理斯頓市辦公區化學科學部門環境化學科學組(NIST at Charleston, South Carolina Chemical Sciences Division Environmental Chemical Science)

美國 NIST 查理斯頓市辦公區在 South Carolina Charleston,和美國 NOAA(National Oceanic and Atmospheric Administration)、South Carolina 州 政府單位及 2 個州立大學等 5 個單位合署辦公。NIST 這個辦公區重要工作 內容是動物基因或物種研究與保存,研究人員約有30人。此行主要拜訪對 象是化學科學部門環境化學科學組 Dr. Steven J. Christopher 等人,參訪議題 為土壤及底泥 SRM 製備。目前這個辦公區負責的製備的 SRM 共有 8 個土 壤(7個已完成,1個研製中)及4個底泥。8個土壤基質 SRM 編號分別為 2700、2701、2709a、2710a、2711a、2586、2587 及 2706(研製中);4 個底 泥基質 SRM 為 1646a、1944、2702 及 8704 等,其中 2700 與 2701 為六價鉻 污染場址製成之土壤 SRM,前者為低濃度後者高濃度 ;2709a、2710a 與 2711a 為土壤基本元素含低中高濃度不同之 SRM(a 表是同一批 SRM 重製); 2586 與 2857 為鉛污染場址之製成之土壤 SRM, 前者濃度較低約 500ppm, 後者為 3000 ppm ;1646a 為河口底泥,1944 為河川底泥之 PAHs、PCBs、 PBDE、PCNs、HBCDs 及元素之有機及無機成分 SRM,2702 為海洋底泥中 無機成分 SRM,8704 為河川底泥之元素成分 SRM。此行主要想了解 NIST 查理斯頓辦公區之 SRM 製備規劃與濃度確認之操作實務,這些 SRM 主要 配合 USEPA 污染管制檢測品管需求而研製,現地採集之土壤均交給 USGS 進行研磨、過篩等均質化後交給 NIST,此外 USGS 也執行濃度確認工作; 底泥參考物質則與軍事或 NOAA 等相關機關合作研製;這些合作機關與 NIST 均屬契約的夥伴關係;此外他們還有非環境基質之 SRM,例如蘋果汁、 海產類基質等。在土壤或底泥 SRM 製備採取混樣方式製成,每個編號研製 時皆規劃製成 2500 瓶左右的量,進行均勻度測試時,取 20 瓶以 WD-XRF 進行元素檢測分析,每瓶進行二重覆,計算均勻度,另外也進行不同取樣量 之均勻度檢測。有機成分進行均勻度確認時,並非每個成分都做檢測,僅選 擇代表性成分進行檢測,例如 PCBs 檢測時選與內標化合物相同之 131 進行 確認,但檢測時每一個成分圖譜均經人工進行定性定量確認,所使用之技術與方法則與前述 Gaithersburg 所使用的相同,以 primary method 為主(附錄 10)。基本上一個 SRM 製備規劃到完成約需 3 年時間,因此通常都規劃 5~10 年市場需求量。

圖 5 NIST 位於查理斯頓市之辦公廳舍,並 NOAA、South Carolina 州政府單位及 2 個州立大學等 5 個單位合署辦公

參、心得

- 一、 美國商務部所屬 NIST 進行參考物質之製備驗證,透過合約實驗室機制將 土壤或底泥參考物質之研磨過篩均勻化等前處理及濃度確認工作,交給對 土壤或底泥物化性質專業更了解之美國地質研究所執行,兩個單位合作無 間各展所長,可以讓國家資源的效益充分發揮。但最後由 NIST 負責計劃 的專業科學家以其專業權威判斷參考物質之等級,顯示可以看得出其對技 術專業之信任與尊重。
- 二、 NIST 參考物質之檢測結果依量測方法將其化學品的 SRM 或 RM 之指定值(value-assigning)數據品質成分 NIST Certified Value、NIST Reference Value 及 NIST Information Value 等 3 個等級,各等級之依檢測方法、不確度分類之規範明確,使用者可以依其使用目的選擇最適等級之參考物質。
- 三、 本次參訪 NIST 之土壤及底泥參考物質製備相關部門時間雖然短暫,但藉 由與關鍵科學家訪談方式,對於 NIST 的土壤或底泥基質參考物質製備規 劃、現地採樣、篩分、研磨、均勻度與濃度確認、取樣檢測數目與方法、 檢測技術及統計方法規範及後續參考物質監管等,相關實務操作細節有較 深入的討論與了解,對本所未來土壤和底泥盲樣研製具有相當參考價值。
- 四、NIST 参考物質之製備與成分驗證結果,除提供工業及貿易用途之外,亦會配合美國環保署污染管制需求,另外以附錄提供該參考物質以美國環保署污染管制規定的酸消化方法執行檢測數據之結果,此不相隸屬之部署間展現出其行政協調、相互支援之一體政府效能,頗讓我佩服。另外,美國在經歷 911 攻擊事件後,政府機關門禁管制加嚴,NIST 辦公區管理十分嚴格,此次參訪美進出辦公室建築物都有門禁管制,就連餐廳都不例外,但是他們也提供非常友善的服務,例如這次前往參訪接洽過程,Dr. Michael R. Winchester 要我提前上網申請進入園區,因此當日在門口登記處早已幫我把來賓證製作完成,幾分鐘內我就順利進入園區;在 NIST 網站可以查得辦公區和附近旅館間接駁車及旅館收費;園區午餐、下午茶時

間收費等等,這些細小的事務,對遠到而來的訪客或研究的人員是十分貼心友善的服務。

五、此行特別長途跋涉到懷俄明州及科羅拉多拜訪 SIGMA-ALDRICH 及 RTC 兩家能力試驗機構,藉由與土壤及底泥能力試驗相關人員訪談方式,了解 其水質、土壤或底泥能力試驗樣品製備、濃度確認所依照的規範是來自美國 EPA,得取得兩家公司能力試驗辦理週期、項目資訊,甚至對國內常使 用這兩家公司所販售之品管樣品,分析證書所提供各項資訊細節非常深入 的討論,進而解開長久以來我們對這些樣品資訊之疑惑與誤用,已值回票 價。另外,參訪過程兩家相關人員提供許多美國環保署 NELAC 組織之能 力試驗規範資料,其中有一位是 NELAC 能力試驗委員會委員,對於 NELAC 能力試驗相關規範之訂定細節十分了解,更讓此行充實而豐碩。

肆、建議

- 一、此次參訪兩家商業能力試驗機構,對其辦理國際或美國國內能力試驗規劃、 樣品製備與確認、時程安排、結果處理過程有更多的了解,建議未來國內 自行製備之土壤或底泥能力試驗樣品,可以透過這兩家或其他美國環保署 認可之商業能力試驗機構辦理國際性能力測試,各批次能力試驗所剩樣品 即可以此國際能力測試結果統計數據作為國內能力試測合格與否之判斷 依據。
- 二、NIST或兩家商業能力試驗機構以外添加方式製備能力測試樣品,使得製備樣品之濃度較多元,對此外添加方式的了解雖然很粗淺,但對國內未來以土壤或底泥基質外添加有機污染物成分之能力試驗樣品的方向是可行的。
- 三、 美國 EPA 所屬的 NELAC 組織對於能力試驗樣品配製濃度與合格範圍經 過多年資料累積統計回歸分析得到,對於該組織之能力試驗之規範或其他 資訊的收集研析,應有助於本所辦理檢測機構水質、土壤、底泥及廢棄物

等類別之績效評鑑之參考,建議應更進一步收集其相關資訊,另外 NELAC 對於環境實驗室之認證所擔任的角色與本所相近,未來亦可尋求參訪 NELAC 組織之機會,對於該組織之環境實驗認證、評鑑及監督制度規範 研訂之背景沿革與組織運作等等有更深入之瞭解,提供國內環境檢測機構 之許可與管理制度精進之參考。

附 錄

附錄	内 容	頁數
附錄 1	List of Accredited Providers (由 The NELAC Institute 網站下載)	1
附錄 2	SIGMA-ALDRICH 所提供之 Proficiency Testing	2
附錄 3	RTC CRM026-050 之 CoA	3
附錄 4	USEPA NELAC 對能力試驗提供者所配製基質、配製濃度	0
	範圍及能力測試合格範圍之規範(Drinking Water)	9
附錄 5	USEPA NELAC 對能力試驗提供者所配製基質、配製濃度	12
	範圍及能力測試合格範圍之規範(Non-Potable Water)	12
附錄 6	ERA WatR [™] Pollution Volatiles 710 ≥ CoA	7
附錄 7	NIST 組織架構圖	1
附錄8	NIST Special Publication 260-136 Standard Reference	10
	Materials	18
附錄 9	NIST SRM 2709a 之 CoA	8
附錄 10	NIST SRM 1944 之 CoA	22

PT Providers

A provider of PT samples must be accredited by a Proficiency Testing Provider Accreditor (PTPA) that meets the TNI requirements. A listing of organizations that are accredited to provide PT samples is available below.

TNI PT Provider Code	PT Provider	Contact	City, State	Phone
TNIPTP16	Absolute Standards, Inc.	Stephen Arpie	Hamden, CT	800-368- 1131
TNIPTP19	Advanced Analytical Solutions, LLC	Frederick Anderson	Parkersburg, W\	,304-422- 4274
TNIPTP21	Environmental Resource Associates, Inc.	Christopher Crone	Golden, CO	303-431- 8454
TNIPTP41	MilliporeSigma	Patrick Brumfield	Laramie, WY	307-742- 5452
TNIPTP31	NYS DOH Environmental Laboratory Approval Program	Kenneth Aldous	Albany, NY	518-474- 7161
TNIPTP36	NSI Solutions, Inc.	Mark Hammersla	Raleigh, NC	800-234- 7837
TNIPTP46	Phenova	Jason Campbell	Golden, CO	303-940- 0033

Return to Web Version

SIGMA-ALDRICH®

Proficiency Testing

Solutions for Proficiency Testing

Sigma-Aldrich provides you with the essential performance data and premium grade testing components that help you build a valuable quality control asset. Our quality products and services allow you to work smarter, enabling a safer and healthier community and world.

PT Search Module

Search for PT by Matrix or Analyte

Browse All Products

Resources

Resources

Reporting System

Register your lab and report your results in the Environmental PT Reporting System.

Training videos for PT and other informational resources

RTC Laramie Site ISO Ceritfcates

Study Schedule

RTC Study Schedule for Environmental PTs

Quick Turn Studies

On-demand PT study, a PT when you need it

Contact Us

Request a quotation or new PT scheme. If you require technical assistance, you can contact a PT specialist at RTCPTGroup@sial.com

Certificate of Analysis

NATURAL MATRIX CERTIFIED REFERENCE MATERIAL

Catalog No: CRM026-050

Lot No: BE026

METALS ON SOIL

Sandy hourn 9

ANALYTE CONCENTRATIONS

Element	Reference Value	S.D.	Confidence Interval	Prediction Interval
Arsenic, As	5.41	2.49	4.64-6.19	0.481-10.3
Cadmium, Cd	12.9	1.81	12.2-13.6	9.10-16.7
Chromium, Cr	36.9	13.9	31.6-42.1	7.77-65.9
Copper, Cu	22.5	2.83	21.5-23.6	16.6-28.5
Lead, Pb	30.7	6.73	28.1-33.4	16.7-44.8
Mercury, Hg	2.42	0.320	2.16-2.46	1.30 - 3.32
Nickel, Ni	19.3	4.38	17.6-21.0	10.1-28.4
Zinc, Zn	169	18.4	161 - 176	130-207

All values are expressed in mg/Kg (parts per million) on a dry weight basis. The Reference Values were determined by using USEPA SW846 Method 7060A for Arsenic, by using USEPA SW846 Method 7471B for Mercury, and by using Aqua Regia DIN 38414-S7 Method for Cadmium, Chromium, Copper, Lead, Nickel, and Zinc.

Confidence Interval (C.I.) range is the 95% C.I. for the Reference Value. The Prediction Interval (P.I.) is the 95% P.I. around the Reference Value. Measurements should fall within the P.I. range 19 of 20 times. The Certified Reference Values were established through extensive interlaboratory testing. All values were calculated using the USEPA BIWEIGHT Method.

"THIS PRODUCT WAS DESIGNED, PRODUCED, AND VERIFIED FOR ACCURACY AND STABILITY IN ACCORDANCE WITH USEPA/AALA RM-03 AND ISO GUIDES 34 AND 35."

Certifying Officer

2931 Saidler Springs Road Laramie, WY 82070 Phone: 800.576.5690 or 307.742.5452 Fax: 307.745.7936

PRODUCT INFORMATION

Instructions For Use Metals on Soil CRM026-050 Certified Reference Material

Caution: Please read instructions before using

1. Scope and Application

The Metals on Soil Certified Reference Material (CRM) sample consists of a single sample jar containing approximately 50 grams of material. This soil is from a slightly contaminated site located in the Rocky Mountain Region of the US, and is not "spiked or fortified" in any manner. The matrix was air dried, sieved to remove extraneous debris, and homogenized. Being a real-world waste sample the analyst is challenged by the same preparation problems, analytical interferences, etc. as is typical for similar matrices received by the laboratory for analysis.

Rigorous analyses identified, quantified, and certified several metals which are listed on the enclosed Certificate of Analysis. The sample has been analyzed by a minimum of twenty laboratories in a round-robin to meet the requirements specified by the EPA/AALA RM-03, ISO 34 and 35. The sample was certified by USEPA SW846, 3rd edition Method 3050, 6010 (ICP) and 7000 series (AA) methods. The sample is suitable for use by these and other similar methods.

2. Sample Preparation

The entire sample lot has been tested and certified for inter-sample homogeneity, Due to potential settling and stratification in storage, shipping and handling the sample *must be thoroughly mixed* as stated in the method. If the reference method is being used, weigh out 1 gram of sample to the nearest .01 gram.

Weigh out additional material to determine percent moisture. All values reported on the Certificate of Analysis are reported on a dry weight basis.

Analysis

Follow the analysis instructions given in the referenced method. If there are any technical questions/problems encountered, or difficulties experienced in the use of these samples, please contact:

R.T. Corporation Technical Support Tel. (307) 742-5452 Fax (307) 745-7936

4. Evaluation of Results

The Reference Value, 95% confidence interval(C.I.) for the Reference Value and 95% Prediction Interval around the Reference Value were obtained by the methods identified on the Certificate of Analysis. Samples were selected in a consideration from the beginning to the end of the bottling sequence and sent for analysis to a 26 laboratory round results. The data produced in the round-robin was used to calculate reference values by the USEPA EMSL-CINN's computer program "BIWEIGHT".

The Biweight program generates a "Student's t" like statistic for constructing confidence intervals on data sets that may have heavier tails than a classical Gaussian distribution. This is appropriate for symmetric, stretch-tailed curves that are often encountered in analysis of homogenous samples via interlaboratory studies. The Biweight method is also more robust in handling data that results from determinations at or near the method detection limits. For data sets that are Gaussian, the Biweight estimates are comparable to traditional calculation methods.

The generated Biweight mean, Biweight standard deviation and Biweight standard deviation of the mean are used to calculate the 95% Confidence Interval (CI) for the mean and the 95% Prediction Interval (PI). For normally distributed data, the Biweight 95% CI compares well to the classical calculation method used to generate a 95% CI. For non-Gaussian data sets, the Biweight method is more robust in data treatment.

Biweight data are also used to calculate a 95% PI. The 95% PI compares well to a 95% tolerance limit calculated using classical methods. For normally distributed data, the Biweight 95% PI typically represents approximately a ± 2 Biweight standard deviation window around the Biweight mean. Again, the Biweight method is more robust than classical methods when handling non-Gaussian data sets.

Laboratories performing the same analytical procedures on a sample whose values have been determined by the Biweight method can assume that the true mean, as determined by the method, is within the 95% CI window. Laboratories analyzing the sample should have results within the 95% PI window 19 out of 20 analyses.

Additional information on the program may be obtained by referring to the reference or by downloading the program from the EMSL-CINN bulletin board.

Additional analytes detected, but not certified, are listed in parenthesis and can be used to determine detection and approximate values.

5. Informational Values

pH - 4.29

Texture Classification - Sandy Loam

¹ Kafadar, K, A Biweight Approach to the One-Sample Problem, Journal of the American Statistical Association, Vol. 77, No. 378, June, 1982, pp. 416-424

				AC PT for Accreditation					
			Fields of Pr	oficiency Testing with P	TRLs				
				Drinking Water					
			Eff	ective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foo	tnote			Magenta = C	hanges
NA - total	EDA	NELAO	Analyte ^{1,2}	On the Danier		A	0::::::::::::::::::::::::::::::::::::::		NELAC DEDL7
Matrix	EPA Analyte	NELAC Analyte	Analyte "-	Conc Range	а	b	Criteria ^{3,4,5,6}	d	NELAC PTRL ⁷
	Code	Code			a	D	С	u	
	0000	0000	Microbiology	CFU/100 mL					CFU/100 mL
Drinking Water	0254	2500	Total Coliform ^{8,9,10}		Nine out	of ten correct	with no false	negatives	Not Applicable
Drinking Water	0255	2530	Fecal Coliform ^{8,9,10}			of ten correct			Not Applicable
Drinking Water		2525	E.coli ^{8,9,10}			of ten correct			Not Applicable
				CFU (MPN)/mL					CFU (MPN)/mL
Drinking Water	0258	2555	Heterotrophic Plate Count (MF, PP) ¹¹	5 to 500		Log transform	n Mean ± 2 SI)	2
Drinking Water	0258	2555	Heterotrophic Plate Count (MPN) ¹²	5 to 500		Log transform	n Mean ± 2 SI)	2
				CFU (MPN)/100 mL					CFU (MPN)/100 mL
Drinking Water		2525	E.coli (MF) ¹¹	20 to 200		Log transform	n Mean ± 2 SI)	2
Drinking Water		2525	E.coli (MPN) ¹²	20 to 200		Log transform			2
Drinking Water	0255	2530	Fecal Coliform (MF) ¹¹	20 to 200		Log transform	n Mean ± 2 SI)	2
Drinking Water	0255	2530	Fecal Coliform (MPN) ¹²	20 to 200		Log transform	n Mean ± 2 SI)	2
Drinking Water	0254	2500	Total Coliform (MF) ¹¹	20 to 200		Log transform	n Mean ± 2 SI)	2
Drinking Water	0254	2500	Total Coliform (MPN) ¹²	20 to 200		Log transform	n Mean ± 2 SI)	2
			Trace Metals	μg/L		<u> </u>	<u> </u>	L	μg/L
Drinking Water	0235	1000	Aluminum	130 to 1000		500 ± 15% ≥			104
Drinking Water Drinking Water	0140 0001	1005 1010	Antimony Arsenic	6 to 50 5 to 50		±30% fixed ac			4.2 3.5
Drinking Water	0001	1015	Barium	500 to 3000		±15% fixed at			420
Drinking Water	0141	1020	Beryllium	2 to 20		±15% fixed at			1.7
Drinking Water	0226	1025	Boron	800 to 2000		±15% fixed ac			680
Drinking Water	0003	1030	Cadmium	2 to 50		±20% fixed ac			1.6
Drinking Water	0004	1040	Chromium	10 to 200		±15% fixed ac			8.5
Drinking Water		1045	Hexavalent Chromium (VI)	5 to 50		±20% fixed a			4.0
Drinking Water	0091	1055	Copper	50 to 2000		±10% fixed a			45
Drinking Water	0284	1070	Iron	100 to 1800	_	250 ± 15% ≥			80
Drinking Water	0005	1075	Lead	5 to 100		±30% fixed ac			3.5
Drinking Water	0236	1090	Manganese	40 to 900		±15% fixed a			34
Drinking Water	0006	1095	Mercury ^{13a}	0.5 to 10		±30% fixed ac		ıt	0.35
Drinking Water	0237	1100 1105	Molybdenum	15 to 130		±15% fixed at		<u>it</u> :•	13 8.5
Drinking Water Drinking Water	0142	1105	Nickel Selenium	10 to 500 10 to 100		±15% fixed ac			8.5 8.0
Drinking Water Drinking Water	0007	1150	Silver	20 to 300		±30% fixed at			14
Drinking Water	0143	1165	Thallium	2 to 10		±30% fixed at			1.4
Drinking Water	0238	1185	Vanadium	50 to 1000		±15% fixed ac			42
Drinking Water	0239	1190	Zinc	200 to 2000		±15% fixed a			170
-									
			Nutrients	mg/L		1			
Drinking Water	0009	1810	Nitrate as N	3 to 10		±10% fixed a		it	2.7
Drinking Water	0000	1820	Nitrate + Nitrite as N	3 to 10		±15% fixed at		it 	2.6
Drinking Water Drinking Water	0092 0261	1840 1870	Nitrite as N Orthophosphate as P	0.4 to 2 0.5 to 5.5		±15% fixed ac			0.34 0.43
Dilliving Maret	U201	10/0	Omophiosphale as F	0.5 (0 5.5	+	T 10 /0 HXEG 90	coeptance ilm	IL I	0.43

				AC PT for Accreditation			·		
			Fields of Pi	roficiency Testing with PT	RLs				
				Drinking Water					
			Eff	ective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foot	note			Magenta = C	hanges
			Trea = Frevious Experimental Analytes	Blue = New Allaryte/Headel/Hoot	inote			Wagerita = C	manges
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	Criteria ^{3,4,5,6}	1	NELAC PTRL ⁷
	Analyte	Analyte		3	а	b	С	d	
	Code	Code							
			Minerals	mg/L					mg/L
Orinking Water	0287	1575	Chloride	20 to 160		±15% fixed a	cceptance lim	it	17
Orinking Water	0010	1730	Fluoride	1 to 8		±10% fixed a	cceptance lim	iit	0.90
Drinking Water	0145	2000	Sulfate	25 to 250		±15% fixed a	cceptance lim	it	21
Orinking Water	0286	1125	Potassium	10 to 40		±15% fixed a			8.5
Drinking Water	0029	1155	Sodium	12 to 50		±15% fixed a			11
Drinking Water	0283	1035	Calcium	30 to 90		±15% fixed a	cceptance lim	iit	26
Drinking Water	0285	1085	Magnesium	2 to 20		±15% fixed a	cceptance lim	it	1.7
Orinking Water	0025	1550	Ca Hardness as CaCO ₃	75 to 225		±15% fixed a	cceptance lim	it	64
Orinking Water		1755	Total Hardness as CaCO ₃	83 to 307		±15% fixed a	cceptance lim	it	71
			Inorganic Disinfection By-Products	μg/L					μg/L
Orinking Water	0193	1535	Bromate	7 to 50		±30% fixed a	cceptance lim	iit	4.9
Orinking Water	0260	1540	Bromide	50 to 300		±15% fixed a			42
Orinking Water	0194	1570	Chlorate	60 to 180		±30% fixed a			42
Orinking Water	0195	1595	Chlorite	100 to 1000		±30% fixed a	cceptance lim	it	70
			Misc Analytes						
Dain Line a MATERIA	0007	4505	Alkalinity as CaCO√L	mg/L 25 to 200		1400/ Carada			mg/L
Orinking Water	0027	1505	, ,			±10% fixed a			22
Orinking Water	0253	1520	Asbestos	1.5 to 20 MF/L	study mean		0.2971	0.4164	1 MF/L
Orinking Water		1620	Corrosivity	-4 to +4 SI units		0.4 SI units fi			Not Applicable
Drinking Water	0146	1645	Cyanide, Total ^{13b}	0.1 to 0.5		±25% fixed a			0.075
Orinking Water		1710	Dissolved Organic Carbon (DOC)	1.3 to 13	0.9744	0.0960	0.0402	0.0700	1.1
Orinking Water		1895	Perchlorate	4 to 20 μg/L		±20% fixed a			3.2 ug/L
Drinking Water	0026	1900	pH	5 to 10 units		0.2 units fixed			Not Applicable
Orinking Water	0022	1945	Residual Free Chlorine	0.5 to 3.0	1.0000	0.0004	0.0776	0.0246	0.37
Orinking Water		1990	Silica as SiO ₂	5 to 75		±15% fixed a			4.2
Orinking Water	0288	1610	Specific Conductance	130 to 1300 µmhos/cm		±10% fixed a			117 µmhos/cn
Orinking Water		2025	Surfactants - MBAS	0.1 to 1.0	0.9804	0.0054	0.0673	0.0348	0.020
Drinking Water		1940	Total Residual Chlorine	0.5 to 3.0	1.0000	-0.0048	0.0723	0.0065	0.40
Orinking Water	0024	1955	Total Filterable Residue	100 to 1000		±20% fixed a			80
Orinking Water	0263	2040	Total Organic Carbon	1.3 to 13		±20% fixed a	cceptance lim	1	1.0
Orinking Water	0023	2055	Turbidity ^{13c}	0.5 to 8 NTU	0.9755	0.0593	0.0565	0.0661	0.36 NTU
Drinking Water		2060	UV 254 Absorbance	0.05 to 0.7 cm-1	0.9919	0.0043	0.0872	0.0034	0.038 cm-1

			NEL	AC PT for Accreditation					
			Fields of P	roficiency Testing with PTF	RLs				
				Drinking Water					
			Eff	ective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footn	ote			Magenta = C	hanges
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Accentance	Criteria ^{3,4,5,6}		NELAC PTRL ⁷
IVIGUIX	Analyte	Analyte	7 thatyto	Conc range	a	b	С	d	TTEENOT THE
	Code	Code			u	5	,	- u	
			Volatile Organic Compounds (VOCs) ¹	μg/L					μg/L
Drinking Water	0039	4375	Benzene	2 to 20	± 40% at <	10 ± 20% ≥	10 fixed acce	eptance limit	1,2
Drinking Water	0037	4455	Carbon Tetrachloride	2 to 20		< 10 ± 20% ≥			1.2
Drinking Water	0049	4475	Chlorobenzene	2 to 20		< 10 ± 20% ≥			1.2
Drinking Water	0054	4610	1,2-Dichlorobenzene	2 to 20	± 40% at <	10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0041	4620	1,4-Dichlorobenzene	2 to 20	± 40% at <	10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0035	4635	1,2-Dichloroethane	2 to 20	± 40% at <	10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0034	4640	1,1-Dichloroethylene	2 to 20	± 40% at <	10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0043	4645	Cis-1,2-Dichloroethylene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0042	4700	Trans-1,2-Dichloroethylene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0055	4975	Dichloromethane (Methylene Chloride)	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0044	4655	1,2 Dichloropropane	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0048	4765	Ethylbenzene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0053	5100	Styrene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0040	5115	Tetrachloroethylene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0047	5140	Toluene	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0036	5160	1,1,1-Trichloroethane	2 to 20	± 40% at <	< 10 ± 20% ≥	10 fixed acce	ptance limit	1.2
Drinking Water	0061	5165	1,1,2-Trichloroethane	2 to 20		< 10 ± 20% ≥			1.2
Drinking Water	0038	5170	Trichloroethylene	2 to 20		< 10 ± 20% ≥			1.2
Drinking Water	0076	5155	1,2,4-Trichlorobenzene	2 to 20		< 10 ± 20% ≥			1.2
Drinking Water	0032	5235	Vinyl Chloride	2 to 50		±40% fixed ac			1.2
Drinking Water	0090	5260	Total Xylenes	2 to 50	± 40% at <	10 ± 20% ≥	10 fixed acce	ptance limit	1.2
							1	1	
				μg/L			I	. 14	μg/L
Drinking Water	0019	4395	Bromodichloromethane	5 to 50		20% fixed ac	_ '		4.0
Drinking Water	0018	4400	Bromoform	5 to 50		20% fixed ac			4.0
Drinking Water	0020	4575	Chlorodibromomethane	5 to 50		20% fixed ac			4.0
Drinking Water	0017	4505	Chloroform	5 to 50	±	20% fixed ac	ceptance limi	t ¹⁴	4.0

			NELAC	PT for Accreditation					
				iciency Testing with P1	ΓRLs				
				Drinking Water					
				tive January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foot	tnote			Magenta = 0	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	e Criteria ^{3,4,5,6}	6	NELAC PTRL ⁷
TT CALL IX	Analyte	Analyte	1	oone range	а	b	С	d	
	Code	Code							
			Volatile Organic Compounds (VOCs) ¹ cont'	μg/L					μg/L
Orinking Water	0067	4385	Bromobenzene	2 to 20	+ 40% at	< 10 + 20% ≥	10 fixed acco	entance limit	1.2
Orinking Water	0089	4390	Bromochloromethane	2 to 20			10 fixed acc		1.2
Orinking Water	0069	4950	Bromomethane	5 to 50			cceptance lir		3.0
Orinking Water	0079	4435	n-Butylbenzene	2 to 20			10 fixed acc		1.2
Orinking Water	0086	4440	Sec-Butylbenzene	2 to 20			10 fixed acce		1.2
Orinking Water	0085	4445	Tert-Butylbenzene	2 to 20			10 fixed acco		1.2
Orinking Water	0070	4485	Chloroethane	5 to 50			cceptance lir		3.0
Orinking Water	0068	4960	Chloromethane	5 to 50			cceptance lir		3.0
Orinking Water	0071	4535	2-Chlorotoluene	2 to 20			10 fixed acc		1.2
Orinking Water	0072	4540	4-Chlorotoluene	2 to 20			10 fixed acce		1.2
Prinking Water	0057	4595	Dibromomethane	2 to 20			10 fixed acce		1.2
Prinking Water	0066	4615	1,3-Dichlorobenzene	2 to 20			10 fixed acco		1.2
Prinking Water	0088	4625	Dichlorodifluoromethane	5 to 50			cceptance lir		3.0
Prinking Water	0056	4630	1,1-Dichloroethane	2 to 20			10 fixed acc		1.2
Orinking Water	0059	4660	1,3-Dichloropropane	2 to 20			10 fixed acc		1.2
Prinking Water	0060	4665	2,2-Dichloropropane	2 to 20			10 fixed acce		1.2
Orinking Water	0058	4670	1,1-Dichloropropene	2 to 20			10 fixed acce		1.2
Prinking Water	0152	4680	Cis-1,3-Dichloropropene	2 to 20			10 fixed acce		1.2
Prinking Water	0153	4685	Trans-1,3-Dichloropropene	2 to 20			10 fixed acc		1.2
Prinking Water	0081	4835	Hexachlorobutadiene	5 to 50			10 fixed acce		3.0
Drinking Water	0084	4900	Isopropylbenzene	2 to 20			10 fixed acce		1.2
Drinking Water	0083	4910	4-Isopropyltoluene	2 to 20			10 fixed acce		1.2
Prinking Water	0000	5000	Methyl-tert-butylether (MTBE)	5 to 50			10 fixed acco		3.0
rinking Water		5005	Naphthalene	5 to 50			10 fixed acce		1.2
rinking Water	0078	5090	n-Propylbenzene	2 to 20			10 fixed acce		1.2
Prinking Water	0063	5105	1,1,1,2-Tetrachloroethane	2 to 20			10 fixed acce		1.2
rinking Water	0065	5110	1,1,2,2-Tetrachloroethane	2 to 20			10 fixed acce		1.2
rinking Water	0003	5150	1,2,3-Trichlorobenzene	5 to 50			10 fixed acco		3.0
Prinking Water	0077	5175	Trichlorofluoromethane	5 to 50			cceptance lir		3.0
Orinking Water	0064	5180	1,2,3-Trichloropropane	2 to 20			10 fixed acc		1.2
Prinking Water	0004	5210	1,2,4-Trimethylbenzene	2 to 20 2 to 20			10 fixed acco		1.2
Prinking Water	0073	5215	1,3,5-Trimethylbenzene	2 to 20			10 fixed acce		1.2
mining water	0002	0210	1,5,5-Thineuryiberizerie	2 10 20	± 40 /0 at	> 10 ± 20 % ≥	TO TIXEU ACC	spianice jirilit	1.2
				μg/L					μg/L
Drinking Water	0045	4570	1,2-Dibromo-3-chloropropane (DBCP)	0.1 to 2		+40% fived a	cceptance lir	nit	0.06
Prinking Water	0045	4585	Ethylene Dibromide (EDB)	0.1 to 2 0.05 to 2			cceptance lir		0.03
Orinking Water	0070	5180	1,2,3-Trichloropropane	0.2 to 2.0			cceptance lir		0.12
THATTING WATER	+ +	3100	1,2,0 Hidilotopropario	0.2 to 2.0		- +0 /0 lived a			0.12
				1	1	1	1	1	1

DW_FOPT_2012_01_03.xls 4 of 9 11/8/2011

			NEL <i>A</i>	AC PT for Accreditation					
			Fields of Pro	oficiency Testing with PT	RLs				
				Drinking Water					
			Effe	ective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footr	note			Magenta = 0	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Accentance	e Criteria ^{3,4,5,6}		NELAC PTRL ⁷
IVIALITA	Analyte	Analyte	Pilalyte	Conc rearige	а	b	С	d	NELACTINE
	Code	Code							
			Pesticides ¹	μg/L					μg/L
Drinking Water	0093	7005	Alachlor	2 to 20		±45% fixed a	cceptance lim	it	1.1
Drinking Water	0256	7025	Aldrin	0.2 to 2.5	0.8618	-0.0012	0.2025	0.0054	0.08
Drinking Water	0094	7065	Atrazine	2 to 20		±45% fixed a	cceptance lim	it	1.1
Drinking Water		7160	Butachlor	2 to 20		±45% fixed a	cceptance lim	it	1.1
Drinking Water	0097	7250	Chlordane (technical)	2 to 20			cceptance lim	it	1.1
Drinking Water	0258	7470	Dieldrin	0.5 to 2.5		±45% fixed a		it	0.28
Drinking Water	0011	7540	Endrin	0.2 to 2.5			cceptance lim		0.14
Drinking Water	0095	7685	Heptachlor	0.2 to 2.5			cceptance lim		0.11
Drinking Water	0096	7690	Heptachlor Epoxide (beta)	0.2 to 2.5			cceptance lim		0.11
Drinking Water	0172	6275	Hexachlorobenzene	0.5 to 5	0.8727	0.0048	0.1795	0.0195	0.22
Drinking Water	0112	6285	Hexachlorocyclopentadiene	2 to 20	0.8508	0.0882	0.2716	0.1073	0.49
Drinking Water	0012	7120	Lindane	0.2 to 2.5			cceptance lim		0.11
Drinking Water	0013	7810	Methoxychlor	2 to 20			cceptance lim		1.1
Drinking Water Drinking Water		7835 7845	Metolachlor Metribuzin	2 to 20			cceptance lim		1.1
	0259	8045	Propachlor	2 to 20 1 to 10			cceptance lim		1.0 0.55
Drinking Water Drinking Water	0259	8125	Simazine	2 to 20			cceptance lim		1.1
Drinking Water	0014	8250	Toxaphene (total)	2 to 20			cceptance lim		1.1
Drinking Water	0244	8295	Trifluralin	1 to 10		±45% fixed a		iit	0.55
Dilliking Water	0244	0293	Tillidialii	1 10 10		14570 lixed at	cceptance iiii	1	0.00
			Carbamates & Vydate	μg/L					μg/L
Drinking Water	0098	7010	Aldicarb	15 to 100		±25% fixed a	cceptance lim	it	11
Drinking Water	0099	7015	Aldicarb Sulfone	15 to 100			cceptance lim		11
Drinking Water	0100	7020	Aldicarb Sulfoxide	15 to 80			cceptance lim		11
Drinking Water		7195	Carbaryl	15 to 100			cceptance lim		11
Drinking Water	0101	7205	Carbofuran	15 to 150		±45% fixed a	cceptance lim	nit	8.3
Drinking Water		7710	3-Hydroxycarbofuran	15 to 80		±20% fixed a	cceptance lim	it	12
Drinking Water	0245	7805	Methomyl	15 to 100		±20% fixed a	cceptance lim	iit	12
Drinking Water	0114	7940	Oxamyl (Vydate)	15 to 100		±25% fixed a	cceptance lim	it	11
			Chlorinated Acid Herbicides 13d	μg/L					μg/L
Drinking Water	0262	8505	Acifluorfen	10 to 100		±50% fixed a	cceptance lim	it	5.0
Drinking Water	0015	8545	2,4-D ^{13e}	10 to 100			cceptance lim		5.0
Drinking Water		8560	2,4-DB	20 to 120		±50% fixed a	cceptance lim	it	10
Drinking Water	0115	8555	Dalapon	10 to 100			cceptance lim		5.0
Drinking Water	0247	8595	Dicamba	20 to 100			cceptance lim		10
Drinking Water	0116	8620	Dinoseb	7 to 70	0.8480	0.8414		0.0044	3.1
Drinking Water	0102	6605	Pentachlorophenol	1 to 25			cceptance lim		0.50
Drinking Water	0117	8645	Picloram	10 to 100			cceptance lim		5.0
Drinking Water	0016	8650	2,4,5-TP (Silvex)	10 to 100			cceptance lim	nit	5.0
Drinking Water		8655	2,4,5-T	10 to 100		±50% fixed a	cceptance lim	it	5.0
				_					
 			Other Herbicides	μg/L					μg/L
(Data Line of Market	0137	9390	Diquat ^{13f}	8 to 40		±50% fixed a	cceptance lim	it	4.0
Drinking Water									
Drinking Water Drinking Water Drinking Water	0138 0139	7525 9411	Endothall ^{13g} Glyphosate	80 to 500 375 to 800			cceptance lim		40 300

				AC PT for Accreditation roficiency Testing with PTI	RIS				
			1 10100 01 1	Drinking Water	TLO				
			Eff	ective January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Footn	ote			Magenta = C	hanges
			INed = 1 Tevious Experimental Analytes	Bide = New Analyte/Headel/Footi	lote			Magerita – C	nanges
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	Criteria ^{3,4,5,6}		NELAC PTRL ⁷
	Analyte	Analyte			а	b	С	d	
	Code	Code							
			Haloacetic acids	μg/L					μg/L
rinking Water	0250	9315	Bromochloroacetic Acid	5 to 50		±40% fixed ac	centance lim	it	μg/∟ 3.0
Prinking Water	0157	9357	Dibromoacetic Acid	5 to 50	±		3.0		
rinking Water	0158	9360	Dichloroacetic Acid	5 to 50	±		3.0		
Orinking Water	0160	9312	Monobromoacetic Acid	5 to 50	±	40% fixed acc	ceptance limi	14	3.0
Orinking Water	0161	9336	Monochloroacetic Acid	10 to 50	±	40% fixed acc	ceptance limi	14	6.0
Orinking Water	0162	9642	Trichloroacetic Acid	5 to 50	±	40% fixed acc	ceptance limi	14	3.0
			Adipate/Phthalate	μg/L					μg/L
Drinking Water	0134	6062	Di(2-Ethylhexyl) Adipate	8 to 50	0.9817	-0.4239	0.1250	1.4658	μg/L 2.5
Drinking Water	0136	6065	Di(2-Ethylhexyl) Phthalate	5 to 50	0.9216	1.3142	0.2049	0.7388	2.4
			PCBs in Water ²	μg/L					μg/L
Prinking Water	0118	9105	PCBs as Decachlorobiphenyl ^{13h}	0.5 to 5		100% fixed a	ocontonoo lin	oit	0.05
Drinking Water	0110	8872	PCB Aroclor Identification	0.5 to 5	±100% fixed acceptance limit Correct identification of Aroclor examined				0.03
	0.400	5500	PAH	µg/L	0.0477	0.0046	0.405	0.0545	μg/L
rinking Water	0122	5580	Benzo(a)pyrene	0.2 to 2.5	0.8471	-0.0040	0.1854	0.0547	0.02
			Dioxin	pg/L					pg/L
Prinking Water	0252	9618	2,3,7,8-Tetrachloro-dibenzodioxin	20 to 100	0.8642	1.4865	0.1392	1.1445	11

			NELAC	PT for Accreditation					
				ciency Testing with P1	RLs				
				Drinking Water					
				ive January 3, 2012					
			I	ve dandary 6, 2012		1			I
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foot	inote			Magenta = C	hanges
			Trea = 1 Tovious Exportmental 7 mary tos	Blue = 110W / that y to/110adoi/1 000				Magorita = C	Tiangeo
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptance	Criteria ^{3,4,5,6}	i	NELAC PTRL ⁷
Width	Analyte	Analyte	7 mayes	Contraings	а	b	С	d	
	Code	Code			-				
1) For volatile ar		e standards, p	roviders must include a minimum number of analy	tes using the criteria described be	low:				
			to ten analytes must include all of these analytes.	Ĭ					
PT sample that a	re to be s	cored for ten to	twenty analytes must include at least ten of these	e analytes or 80% ot the total, which	hever number	r is greater.			
PT sample that a	re to be s	cored for more	than twenty analytes must include at least sixteer	of these analytes or 60% ot the to	otal, whicheve	r number is gr	eater.		
If the calculated	percentag	e of the total n	umber of analytes in the PT sample is a fraction, the	ne fraction shall be rounded up to	the next whole	number.			
			one Aroclor, selected at random from among the	Aroclors listed (1016, 1221, 1232,	1242, 1248, 1	254 or 1260)	for		
the analysis of P	CBs as de	cachlorobiphe	nyl.						
			R Part 141 are incorporated herein by reference.	Acceptance criteria for FoPTs no	t included in 4	0 CFR Part 14	1 are preser	nted in this tab	le.
Acceptance limit									
			inted, Mean = $a*T + b$; SD = $c*T + d$ where T is the						
			nted, Mean = Robust Study Mean; $SD = c*X + dw$						
			lean ±3SD), Mean = Robust Study Mean, SD = Ro						
			ion are generated using statistical analysis of stud			L		<u> </u>	
Quantitative Mic	obiology a	acceptance crit	teria (e.g., HPC) are based on the robust participal	nt Mean and SD determined from	each respective	ve PT study, a	fter outlier re	moval.	
4) If the Leaves are		Carte area area tard	London de constructo con telegradite dels table la laca de		4				
			using the criteria contained in this table is less that	an (<) 10% of the assigned value,	the lower acce	eptance limits	are set		
at 10% of the as	signed val	ue, with the ex	ception of Microbiology analytes.						
C) If the levier of			Lucina tha aritaria cantainad in this table is supertor	there () 000/ of the engine of value	in the levier		:tt		
			using the criteria contained in this table is greater ception of Microbiology analytes.	than (>) 90% of the assigned value	ie, the lower a	cceptance iin	its are set		
at 90% of the as	signed vai	ue, with the ex	ception of Microbiology analytes.			-			
C) If the upper of	contonos	limit ganaratas	l using the criteria contained in this table is less th	an (a) 1100/ of the assigned value	thousener	l naantanaa limit	o oro oot		
			exception of Microbiology analytes.	an (<) 110 % of the assigned value	, the upper at		.s alt sti		
at 110 % of the a	I va	liue, willi lile e	Acception of Microbiology analytes.						
7) NELAC Profic	iency Tes	ting Reporting	Limits (PTRLs) are provided as guidance to labora	atories analyzing NELAC PT samp	les These le	vels are the lo	west		
			from the lowest spike level for each analyte. The						
			cially for analytes that typically exhibit low recover						
			a method that is sensitive enough to generate res						
			for all analytes with an assigned value equal to "0						
			n or equal to the PTRL.	,		230000 00110			
analyte at a		grouter tha							
8) The ten-samp	le set which	ch is provided t	to the participant laboratories shall contain bacteria	a that produces the following resul	ts when analy	zed:			
			oliforms and E.coli.			1			
			gative results for fecal coliforms and E.coli.						
			coliforms and E.coli.						
These limits are									
	1		·			1			

DW_FOPT_2012_01_03.xls 7 of 9 11/8/2011

			NEL	AC PT for Accreditation	n				
				roficiency Testing with					
				Drinking Water					
			Eff	ective January 3, 2012	,	Т	1		1
			Red = Previous Experimental Analytes	Blue = New Analyte/Header	/Footpote			Magenta =	Changes
			Tod = 1 Tovious Experimentary transfer	Blac = New Amaryto/Header	71 0011010			magorita =	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range			Criteria ^{3,4,5,6}		NELAC PTRL ⁷
	Analyte	Analyte Code			а	b	С	d	
The ten-samp	Code le set shal		 ot numbers and randomly composed of samp	les as follows:					
		- according							
			enic strain of Escherichia which will ensure po	ositive results for total coliforms, fe	ecal coliforms and l	E.coli.when ar	alyzed		
any of the US	EPA appro	oved methods.							
wo to four samp	oles contai	ining an aerog	enic strain of Enterobacter species and/or oth	er microorganism which will ensu	re positive results f	or total colifor	ms		
d negative res	ult for feca	al coliforms and	d E.coli. when analyzed by any of the USEPA	approved methods.					
no to two comm	los contai	nina Dooudom	onas species and/or other microorganism whi	ich will opeuro pogativo reculta for	r total coliforms for	nal califorms a	nd E coli		
			roved methods.	lensure negative results for	total collionns, let	ai comornis a	na E.Con.		1
,]								
			any microorganism which ensure negative re	sults for total coliforms, fecal colif	orms and E.coli. w	hen analyzed	by any		
the USEPA ap	proved me	ethods.							
) Laboratories	analyzing	qualitative sar	Imple sets for more than one method in a partic	ular study shall obtain a unique t	en-sample set for e	ach method			
ported as spec									
() There is the			Clastics (ME)	-1- (DD) 11					
i) These limits	are for qua	antitative meth	ods using membrane filtration (MF) or pour-pl	ate (PP) techniques.					
2) These limits	are for qua	antitative meth	Lods using most probable number (MPN) techr	niques.					
			designs, which were used in past USEPA stud						
e discretion of			ldy providers may vary their sample designs f	rom those shown. The specifics v	within each sample	are within			+
0 0.00101.011 0.1		ay 1 7011ao11							
	a) Desig	n criteria for M	ercury – 1:1 (mole:mole as Hg) Mercuric Oxid	le and Methyl Mercuric Chloride.					
	h) Dooig	n oritorio for T	etal Cyanida Lungamplayed e a Potaggium	Cuprido					
	b) Desig	n chiena ior 10	otal Cyanide – uncomplexed, e.g., Potassium	Cyanide.					
	c) Design	n criterion for 1	Furbidity - Formazin is the source for Turbidity						
	d) Desig	n criteria for C	hlorinated Acid Herbicides - should be supplie	ed in the acid form of the target he	rbicide.				
	e) Design	n criteria for 2	│ 4-D – should be at least half the butyl ester w	ith the remainder in the acid form					
			quat – Starting material is Diquat Dibromide N	lonohydrate as required in the me	thod. A ll assigned	values and re	ported		
	values s	hould be as Di	quat.						
	g) Design	n criteria for E	│ ndothall — Starting material is Endothall Monol	hydrate as required in the method	. All assigned valu	es and report	ed values		
		e as Endothall		,					
						1001 1005	212 1215	054.4006	
	,		ecachlorobiphenyl – The source of the Decac the Decachlorobiphenyl is to be calculated by	<u> </u>	,			254, 1260.	1
			the Decachiorobiphenyl is to be calculated by the USEPA Method 508A.	lie provider from the concentration	on or the Aroclor us	seu to prepare	uie sample		
	2.000.011	g .5 . ac.c 1 of							

DW_FOPT_2012_01_03.xls 8 of 9 11/8/2011

				C PT for Accreditation					
			Fields of Pro	oficiency Testing with P1	ΓRLs				
				Drinking Water					
			E ffe	ctive January 3, 2012					
			Red = Previous Experimental Analytes	Blue = New Analyte/Header/Foot	tnote			Magenta =	Changes
Matrix	EPA	NELAC	Analyte ^{1,2}	Conc Range		Acceptanc	e Criteria ^{3,4,5,6}		NELAC PTRL ⁷
	Analyte	Analyte		*	а	b	С	d	
	Code	Code							
14) Laboratories	seeking or	maintaining N	NELAP accreditation for Total Trihalomethanes	must meet NELAC PT requirements	for all 4 Trihal	omethane			
			study, by technology/method (Chloroform, Bron						
Laboratories see	king or ma	intaining NEL	AP accreditation for Total Haloacetic Acids mus	t meet NELAC PT requirements for	4 out of 5 regu	lated			
Haloacetic Acid I	ields of Pr	roficiency Test	ting in the given PT study, by technology/metho	d (Monochloroacetic Acid, Monobror	noacetic Acid,				
Dichloroacetic A	cid, Dibrom	noacetic Acid,	Trichloroacetic Acid).						

1	SICIENCY			TNI/NELAP PT for	r Accredit	ation			
A. Carlo	No.	12		Fields of Proficie	ncv Testir	ng with P	TRLs		
- 00		11)		Non-Potable Water	er (NPW)				
	TNI	1		Effective Date: A		6			
1	WOURAN			Encoure Date: A	7,7,201	Ť			
				Green= Revision 1	Blue = New	Analyte	Maganta	= Changes	Red = Revision
				Green= Revision i	Dide = New	Arialyte	iviagenta	= Changes	Reu = Revision
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6	5	NELAC PTRL 7
matrix	Analyte	Analyte	, manyte	Constituings		7.10009141.100	I		
	Code	Code			а	b	С	d	
			Microbiology	CFU/100 mL					CFU/100 mL
NPW	0233	2500	Total Coliform, MF 8	20 to 2400		Log transf	orm; ±3 SD	•	2
NPW	0235	2530	Fecal Coliform, MF 8	20 to 2400			orm; ±3 SD		2
NPW		2525	E.coli, MF 8	20 to 2400			orm; ±3 SD		2
NPW		2520	Enterococci, MF ⁸	20 to 1000			orm; ±3 SD		2
141 44		2020	Emorocool, Wil	MPN/100 mL		Log transi			MPN/100 mL
NPW	0234	2500	Total Coliform, MPN 9	20 to 2400		I og transf	form; ±3 SD	1	2
NPW	0236	2530	Fecal Coliform, MPN 9	20 to 2400		Log transform; ±3 SD			2
NPW	0230		E.coli. MPN ⁹						2
				20 to 2400		Log transform; ±3 SD Log transform; ±3 SD			
NPW		2520	Enterococci, MPN ⁹	20 to 1000	_	Log transf	orm; ±3 SD		2
			Torre Martala						
NPW	0004	4000	Trace Metals	µg/L	0.0000	0.5000	0.0471	11.2110	µg/L
NPW	0001 0016	1000 1005	Aluminum Antimony	200 to 4000 90 to 900	0.9823 0.9864	9.5889	0.0471	6.1230	144 57
NPW	0002	1010	Arsenic	90 to 900 90 to 900	0.9664	1.2647	0.0471	5.1741	64
NPW	0237	1015	Barium	100 to 2500	0.9916	±15% fixed a			85
NPW	0003	1013	Beryllium	50 to 500		±15% fixed a			42
NPW	0003	1020	Boron	800 to 2000		±15% fixed a			680
NPW	0004	1023	Cadmium	100 to 1000		±15% fixed a			85
NPW	0004	1040	Chromium, total	100 to 1000		±15% fixed a			85
NPW	0238	1045	Chromium VI	90 to 900	0.9917	1.0232	0.0476	2.2011	71
NPW	0005	1050	Cobalt	100 to 1000	0.5517	±15% fixed a			85
NPW	0003	1055	Copper	100 to 1000		±15% fixed a			85
NPW	0007	1070	Iron	200 to 4000		±15% fixed a			170
NPW	0012	1075	Lead	100 to 1500		±15% fixed a			85
NPW	0010	1090	Manganese	200 to 2000		±15% fixed a			170
NPW	0009	1095	Mercury ^{10a}	3.0 to 30		±30% fixed a			0.9
NPW	0074	1100	Molybdenum	60 to 600	0.9953	-0.1614	0.0372	2.5555	45
NPW	0011	1105	Nickel	200 to 2000	1.0012	1.5795	0.0368	3.8151	168
NPW	0013	1140	Selenium	100 to 1000	1	±15% fixed a			85
NPW	0017	1150	Silver	100 to 1000		±15% fixed a			85
NPW	0075	1160	Strontium	50 to 500		±15% fixed a			42
NPW	0018	1165	Thallium	80 to 800	0.9932	-0.9634	0.0479	4.2361	54
NPW	0239	1175	Tin	200 to 2000		±30% fixed a	cceptance lin	nit	140
NPW	0076	1180	Titanium	60 to 300		±15% fixed a	cceptance lin	nit	51
NPW	0014	1185	Vanadium	50 to 2000		±15% fixed a	cceptance lin	nit	42
NPW	0015	1190	Zinc	300 to 2000		±15% fixed a	cceptance lin	nit	255

1	MCIENCY			TNI/NELAP PT for	Accredit	ation			
A.P.	A COLUMN	12		Fields of Proficier	ncv Testir	na with P	ΓRLs		
0.0		10)		Non-Potable Water					
	TNI			Effective Date: Ap		6			
-	MOGRAS								
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6		NELAC PTRL 7
IVIALITA	Analyte	Analyte	Allalyte	Conc Nange		Acceptance	Cinteria		NELACTINE
	Code	Code			а	b	С	d	
			40						
			Demands 10b	mg/L					mg/L
NPW	0038	1530	5-day BOD ^{10c}	18 to 230	0.6237	0.7022	0.0928	0.6636	4.9
NPW	0102	1555	Carbonaceous BOD 10c	18 to 230	0.5648	0.6665	0.0965	0.8253	3.1
NPW	0036	1565	COD 10d	30 to 250	0.9843	-0.3171	0.0432	3.0191	16
NPW	0037	2040	TOC ^{10e}	6.0 to 100	0.9926	0.1680	0.0473	0.3536	4.2
			Minerals	mg/L					mg/L
NPW	0027	1505	Alkalinity, total (CaCO ₃)	25 to 400	+20% at <	40; ±15% at a	> 40 fixed acc	L entance limit	20
NPW	0021	1540	Bromide	1.0 to 10	1.0098	-0.0533	0.0400	0.0912	0.56
NPW	0023	1035	Calcium	10 to 100	1.0000		cceptance lim		8.5
NPW	0028	1575	Chloride	35 to 275	1.0005	0.0490	0.0376	0.3716	30
NPW	0029	1730	Fluoride	0.4 to 4	0.9748	0.0156	0.0487	0.0277	0.26
NPW		1550	Calcium hardness as CaCO3	25 to 250		±15% fixed a	cceptance lim	nit	21
NPW	0022	1755	Hardness, total (CaCO ₃)	40 to 415		±15% fixed a	cceptance lim	nit	34
NPW	0024	1085	Magnesium	4.0 to 40		±15% fixed a	cceptance lim	nit	3.4
NPW	0026	1125	Potassium	4.0 to 40		±20% fixed a	cceptance lim	nit	3.2
NPW	0025	1155	Sodium	10 to 100		±20% fixed a	cceptance lim	nit	8.0
NPW	0020	1610	Spec. Cond. (25°C)	200 to 1200 µmhos/cm		±10% fixed a	cceptance lim	nit	180 µmhos/cm
NPW	0030	2000	Sulfate	5.0 to 125	0.9880	-0.2130	0.0473	0.3309	3.0
NPW		2005	Sulfide	2.0 to 10	0.9657	-0.1271	0.1205	0.2816	0.20
NPW	0021	1955	Total Dissolved Solids at 180°C	140 to 800	1.0000	0.0000	0.0000	15.0000	95
NPW	0105	1950	Total Solids	140 to 800	1.0000	0.0000	0.0000	15.0000	95
			Nutrients	mg/L	+				mg/L
NPW	0031	1515	Ammonia as N	1.0 to 20	0.9923	0.0567	0.0583	0.0914	0.60
NPW	0032	1810	Nitrate as N	2.0 to 25	0.9975	-0.0005	0.0506	0.0642	1.50
NPW		1820	Nitrate-nitrite as N	2.5 to 25	0.9957	-0.0010	0.0509	0.0400	1.99
NPW		1840	Nitrite as N	0.4 to 4.0	1.0017	-0.0030	0.0377	0.0250	0.28
NPW	0033	1870	Orthophosphate as P	0.5 to 5.5		±15% fixed a	cceptance lim	nit	0.42
NPW	0034	1795	Total Kjeldahl-Nitrogen 10f	3.0 to 35	0.9701	0.2283	0.0680	0.1906	1.95
NPW	0035	1910	Total Phosphorus	0.5 to 10	0.9932	0.0084	0.0506	0.0254	0.35

1	MCIENCY			TNI/NELAP PT for	Accredit	ation			
A. C.	1111	1		Fields of Proficier	ncy Testin	g with P	ΓRLs		
00	TAIL			Non-Potable Water	er (NPW)				
	WOORN	/		Effective Date: Ap	oril 1, 2010	5			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance Criteria 3,4,5,6			NELAC PTRL 7
	Analyte	Analyte	,						
	Code	Code			а	b	С	d	
			Misc. Analytes	mg/L					mg/L
NPW		1500	Acidity, as CaCO3	650 to 1800		±10% fixed a	cceptance lim	nit	585
NPW		1605	Color	10 to 75 PC units	0.9474	0.6098	0.0367	2.4407	1.7 PC units
NPW	0072	1960	Total Suspended Solids	20 to 100	0.9728	-0.6338	0.0300	1.5793	12
NPW	0019	1900	pH ^{10g}	5.0 to 10 units	±	0.2 units fixed	acceptance	limit	Not applicable
NPW	0071	1645	Total Cyanide 10h	0.1 to 1		±35% fixed a	cceptance lin	nit	0.065
NPW	0097	1905	Total Phenolics (4AAP) 10i	0.5 to 5	0.6408	0.0250	0.1038	0.0082	0.16
NPW	0098	1940	Total Residual Chlorine	0.5 to 3.0	0.9345	0.0392	0.0688	0.0073	0.38
NPW		1965	Settleable solids	5.0 to 50 mL/L	1.0436	-0.0108	0.0597	0.4546	2.9 mL/L
NPW		1990	Silica as SiO2	50 to 250		±25% fixed a	cceptance lin	nit	38
NPW		2025	Surfactants - MBAS	0.2 to 1.0	1.0421	-0.0068	0.1326	0.0046	0.10
NPW		2055	Turbidity 10j	2.0 to 30 NTU	1.0040	-0.0368	0.0475	0.1575	1.2 NTU
NPW		1970	Volatile solids, Total	100 to 500	0.9644	-4.7559	0.0182	14.9450	41
			Low Level Analytes ¹¹		+				
NPW		1095	Mercury ^{10a}	20 to 100 ng/L	0.9910	0.2064	0.0432	2.5774	9.7
NPW		1940	Total Residual Chlorine	50 to 250 μg/L	1.0000	0.0000	0.0000	20.0000	5.0

1	SICIENCY			TNI/NELAP PT fo	r Accredit	ation			
A.C.	will be	12		Fields of Proficie	ncy Testir	g with Pi	ΓRLs		
00				Non-Potable Wat	ter (NPW)				
	CINI			Effective Date: A		6			
-	MOGRAS								
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Matrix	EPA	NELAC	Analyte	Conc Range	Acceptance Criteria 3,4,5,6		NELAC PTRL 7		
IVIALITA	Analyte	Analyte	Allalyte	Concinalige		Acceptance	Cintena		NELACTINE
	Code	Code			а	b	С	d	
			Volatile Aromatics ¹	μg/L					μg/L
NPW	0065	4375	Benzene	10 to 120		±30% fixed a			7.0
NPW	0094	4610	1,2-Dichlorobenzene	10 to 120		±30% fixed acceptance limit			7.0
NPW	0096	4615	1,3-Dichlorobenzene	10 to 120		±30% fixed a			7.0
NPW	0095	4620	1,4-Dichlorobenzene	10 to 120		±30% fixed acceptance limit		7.0	
NPW	0066	4765	Ethylbenzene	10 to 120		±30% fixed a	cceptance lin	nit	7.0
NPW	0222	5005	Naphthalene	15 to 150	0.8785	1.4343	0.1335	0.7561	6.3
NPW		5100	Styrene	20 to 120		±35% fixed a	cceptance lin	nit	13.0
NPW	0067	5140	Toluene	10 to 120		±30% fixed a	cceptance lin	nit	7.0
NPW	0092	5155	1,2,4-Trichlorobenzene	15 to 150	0.9160	-1.3028	0.1473	0.5100	4.3
NPW		5210	1,2,4-Trimethylbenzene	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW		5215	1,3,5-Trimethylbenzene	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW		5240	m/p-Xylenes	10 to 150		±40% fixed a	cceptance lin	nit	6.0
NPW			o-Xylene	10 to 150		±40% fixed a	cceptance lin	nit	6.0
NPW	0242	5260	Xylenes, total ¹²	20 to 300	±40% fixed acceptance limit		12		
			1						
			Volatile Ketones/Ethers 1	μg/L					μg/L
NPW		4315	Acetone	20 to 200	0.8856	3.5838	0.2028	1.7474	3.9
NPW			2-Hexanone	20 to 200	1.0054	-1.1748	0.1534	1.7764	4.4
NPW			4-Methyl-2-pentanone (MIBK)	20 to 200	1.0022	-1.0337	0.0934	4.1819	2.0
NPW		5000	Methyl tert-butyl ether (MTBE)	15 to 150	1.0233	-0.3620	0.1112	0.3083	9.0

1	SICIENCY			TNI/NELAP PT fo	or Accredit	ation			
At .		12		Fields of Profici	encv Testir	na with P	ΓRLs		
0.6		11)		Non-Potable Wa					
	TNI			Effective Date: A		6			
1	WOURAND .				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ī			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
				Orccii= Revision 1	Didc = New	Arialyte	Wagerita	- Orlanges	Trea - revision
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6	5	NELAC PTRL 7
mann	Analyte	Analyte	7 110.1910	Contrained		7.000001.000	I		11221011112
	Code	Code			а	b	С	d	
					-	_	_		
			Volatile Halocarbons 1	μg/L					μg/L
NPW	0060	4395	Bromodichloromethane	10 to 100		±40% fixed a	cceptance lin	nit	6.0
NPW	0062	4400	Bromoform	10 to 100		±40% fixed a	cceptance lin	nit	6.0
NPW	0243	4950	Bromomethane	20 to 120		± 60% fixed a	acceptance lir	nit	8.0
NPW	0058	4455	Carbon tetrachloride	15 to 150	0.9577	0.0612	0.1269	0.3443	7.7
NPW	0064	4475	Chlorobenzene	10 to 120		±30% fixed a	cceptance lin	nit	7.0
NPW	0244	4485	Chloroethane	20 to 120		± 60% fixed a	acceptance lir	nit	8.0
NPW	0055	4505	Chloroform	10 to 100		±30% fixed a	cceptance lin	nit	7.0
NPW	0245	4960	Chloromethane	20 to 120		± 60% fixed a	acceptance lin	nit	8.0
NPW	0061	4575	Dibromochloromethane	10 to 100	±40% fixed acceptance limit			6.0	
NPW		4570	1,2-Dibromo-3-chloropropane (DBCP)	15 to 150		±40% fixed a	cceptance lin	nit	9.0
NPW		4585	1,2-Dibromoethane (EDB)	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW		4595	Dibromomethane	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW		4630	1,1-Dichloroethane	10 to 150	0.9977	0.2117	0.1227	0.0174	6.4
NPW	0054	4635	1,2 Dichloroethane	15 to 150	0.9843	1.3728	0.0912	0.4693	10.6
NPW	0246	4640	1,1-Dichloroethene	10 to 150	1.0034	0.6630	0.1447	0.0521	6.2
NPW		4645	cis-1,2-Dichloroethene	10 to 150	0.9973	0.3699	0.1095	0.0036	7.0
NPW	0247	4700	trans-1,2-Dichloroethene	10 to 120		±40% fixed a	cceptance lin	nit	6.0
NPW	0248	4655	1,2-Dichloropropane	10 to 150		±30% fixed a	cceptance lin	nit	7.0
NPW		4680	cis-1,3-Dichloropropene	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW	0249		trans-1,3-Dichloropropene	10 to 120		±35% fixed a	cceptance lin	nit	6.5
NPW	0063	4975	Methylene Chloride	10 to 120			cceptance lin		6.0
NPW		5105	1,1,1,2-Tetrachloroethane	15 to 150		±35% fixed a			9.8
NPW	0250	5110	1,1,2,2-Tetrachloroethane	15 to 150		±35% fixed a	cceptance lin	nit	9.8
NPW	0059	5115	Tetrachloroethene	10 to 150	0.9416	-0.5063	0.1189	0.3441	4.3
NPW	0056	5160	1,1,1-Trichloroethane	10 to 100		±40% fixed a			6.0
NPW	0251	5165	1,1,2-Trichloroethane	15 to 150		±30% fixed a			10.5
NPW	0057	5170	Trichloroethene	10 to 100	0.9611	0.5720	0.1077	0.2478	6.2
NPW	0252		Trichlorofluoromethane	20 to 120		± 60% fixed a			8.0
NPW		5180	1,2,3-Trichloropropane	15 to 150	0.9867	-0.4721	0.1630	0.9605	4.1
NPW	0253	5235	Vinyl chloride	20 to 120		± 60% fixed a	cceptance lir	nit	8.0
			4.44					-	1
			Low-Level Halocarbons 1, 11	μg/L					μg/L
NPW		4570	1,2-Dibromo-3-chloropropane (DBCP)	0.2 to 2.0	0.9542	0.0359	0.1200	0.0161	0.11
NPW		4585	1,2-Dibromoethane (EDB)	0.2 to 2.0	0.9341	0.0293	0.1090	0.0239	0.08
NPW		5180	1,2,3-Trichloropropane	0.2 to 2.0	0.9284	0.0534	0.1257	0.0117	0.13

1	MICHENCY			TNI/NELAP PT fo	r Accredita	ation			
A. Carlo		12		Fields of Proficie	ency Testin	a with P	ΓRLs		
(1)				Non-Potable Wa		9	1		
	TNI			Effective Date: A		•			
1	WOURN'S	,		Effective Date. A	prii 1, 2010	,			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
		NEL AO					0 : 3456	<u> </u>	NEL 40 PERI 7
Matrix	EPA Analyte	NELAC Analyte	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6		NELAC PTRL ⁷
	Code	Code			а	b	С	d	
	Code	Code			а	D	L C	u	
			Volatile Petroleum Hydrocarbons	μg/L					μg/L
NPW		9408	Gasoline range organics (GRO) 13	400 to 4000	1.0683	-7.7234	0.2162	35.0439	55
141 77		0100	Gassins range organies (Gree)	100 10 1000	1.0000	7.7204	0.2102	00.0100	- 00
			Base/Neutrals ¹	μg/L					μg/L
NPW	0189	5500	Acenaphthene	10 to 200	0.7748	0.8506	0.1427	0.1159	4.0
NPW	0190	5505	Acenaphthylene	10 to 200	0.8029	-0.2974	0.1485	0.1111	2.9
NPW	0192	5555	Anthracene	10 to 200	0.7986	1.7870	0.1229	0.7303	3.9
NPW	0177	5575	Benzo(a)anthracene	10 to 200	0.8381	0.5699	0.1162	0.6075	3.6
NPW	0254	5670	Benzyl butyl phthalate	50 to 200	0.8496	-2.1863	0.1776	0.0752	13.4
NPW	0178	5585	Benzo(b)fluoranthene	20 to 200	0.8327	0.1531	0.1497	0.1078	7.5
NPW	0179	5600	Benzo(k)fluoranthene	20 to 200	0.8223	1.996	0.1862	1.126	7.7
NPW	0180	5590	Benzo(g,h,i)perylene	10 to 200	0.8261	1.5562	0.1556	0.0166	5.1
NPW	0255	5580	Benzo(a)pyrene	10 to 200	0.8207	-0.0550	0.1484	0.4349	2.4
NPW	0198	5660	4-Bromophenyl-phenylether	20 to 200	0.8081	3.0645	0.1325	0.8996	8.6
NPW	0195	5760	bis(2-Chloroethoxy)methane	20 to 200	0.7615	0.4890	0.1193	1.5633	3.9
NPW	0196	5765	bis(2-Chloroethyl)ether	20 to 200	0.7090	2.3607	0.1529	0.4801	5.9
NPW	0197	4659	2,2'-Oxybis(1-Chloropropane) ¹⁸	30 to 200	0.7285	1.6917	0.1303	2.9025	3.1
NPW	0256		Bis(2-ethylhexyl) phthalate	20 to 200	0.8065	2.5761	0.1474	1.6124	5.0
NPW NPW	0204	5825	4-Chlorophenyl-phenylether	20 to 200	0.7669	3.7466	0.1417	0.2303	9.9
NPW	0203 0181	5795 5855	2-Chloronaphthalene Chrysene	20 to 200 10 to 200	0.7102 0.8180	2.4854 2.3274	0.1477 0.1351	0.5079 0.2137	6.3 5.8
NPW	0182	5895	Dibenzo(a,h)anthracene	20 to 200	0.8079	2.3890	0.1331	0.2137	6.9
NPW	0102	5905	Dibenzofuran	30 to 200	0.7411	2.7181	0.1437	1.0735	11.3
NPW		4610	1,2-Dichlorobenzene	20 to 200	0.6365	0.7906	0.1517	2.2155	2.0
NPW		4615	1,3-Dichlorobenzene	20 to 200	0.5921	3.0260	0.1787	0.3464	3.1
NPW		4620	1,4-Dichlorobenzene	20 to 200	0.5671	3.6005	0.1640	0.4826	3.7
NPW	0185	5945	3,3'-Dichlorobenzidine	50 to 200	0.901	-0.5596	0.199	2.5071	5.0
NPW	0208	6070	Diethyl phthalate	50 to 200	0.7492	3.3637	0.1805	2.0213	8.9
NPW	0209	6135	Dimethyl phthalate	50 to 200	0.6375	3.9631	0.2524	0.8174	11.5
NPW	0205	5925	Di-n-butyl phthalate	40 to 200	0.7797	5.1233	0.1490	0.8776	15.8
NPW	0186	6185	2,4-Dinitrotoluene	20 to 200	0.8219	0.4137	0.1183	1.7449	4.5
NPW	0210		2,6-Dinitrotoluene	20 to 200	0.7999	0.4770	0.1316	0.1368	8.2
NPW	0211	6200	Di-n-octyl phthalate	30 to 200	0.8186	2.8779	0.1724	1.2382	8.2
NPW	0212	6265	Fluoranthene	30 to 200	0.8087	2.9863	0.1272	0.0642	15.6
NPW	0213	6270	Fluorene	10 to 200	0.7619	3.7583	0.1165	1.0349	4.8
NPW NPW	0214 0215	6275	Hexachlorobenzene	20 to 200 50 to 200	0.8202	0.2263 2.6591	0.1238 0.1616	0.1297 1.9082	8.8
NPW NPW	0215	4835 6285	Hexachlorobutadiene Hexachlorocyclopentadiene	50 to 200 50 to 200	0.6286	-4.4226	0.1616	1.9082 4.3222	4.3 5.0
NPW	0216	4840	Hexachloroethane	50 to 200	0.5921	-0.0657	0.2049	0.5308	3.3
NPW	0217	6315	Indeno(1,2,3, cd)pyrene	30 to 200	0.5921	5.0289	0.1640	1.4299	9.2
NPW	0219		Isophorone	20 to 200	0.7981	0.7053	0.1437	0.3000	7.1
NPW	0210	6385	2-Methylnaphthalene	20 to 200	0.6983	2.0844	0.1361	2.1436	2.0

1	MCIENCY			TNI/NELAP PT fo	or Accredita	ation			
A	1	12		Fields of Proficie	encv Testin	a with P	TRLs		
0.6				Non-Potable Wa	ter (NPW)		1		
V.	/ TNI			Effective Date: A					
1	WOURAS.	,		Effective Date. F	April 1, 2010	1			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Market	- FDA	NELAO	A 1 - 1 -	0		A 1	3.4.5.6		NELAO DEDI 7
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6	ı	NELAC PTRL 7
	Analyte	Analyte			_				
	Code	Code			а	b	С	d	
			Base/Neutrals ¹ cont'	μg/L					μg/L
NPW	0222	5005	Naphthalene	20 to 200	0.6749	3.5514	0.1441	1.2975	4.5
NPW	0226		Nitrobenzene	20 to 200	0.7463	0.9864	0.1388	0.4589	6.2
NPW	0227	6530	N-Nitrosodimethylamine	75 to 200	0.4665	7.3433	0.1652	3.9997	7.5
NPW	0230		N-Nitroso-di-n-propylamine	30 to 200	0.7913	-0.0510	0.1541	0.1328	9.4
NPW	0229		N-Nitrosodiphenylamine	30 to 200	0.7740	0.6711	0.2016	0.0494	5.6
NPW	0231	6615	Phenanthrene	10 to 200	0.8001	2.8698	0.1110	0.9485	4.7
NPW	0187	6665	Pyrene	10 to 200	0.8476	1.0097	0.1490	0.0530	4.9
NPW	0092	5155	1,2,4-Trichlorobenzene	20 to 200	0.6769	1.1166	0.1493	1.8128	2.0
			4						
			Acids ¹	μg/L					μg/L
NPW	0161		4-Chloro-3-methylphenol	30 to 200	0.7998	0.6264	0.1421	0.0397	11.7
NPW	0162		2-Chlorophenol	30 to 200	0.7292	1.4640	0.1518	0.0174	9.6
NPW	0163		2,4-Dichlorophenol	30 to 200	0.7362	2.8458	0.1433	0.0585	11.9
NPW			2,6-Dichlorophenol	30 to 200	0.7512	3.7563	0.1564	0.0312	12.1
NPW	0165		2,4-Dimethylphenol	40 to 200	0.7496	1.4509	0.1601	0.0953	11.9
NPW	0167		2,4-Dinitrophenol	100 to 200	0.6531	3.5920	0.1695	8.5727	10
NPW	0168		2-Methyl-4,6-Dinitrophenol	40 to 200	0.8108	3.6290	0.1573	2.1683	10.7
NPW		6400	2-Methylphenol (o-Cresol)	40 to 200	0.6821	2.2126	0.1529	0.5485	9.5
NPW			4-Methylphenol (p-Cresol) 14	50 to 200	0.6531	2.1854	0.2008	0.7807	5.0
NPW	0171		2-Nitrophenol	50 to 200	0.7631	1.1486	0.1272	2.4547	12.9
NPW	0173		4-Nitrophenol	100 to 200	0.5591	-1.0075	0.2511	1.9409	10
NPW	0174	6625	Phenol	100 to 200	0.557	0.5929	0.253	1.0269	10
NPW	0158	6605	Pentachlorophenol	40 to 200	0.8469	-0.7338	0.1561	1.5178	9.9
NPW	0175		2,4,5-Trichlorophenol	30 to 200	0.7726	3.2199	0.1362	0.9916	11.2
NPW	0159	6840	2,4,6-Trichlorophenol	30 to 200	0.7880	0.8051	0.1406	0.0280	11.7

1	MCIENCY			TNI/NELAP PT fo	or Accredita	ation			
A.	and the second	12		Fields of Profici	encv Testin	a with P	ΓRLs		
006		11)		Non-Potable Wa					
	TNI	1		Effective Date: A		3			
1	WOURAN.	,		Lifective Date. 7	19111 1, 2010	<u>, </u>			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6		NELAC PTRL 7
Michigan	Analyte	Analyte	7	oone range		, 1000 ptd://oc	I		
	Code	Code			а	b	С	d	
			PCBs in Water ²	μg/L					μg/L
NPW	0040	8880	Aroclor 1016	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0041	8885	Aroclor 1221	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0042	8890	Aroclor 1232	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0040	8895	Aroclor 1242	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0044	8900	Aroclor 1248	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0045	8905	Aroclor 1254	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
NPW	0046	8910	Aroclor 1260	2.0 to 10	0.8318	0.1991	0.1591	0.0384	0.8
			Organochlorine Pesticides 1	μg/L					μg/L
NPW	0047	7025	Aldrin	1.0 to 15	0.8524	-0.0159	0.1655	0.0002	0.34
NPW	0079	7110	alpha-BHC	2.0 to 20	0.8996	0.0151	0.1505	0.0349	0.81
NPW	0800	7115	beta-BHC	2.0 to 20	0.8889	0.1961	0.1372	0.0777	0.92
NPW	0081	7105	delta-BHC	2.0 to 20	0.9031	0.1036	0.1525	0.0673	0.79
NPW	0082	7120	gamma-BHC (Lindane)	2.0 to 20	0.8959	0.1095	0.1528	0.0189	0.93
NPW		7240	alpha-Chlordane	1.0 to 10	0.8842	0.0542	0.1423	0.0348	0.41
NPW		7245	gamma-Chlordane	1.0 to 10	0.8617	0.1041	0.1323	0.0716	0.35
NPW	0053	7250	Chlordane (total)	3.0 to 25	0.8501	0.4121	0.1540	0.0381	1.46
NPW	0049	7355	4,4'-DDD	2.0 to 10	0.9271	0.03839	0.1227	0.1763	0.63
NPW	0050		4,4'-DDE	1.0 to 10	0.8793	0.0718	0.1468	0.0395	0.39
NPW	0051	7365	4,4'-DDT	1.0 to 10	0.8987	0.1076	0.1680	0.0337	0.40
NPW	0048	7470	Dieldrin	1.0 to 15	0.9126	0.0323	0.1327	0.0240	0.47
NPW	0083	7510	Endosulfan I	4.0 to 20	0.8698	-0.0604	0.1548	0.0549	1.40
NPW	0084	7515	Endosulfan II	4.0 to 20	0.8765	0.0994	0.1490	0.0912	1.54
NPW	0085	7520	Endosulfan sulfate	4.0 to 20	0.8752	0.5312	0.1348	0.2091	1.79
NPW	0086	7540	Endrin	2.0 to 20	0.9183	0.0706	0.1594	0.0277	0.87
NPW	0087	7530	Endrin aldehyde	4.0 to 20	0.8585	0.4845	0.1571	0.2054	1.42
NPW		7535	Endrin ketone	4.0 to 20	0.8951	0.3702	0.1135	0.1902	2.0
NPW	0052	7685	Heptachlor	1.0 to 10	0.8470	0.0457	0.1596	0.0402	0.29
NPW	0078		Heptachlor Epoxide (beta)	1.0 to 10	0.9176	0.0041	0.1342	0.0268	0.44
NPW	0234		Methoxychlor	2.0 to 20	0.9115	0.2801	0.1467	0.2290	0.54
NPW	0241	8250	Toxaphene	20 to 100	0.8087	1.8908	0.1991	0.5080	4.59

1	STOLENCY			TNI/NELAP PT fo	r Accredita	ation			
AR	1	1		Fields of Proficie	ncv Testin	a with P	ΓRLs		
0.6				Non-Potable Wat		9			
	TNI	/		Effective Date: A		3			
1	WOORN				', _ ',	<u>*</u>			
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
	554	1151.40					2 : 3456		NELAG PERI 7
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,6		NELAC PTRL 7
	Analyte	Analyte							
	Code	Code			а	b	С	d	
			1						
NIDIM	2055	05.45	Herbicides ¹	μg/L	2 7004	0.000=	0.0540		μg/L
NPW	0257		2,4-D	2 to 10	0.7204	0.2995	0.2543	0.0297	0.20
NPW	0258		Dicamba	2 to 10	0.7848	0.2788	0.1754	0.1455	0.40
NPW	0140		2,4,5-T	2 to 10	0.8132	0.1393	0.1850	0.1353	0.20
NPW	0259	8650	2,4,5-TP (Silvex)	2 to 10	0.8349	0.1516	0.2046	0.0195	0.50
			Low Level PAHs ¹	μg/L					μg/L
NPW		5500	Acenaphthene	2.0 to 20	0.7600	0.1476	0.1456	0.0021	0.79
NPW		5505	Acenaphthylene	2.0 to 20	0.7856	0.0418	0.1133	0.0687	0.73
NPW		5555	Anthracene	0.5 to 5.0	0.8151	0.0194	0.1714	0.0115	0.14
NPW			Benzo(a)anthracene	0.5 to 5.0	0.9012	-0.0236	0.0614	0.0462	0.20
NPW		5580	Benzo(a)pyrene	0.5 to 5.0	0.7745	0.0824	0.1162	0.0270	0.21
NPW		5585	Benzo(b)fluoranthene	0.5 to 5.0	0.8217	0.0544	0.1167	0.0144	0.25
NPW		5590	Benzo(g,h,i)perylene	0.5 to 5.0	0.7683	0.0737	0.1641	0.0088	0.18
NPW			Benzo(k)fluoranthene	0.5 to 5.0	0.8943	-0.0069	0.1245	0.0108	0.22
NPW		5855	Chrysene	0.5 to 5.0	0.8883	0.0132	0.1046	0.0235	0.23
NPW			Dibenz(a,h)anthracene	0.5 to 5.0	0.7914	0.0640	0.1377	0.0520	0.10
NPW			Fluoranthene	0.5 to 5.0	0.8565	0.0211	0.1064	0.0128	0.25
NPW		6270	Fluorene	2.0 to 10	0.7863	0.0472	0.1153	0.0631	0.74
NPW		6315	Indeno(1,2,3-cd)pyrene	0.5 to 5.0	0.8224	0.0623	0.1316	0.0267	0.20
NPW		5005	Naphthalene	2.0 to 10	0.7279	0.0977	0.1251	0.0803	0.56
NPW		6615	Phenanthrene	0.5 to 5.0	0.8332	0.0256	0.1099	0.0118	0.24
NPW		6665	Pyrene	0.5 to 5.0	0.8468	0.0435	0.1023	0.0095	0.28
			Potroloum Hydrocorbono						
NIDIA			Petroleum Hydrocarbons		0.7700	00.040=	0.4000	400 4007	00 "
NPW			Diesel range organics (DRO) 15	800 to 6000 μg/L	0.7790	-96.0467	0.1386	109.1897	80 μg/L
NPW	0104	1803	III-Hexarie Extractable Material (O&G)	20 to 200 mg/L	0.9400	-0.4116	0.0545	2.0789	8.8 mg/L
NPW		1935	non-Polar Extractable Material (TPH) 17	20 to 200 mg/L	0.9692	-1.1573	0.1586	0.3709	7.6 mg/L

1	SICIENCY			TNI/NELAP PT for	Accredita	ation			
A.E.	and the same	1		Fields of Proficien	cv Testin	a with PT	RLs		
0.0				Non-Potable Water	r (NPW)	J			
	TNI			Effective Date: Ap		5			
-	WOURAN				1, 2011				
				Green= Revision 1	Blue = New	Analyte	Magenta	a = Changes	Red = Revision
				Green- Revision 1	Dido = Now	Tildiyto	Wagorita	- Changes	Ttod = Itoviolon
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5	,6	NELAC PTRL 7
	Analyte	Analyte	,			'			
	Code	Code			а	b	С	d	
								1	
			acids, organochlorine pesticides, herbicides, and lov	w level PAHs, providers must	include a min	imum numbei	r of analytes	using the	
	scribed be								
			ed for one to ten analytes must include all of these a ed for ten to twenty analytes must include at least ter		the total which	hover numbe	r is greater		
			ed for more than twenty analytes must include at least tel					greater	
			the total number of analytes in the PT sample is a fra					greater.	
ii tiio odio	diatou porc	ornage or	the total name of analyses in the FT sample is a ne	The fraction of the feet of		IC HOXE WHOLE	Tidilibor.		
2) One sa	mple (mini	mum) in e	very study, containing one Aroclor, selected at rando	m from among the Aroclors lis	sted above.				
,			,						
			the Mean ± 3 SD						
			are presented, Mean = $a^*T + b$; $SD = c^*T + d$ where						
			are presented, Mean = Robust Study Mean; SD = c*						
			d (Study Mean ±3SD), Mean = Robust Study Mean, S						
			ard Deviation are generated using statistical analysis						
Quantitati	ve Microbio	ology acce	ptance criteria are based on the robust participant M	ean and SD determined from	each respecti	ve PT study		-	
4) 1(1) - 1-			and the second s	1000 - 1100 - 1				1	
4) If the id	wer accept	ance limit	generated using the criteria contained in this table is ith the exception of microbiology analytes.	less than (<) 10% of the assi	gned value, tr	ne lower acce	ptance iimits I	are set	+
at 10% of	the assign	ed value w	in the exception of microbiology analytes.						
5) If the lo	wer accent	ance limit	generated using the criteria contained in this table is	greater than 90% of the assis	nned value th	e lower accer	l ntance limits	are set	
			vith the exception of microbiology analytes.	greater than 30 % of the assi	grica value, ti	c lower accep	Tarice iiiiiis	l die sei	
ut 0070 01	line decign	ou raido i	mar and onception of microscology analytee.						
6) If the u	pper accep	tance limit	generated using the criteria contained in this table is	s less than 110% of the assign	ned value, the	upper accept	tance limits a	are set	
			with the exception of microbiology analytes.				1	1	
			,						
7) NELAC	Proficienc	y Testing	Reporting Limits (PTRLs) are provided as guidance t	to laboratories analyzing NEL	AC PT sample	s. These lev	els are the le	owest	
			e obtained from the lowest spike level for each analy					<u>-</u> :	
			ises (especially for analytes that typically exhibit low						
			should use a method that is sensitive enough to gene						1
			a minimum for all analytes with an assigned value eq	ual to "0", the PT Provider sho	ould verity tha	t the sample of	does not con	itain	
the analyt	e at a cond	entration (greater than or equal to the PTRL.						1
9) Thosa	limite are fo	r guantita	tive methods using membrane filtration techniques.					+	+
o) mese	iiiiils are it	n quantita	uve metrious using membrane ilitration techniques.	+				+	+
9) These	limits are fo	r quantita	tive methods using most probable number technique	9				+	
o/ mose	minio are it	, quantita	avo monodo doing most probable number technique		1			1	

1	STORMO			TNI/NELAP PT for	Accredit	ation			
A.	West of	2		Fields of Proficier	ncy Testin	g with PT	RLs		
000		70		Non-Potable Water	er (NPW)				
	TNI			Effective Date: Ap		3			
-	WOGRA								
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
							·		
Matrix	EPA	NELAC	Analyte	Conc Range		Acceptance	Criteria 3,4,5,	6	NELAC PTRL 7
	Analyte	,							
	Code	Code			а	b	С	d	
10) The fo	llowina re	commende	d sample designs, which were used in past USEPA s		nodel desians l	ecause other	designs		
			cs. PT study providers may vary their sample design						
the discre	tion of the	PT study P	rovider.						
				111111111111111111111111111111111111111					
	a) Desigi	n criterion to	or Mercury – 1:1 (mole:mole as Hg) Mercuric Oxide a	nd Methyl Mercuric Chloride.					
	b) Design	n criteria for	Demands – 1:1 Glucose and Glutamic Acid.						
	,,, _ co.g.								
			5-Day BOD and Carbonaceous BOD - The assigne						e
			e and the concentration of Glucose-Glutamic Acid (G					n.	
			g/L each of Glucose & of Glutamic Acid produces a E	3OD of 198 mg/L, and 300 m	ng/L KHP prod	uces a BOD c	f 240 mg/L.		
	U mg/L G	GA OF KHE	would produce a BOD value of 0 mg/L.						
	d) Design	n criterion fo	or Chemical Oxygen Demand – The assigned value of	of COD is (1 066 times ma G	lucose plus 0	9787 times m	g Glutamic A	L cid) divided b	v total liters
			or required dilutions.				y Olatai iii o	1	1
			or Total Organic Carbon – The assigned value of TO	C is (0.4000 times mg Gluco	se plus 0.4082	times mg Glu	ıtamic Acid)	divided by tota	al liters of
	sample a	idjusted for	required dilutions.						
	f) Design	criterion fo	r Total Kjeldahl Nitrogen – Glycine is the source of T	KN					
	i) Design		Total (geraan) Will ogen – Grycine is the source of t	100					
	g) Desigi	n criterion fo	or pH – in separate solution (use buffer formulation fr	om the CRC chemical handb	ook).				
	h) Desigi	n criterion for	or Total Cyanide – Potassium Ferricyanide.						
	i) Docian	oritorion fo	r Total Phenolics (4AAP) – 40% Phenol, 20% 2-Chlo	ronhonal 200/ 2.4 Dinitronh	onal 20% 2.4	Diablaranhan	ol (molo %)		
	calculate	d as mg/L F	Phenol	ropnenol, 20% 2,4-Dinitropn	enoi, 20% 2,4-	-Dichlorophen	oi (moie %),		
	calculate	a as mg/L i	TICHOI.						
	j) Design	criterion fo	r Turbidity - Formazin is the source for Turbidity.						
	k) Desigr	n criterion fo	or Oil and Grease – 1:1 Paraffin oil and cooking oil, ${f v}$	acuum pump oil, or similar m	nixture that doe	es not contain	volatile orga	<u>inics</u> .	
11) Tho I	ow Lovel	\nahtas' aa	ncentration ranges and acceptance criteria are speci	ifically intended for technolog	rios/mothods t	not can achiev	o the listed	DTDI	
11) THE L	OW LEVEL A	analytes CO	incentration ranges and acceptance chieffa are speci	linearly interfued for technolog	jies/memous t	iai can acrile	re the hoted	1 11 \L .	
12) Volati	es Aroma	tics must co	ontain all three Xylene isomers. The concentration rai	nge of o-Xylene and m&p-Xv	lene is 10-150	μg/L each.			
,			*	Ĭ					
		Organics (GRO) per purge-and-trap extraction followed by chro	matographic analysis. GRO	is defined as	the carbon rar	nge between		
n-C5 and	n-C10.								

10	MCIENCY			TNI/NELAP PT fo	r Accredit	ation			
ARC	will a	12		Fields of Proficie	ncy Testin	g with P	TRLs		
	/TAIL			Non-Potable Wat	ter (NPW)				
	CINI			Effective Date: A	pril 1, 2010	5			
-	uochry	2							
				Green= Revision 1	Blue = New	Analyte	Magenta	= Changes	Red = Revision
Matrix	EPA	NELAC	Analita	Cara Danas		At	Criteria ^{3,4,5,}	6	NELAC PTRL ⁷
Matrix	Analyte	Analyte	Analyte	Conc Range		Acceptance	Criteria	T	NELAC PIRL
	Code	Code			а	b	С	d	
	Oouc	Oodc			- a		· ·	<u> </u>	
14) Labora	atories see	king or ma	intaining NELAP accreditation for Non-Potable Wate	er 4-Methylphenol or the coe	eluting isomer p	air of 3-Methy	Iphenol and		
4-Methylph	henol mus	t meet the	NELAC PT requirements for this Field of Proficiency	Testing (4-Methylphenol).					
15) Diesel	Range Or	ganics (DF	RO) per solvent extraction followed by chromatograp	hic analysis. DRO is define	d as the carbon	range betwe	en n-C ₁₀ and	n-C ₂₈ .	
16) n-Hexa	ane Extrac	table Mate	rial (HEM) per solvent extraction followed by gravim-	etric or infrared spectrometri	ic analysis (Oil	& Grease).			
4=\ 5							<u> </u>		
			rial per solvent extraction and Silica Gel Treated (SC	(1 5 l) followed by gravimetric	or infrared spec	trometric ana	ilysis		
(Total Petr	roleum Hy	arocarbons	8).						
18) Also k	nown as B	is/2-chloro	-1-methylethyl) Ether; formerly inaccurately labeled	as Ris(2-chloroisopropyl) Eth	nor.		1	1	
10) AISO K	nown as L	13(2 011010	The mount of the many maccurately labeled	as bis(z Gillorolsopropyi) Eti	ICI.	l .	1	1	

- Certificate of Analysis -

Product:

WatR™ Pollution Volatiles

Catalog Number:

710

Lot No.

P245-710

Certificate Issue Date:

October 28, 2015

Expiration Date:

May 06, 2018

Revision Number:

Original

CERTIFICATION

Parameter	Certified Value ¹	Uncertainty ²	QC Performance Acceptance Limits ³	PT Performance Acceptance Limits ⁴
	µg/L	%	hã/r	µg/L
Acetone	<3.90	-		-
Acetonitrile	<5.00		<u> </u>	-
Acrolein	<5.00		##	-
Acrylonitrile	<5.00	**	##	-
Benzene	68.2	3.34	53.2 - 81.2	47.7 - 88.7
Bromobenzene	<5.00	700 Marie 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-
Bromochloromethane	<5.00	-		
Bromodichloromethane	<6.00	——————————————————————————————————————		
Bromoform	<6.00	over freedings of the control of the	en in the second of the second	
3romomethane	<8.00	error er 		appysources and supplier conservation of the supplier of the s
2-Butanone (MEK)	<5.00	, county y/acc consequence consequence responses consequences in the consequence of the c		to the control of the
n-Butylbenzene	<5.00	medientistein one eine der und der der eine der 	Color - 1994 and go a managaman as as an ago and go as a go an ago an ago an ago an an ago an an ago an an ago 	ma.
sec-Butylbenzene	<5.00			
ert-Butylbenzene	<5.00			
ert-Butyl methyl ether (MTBE)	89.4	6.34	70.4 - 114	60.4 - 122
Carbon disulfide	<5.00		- 	
Carbon tetrachloride	16.9	4.27	11.0 - 21.1	8.78 - 23.7
Chlorobenzene	94.1	4.60	74.5 - 112	65.9 - 122
Chlorodibromomethane	<6.00	gillion of the second s	gaalegii ise naagus oon is good gaagaan oo ah dadhaa dhaagaan qobbab ishandadda byaa Arabaan ah dadhaa balka i 	ener Commission (Commission Commission (Commission Commission Commission Commission Commission Commission Comm
Chloroethane	<8.00			
2-Chloroethylvinylether	<5.00		## Company Company Communication (Communication Communication Communicat	
Chloroform	34.3	1.77	27.0 - 41.8	24.0 - 44.6
Chloromethane	<8.00			
-Chlorotoluene	<5.00			

Page 1 of 7 Lot: P245-710

16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eragc.com

Certificate of Analysis -

Parameter	Certified Value ¹	Uncertainty ²	QC Performance Acceptance Limits ³	PT Performance Acceptance Limits ⁴
	μg/L	%	hã/r	μg/L
4-Chlorotoluene	<5.00			TO SECURE OF COMPANY AS A MERCANIC PROPERTY OF A SECURE OF A SEC
1,2-Dibromo-3-chloropropane (DBCP)	<9.00	——————————————————————————————————————		
1,2-Dibromoethane (EDB)	23.0	4.36	18.4 - 28.1	15.0 - 31.1
Dibromomethane	51.4	2.73	41.9 - 63.2	33.4 - 69.4
1,2-Dichlorobenzene	<7.00			
1,3-Dichlorobenzene	<7.00		en e	
1,4-Dichlorobenzene	<7.00	m and the state of	alest filologica (in equicalment and the Adelagonal delighter entendor for elegated a conflict of the activities (Association).	380a 44-books Negybbol oo akki diilike rood akkis - viibakii Volus Negybabla (6. ggbassaa) ***********************************
Dichlorodifluoromethane (Freon 12)	<5.00		ng a managangga nagan ram s digitanananan mangai mangain dan an ana ana ana ana ana ana ana ana	end enemission (not 101 group as a since enemission accession (not a since enemission and enemission enemission enemission)
1,1-Dichloroethane	42.9	0.816	33.7 - 52.8	27.2 - 58.9
1,2-Dichloroethane	<10.6	control - transming production to the control control control (and and the second s	00000000000000000000000000000000000000
1,1-Dichloroethylene	23.8	3.92	16.2 - 31.9	14.1 - 35.0
cis-1,2-Dichloroethylene	<7.00	physician and phone in pour monocommunication and active in conjunt to compare the conjunt to conju	agasannagangan nammagasan na tita atau nagan pangan tahun na ang kanan tahun na dan na dan na ang atau na tau ••••••••••••••••••••••••••••••••••••	policiamentalistas e essa efizir - temate si control secondo (interest esse) - tem essacions, enqui qui paspantali ==
trans-1,2-Dichloroethylene	26.2	1.75	19.7 - 33.0	15.7 - 36.7
1,2-Dichloropropane	93.5	3.79	74.2 - 113	65.4 - 122
1,3-Dichloropropane	<5.00			
2,2-Dichloropropane	<5.00			
1,1-Dichloropropene	<5.00	antitude same antitude et a silveration and et al. a silveral violence and an exemple of the Property of the P	en de speciel de la contraction de la contractio	##
cis-1,3-Dichloropropylene	60.8	4.07	45.3 - 72.4	39.5 - 82.1
rans-1,3-Dichloropropylene	42.2	3.07	32.4 - 51.9	27.4 - 57.0
Ethylbenzene	77.5	4.67	57.1 - 94.6	54.2 - 101
-lexachlorobutadiene	<4.30			
Hexachloroethane	<3.30			est portes para l'ince a l'incentina de l'incentina
2-Hexanone	36.9	2.33	23.4 - 49.4	13.6 - 58.2
sopropylbenzene	<5.00		akata pirangangan ant daga mag kalapangahang dangahapata dangahida antapanda anah penjulah kananggat ang kanta 	a part la segli ha a travert a contra del primorità di dispensa i inclumenta del si contra de contra come come come come come come come come
-Isopropyltoluene	<5.00	•		onnocation (Catalogue Catalogue) (Catalogue Catalogue Ca
Methylene chloride	40.8	0.812	29.7 - 51.4	24.5 - 57.1
-Methyl-2-pentanone (MIBK)	47.0	2.61	31.5 - 61 <i>.</i> 6	20.4 - 71.8
laphthalene	31.7	1.95	19.6 - 39.6	14.3 - 44.2
litrobenzene	<6.20	-		
-Propylbenzene	<5.00		-	

Page 2 of 7 Lot: P245-710

16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eragc.com

ERA

A Waters Company

Reference Materials

Certificate of Analysis •

Parameter	Certified Value ¹	Uncertainty ²	QC Performance Acceptance Limits ³	PT Performance Acceptance Limits ⁴
javanieriajalukoja (iniskungsi izjeneri iniskungsi irakungsi irakungsi irakungsi irakungsi irakungsi irakungsi	μg/L	%	μg/L	μg/L
Styrene	<13.0	-	- And the state of	-
1,1,1,2-Tetrachloroethane	47.6	5.94	37.3 - 58.5	30.9 - 64.3
1,1,2,2-Tetrachloroethane	42.7	6.23	32.9 - 54.7	27.8 - 57.6
Tetrachloroethylene	37.7	4.94	23.8 - 45.2	20.5 - 49.5
Toluene	34.5	3.32	26.6 - 41.1	24.2 - 44.8
1,2,3-Trichlorobenzene	<5.00			- Second Anna Caraca Ca
1,2,4-Trichlorobenzene	59.9	6.63	34.9 - 75.5	25.6 - 81.6
1,1,1-Trichloroethane	22.6	4.17	16.2 - 27.6	13.6 - 31.6
1,1,2-Trichloroethane	<10.5	n med krippen en en de en med en de krippen en med de krippen en verke de krippen en verke de krippen en verke En	- Newson-Andrew Control (in the constitution of the constitution of the control o	Sprangers progression and acceptable progression progression (for the Conference of
Trichloroethylene	32.2	3.82	23.8 - 38.6	20.4 - 42.7
Trichlorofluoromethane	33.2	0.642	19.7 - 46.1	13.3 - 53.1
1,2,3-Trichloropropane (TCP)	29.8	4.05	18.4 - 40.2	11.5 - 46.4
1,2,4-Trimethylbenzene	20.1	6.23	15.4 - 25.1	13.1 - 27.1
1,3,5-Trimethylbenzene	83.9	7.38	65.3 - 104	54.5 - 113
Vinyl acetate	<5.00	was sect Announced source of the section of the sec	en e	en e
Vinyl chloride	21.6	6.11	12.6 - 32.4	8.64 - 34.6
m-Xylene	47.5	0.814	ente de la companya del la companya de la companya	
m&p-Xylene	59.9	5.14	43.2 - 73.7	35.9 - 83.9
o-Xylene	23.6	5.60	17.0 - 29.0	14.2 - 33.0
p-Xylene	12.4	0.782	s, daggas at transport of the control of the contro	
Xylenes, total	83.5	5.16	60.2 - 103	50.1 - 117

ANALYTICAL VERIFICATION

Parameter	Certified Value ¹	Proficiency Testing Study		NIST Tracea		ceability
2005 - Marketin Company Communication Commun		Mean	Recovery⁵	n	SRM Number	Recovery
entrollerica - electrica en un ununiformite i en tri describanda en reconstruito de proprieta de proprieta de mande en un un electrolleria de la construita de	μg/L	μg/L	%			%
Acetone	<3.90	-	-	-	-	-
Acetonitrile	<5.00	-	-	-	-	-
Acrolein	<5.00	-	-	-	-	-

Page 3 of 7 Lot: P245-710

16341 Table Mountain Pkwy - Golden, CO 80403 - T: 800.372.0122 - 303.431.8454 - www.eraqc.com

Certificate of Analysis -

Parameter	Certified Value ¹	Proficiency Testing Study		n	NIST Traceability	
		Mean Recovery⁵			SRM Number Recove	
	µg/L	µg/L	%			~ %
Acrylonitrile	<5.00	-	agan ji dagan quandan da anan maran da san san san san san san san san san sa	-	-	derricerente mentinamente e respecto
Benzene	68.2	67.9	99.5	14	1586-1	102
Bromobenzene	<5.00			-	-	terret de comprese construir de la popular de la proposición dela proposición de la proposición de la proposición dela proposición de la proposición de la proposición de la proposición dela proposición de la proposición de la proposición dela proposición de la proposición de la proposición de la proposición dela proposición de la proposición dela proposición dela propos
Bromochloromethane	<5.00	-	and the second s	Authorities - Author	Sacrate : restamment en siera and tract : research and restament and significant and significa	er bezaletherae espera y personaerae en kristoria.
Bromodichloromethane	<6.00			-	-	Mangali Pajar (Manga) ga mengalah yang mengalah menengga yang
Bromoform	<6.00	— — — — — — — — — — — — — — — — — — —	ation of decomposition of the entire of the	-		entre - commencia propor el colo di consensione di colo del consensione del colo
Bromomethane	<8.00	-	-	-		erikako arantzea en en errez en arantzea en
2-Butanone (MEK)	<5.00		-	-	-	
n-Butylbenzene	<5.00	S-reconstruction of the Section State of the Section State of the Section Sec			States - engente, neta sincontras - anterior en characterior (en contras en c	
sec-Butylbenzene	<5.00		-	ton ar retracontrateor		in de la composition
ert-Butylbenzene	<5.00	-	-			en e
ert-Butyl methyl ether (MTBE)	89.4	91.2	102	9		dischere historia lederici connecti successoria a cur discho con e
Carbon disulfide	<5.00		-	•		ennen en e
Carbon tetrachloride	16.9	15.7	92.8	12	1639	93.4
Chlorobenzene	94.1	93.0	98.9	14	1586-1	110
Chlorodibromomethane	<6.00					entral de la composition della
Chloroethane	<8.00			-		menteraporeseggicale, est proprio sejuloginos
?-Chloroethylvinylether	<5.00		-	-		
Chloroform	34.3	32.6	95.0	14	1639	105
Chloromethane	<8.00		-	-		iking tilapitanterikan dan damatapinan pelakan penyadi ing tilab s
:-Chlorotoluene	<5.00	-	-	-	-	=
-Chlorotoluene	<5.00	-	-	-	-	-
,2-Dibromo-3-chloropropane DBCP)	<9.00	gott (soodtamistaanse teid politik (tiede filmiste teid vir gest voorste -		-	-	Absentiants i diselectivate describedo escoladores.
,2-Dibromoethane (EDB)	23.0	23.5	102	10	-	**************************************
Pibromomethane	51.4	51.0	99.3	9	-	-
,2-Dichlorobenzene	<7.00	to, produces processor and pro	-	-	estreation control to the control and the control to the control t	**************************************
,3-Dichlorobenzene	<7.00		-	-	-	menta a s'hans istans a verevan
,4-Dichlorobenzene	<7.00		- 1000000000000000000000000000000000000	-	and the state of t	egger Makeur Startgalenbake - Artenda ogsårtenne
ichlorodifluoromethane (Freon 2)	<5.00	en e		-		en e
,1-Dichloroethane	42.9	37.8	88.1	14	-	

Page 4 of 7 Lot: P245-710

16341 Table Mountain Pkwy - Golden, CO 80403 - T: 800.372.0122 - 303.431.8454 - www.eraqc.com

A Waters Company

Certificate of Analysis -

Parameter	Certified Value ¹	Proficiency Testing Study		ACCOUNTS OF THE STATE OF THE ST	NIST Traceability	
		Wean	Recovery⁵	n	SRM Number	Recovery
na paika karienne nyanjenne ana ana manana minanka ana kanana mana ana kanana ana kanana kanana kanana manana a	µg/L	μg/L	%			%
1,2-Dichloroethane	<10.6			-	A contraction of the contraction	- Commission of the Commission
1,1-Dichloroethylene	23.8	25.4	107	12	-	**
cis-1,2-Dichloroethylene	<7.00	mi_ au common a management a m		-	-	para para la restricta de la composição de Para la composição de la c
trans-1,2-Dichloroethylene	26.2	27.0	103	12	-	na amin'ny fivondron'ny tanàna mandritry ao
1,2-Dichloropropane	93.5	96.2	103	14	3009	106
1,3-Dichloropropane	<5.00		anggy	-	-	man consistent contract consistent contract cont
2,2-Dichloropropane	<5.00		-	-	-	vic. yezh andaren 1800 y e- ezh we-en listen e ver ***
1,1-Dichloropropene	<5.00			-	-	al per signal friend to the collision and a signal and perfect on the collision of the coll
cis-1,3-Dichloropropylene	60.8	60.0	98.7	14		and the second s
rans-1,3-Dichloropropylene	42.2	42.2	100	14		a Maintennia ann an Airlean an Airlean an Airlean an Airlean Airlean Airlean Airlean Airlean Airlean Airlean A
Ethylbenzene	77.5	75.7	97.7	13	3002	98.7
-lexachlorobutadiene	<4.30	-				
Hexachloroethane	<3.30	_	-			only (), is a many committee of the figure that completely a final of the section
2-Hexanone	36.9	34.0	92.0	7	- egennych odnim skiprocu szeromopiu mojskopu overse bio o o	e de la composition della comp
sopropylbenzene	<5.00	-		-		roomer ver etternichen voor-error ver verb
I-Isopropyltoluene	<5.00	-		**		-
/lethylene chloride	40.8	39.1	95.9	10	3008	105
I-Methyl-2-pentanone (MIBK)	47.0	44.4	94.5	7	-	na e na de como una ción mando interactiva e e e consectió interáción.
Vaphthalene	31.7	30.7	97.0	9	1647d	103
litrobenzene	<6.20		-		**************************************	Accele antico extensi i di intercenti di intercenti di intercenti di intercenti di intercenti di intercenti di
-Propylbenzene	<5.00	<u></u>		-		The second real section of the second section of the section of
Styrene	<13.0	-	-	-		**************************************
,1,1,2-Tetrachloroethane	47.6	46.1	96.8	9		de religio y personale replicabilità de estimate de la proprieta de la seculia de la seculia de la seculia del Internacionale del seculia
,1,2,2-Tetrachloroethane	42.7	42.5	99.4	12		**************************************
etrachloroethylene	37.7	35.2	93.4	13	1639	105
oluene	34.5	33.8	98.1	12	3001	103
,2,3-Trichlorobenzene	<5.00			-	**************************************	
,2,4-Trichlorobenzene	59.9	55.2	92.2	10	agai, en agrasi, in essangarana, comprimentation de de notes pre-di-	- Paragonium - Antonia di Salahan da Antonia
,1,1-Trichloroethane	22.6	21.1	93.2	11	3011	95.6
,1,2-Trichloroethane	<10.5		-	-		oga arcini i strano i strano i seguina e e e e e e e e e e e e e e e e e e e
richloroethylene	32.2	31.6	98.1	13	1639	95.8

Page 5 of 7 Lot: P245-710

16341 Table Mountain Pkwy • Golden, CO 80403 • T: 800.372.0122 • 303.431.8454 • www.eraqc.com

Certificate of Analysis •

Parameter	Certified Value ¹	Proficiency Testing Study		70000000	NIST Traceability	
		Mean	Recovery⁵	n	SRM Number	Recovery
	μg/L	μg/L	%			%
Trichlorofluoromethane	33.2	37.3	112	10	-	
1,2,3-Trichloropropane (TCP)	29.8	28.4	95.4	9	3014	97.1
1,2,4-Trimethylbenzene	20.1	21.9	109	9	-	-
1,3,5-Trimethylbenzene	83.9	80.8	96.3	9		
Vinyl acetate	<5.00	•	-	-	-	**
Vinyl chloride	21.6	26.0	120	11	- Indicate programme and the second s	## 1
m-Xylene	47.5		-		3004	101
m&p-Xylene	59.9	62.7	105	9	<u>*</u>	+-
o-Xylene	23.6	24.1	102	8	3003	99.2
o-Xylene	12.4		-	***************************************	3005	102
Xylenes, total	83.5	84.4	101	10		·

Page 6 of 7 Lot: P245-710

FRA A Waters Company

Reference Materials

- Certificate of Analysis -

1. The **Certified Values** are the actual "made-to" concentrations confirmed by ERA analytical verification. The certified values are monitored and purchasers will be notified of any significant changes resulting in recertification or withdrawal of this certified reference material during the period of validity of this certificate.

- 2. The **Uncertainty** is the total propagated uncertainty at the 95% confidence interval. The uncertainty is based on the preparation and internal analytical verification of the product by ERA, multiplied by a coverage factor. The uncertainty applies to the product as supplied and does not take into account any required or optional dilution and/or preparations the laboratory may perform while using this product.
- 3. The QC Performance Acceptance Limits (QC PALs™) are based on actual historical data collected in ERA's Proficiency Testing program. The QC PALs™ reflect any inherent biases in the methods used to establish the limits and closely approximate a 95% confidence interval of the performance that experienced laboratories should achieve using accepted environmental methods. Use the QC PALs™ to realistically evaluate your performance against your peers.
- 4. The PT Performance Acceptance Limits (PT PALs™) are calculated using the regression equations and fixed acceptance criteria specified in the NELAC proficiency testing requirements. Use the PT PALs™ when analyzing this QC standard alongside USEPA and NELAC compliant PT standards. Please note that many PT study acceptance limits are concentration dependent (some non-linearly) and, therefore, the acceptance limits of this QC standard and any PT standard may differ relative to their difference in concentrations.
- 5. The PT Data/Traceability data include the mean value, percent recovery and number of data points reported by the laboratories in our Proficiency Testing study compared to the Certified Values. In addition, where NIST Standard Reference Materials (SRMs) are available, each analyte has been analytically traced to the NIST SRM listed. This product is traceable to the lot numbers of its starting materials. All gravimetric and volumetric measurements related to its manufacture are traceable to NIST through an unbroken chain of comparisons.

 Traceability Recovery (%) = [(% recovery certified standard)/(% recovery NIST SRM)]*100

The traceability data shown were compiled by analyzing the ERA standards or their associated stock solutions against the applicable NIST SRMs.

6. For additional information on this product such as intended use, instructions for use, level of homogeneity, and safety information, please refer to the provided Instruction Sheet

If you have any questions or need technical assistance, please call ERA technical assistance at 1-800-372-0122 or send an email to info@eraqc.com.

Certifying Officer

Mike Blades

Quality Officer

David Kilhefner

ACCREDITED

Page 7 of 7 Lot: P245-710

		AN AL ST E

NIST Organizational Structure

Director

Under Secretary of Commerce for Standards and Technology

Willie E. May

Associate Director for Laboratory Programs/ Principal Deputy Kent Rochford

Staff Offices

Standards Coordination Special Programs

Material Measurement Laboratory

Laurie E. Locascio

Communications Technology Laboratory

Dereck Orr (acting)

Physical Measurement Laboratory James Olthoff

Engineering Laboratory Howard Harary

Information Technology Laboratory

Charles Romine

Center for Nanoscale Science and Technology Robert Celotta

NIST Center for Neutron Research

Robert Dimeo

Associate Director for **Innovation & Industry Services**

Phillip Singerman

Staff Offices

Advanced Manufacturing Technology Partnerships

Baldrige Performance **Excellence Program**

Robert Fangmeyer

Hollings Manufacturing **Extension Partnership** Carroll Thomas

Chief of Staff

Kevin Kimball

Executive Officer for Administration Management and Organization Program Coordination Public Affairs Office International and Academic Affairs Congressional and Legislative Affairs

Human Subjects Protection

Associate Director for Management Resources

Mary Saunders

Staff Offices

Civil Rights and Diversity Information Services Fabrication Technology

Office of Acquisition and Agreements Management

Cecelia Royster

Office of Safety, Health and Environment Richard Kayser

Office of Financial Resource Management George Jenkins

Office of Human Resources Management

Susanne Porch

Office of Information Systems Management

Delwin Brockett

Office of Facilities and Property Management

Clyde Messerly (acting)

NIST Special Publication 260-136

Standard Reference Materials

Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements

W. May, R. Parris, C. Beck, J. Fassett, R. Greenberg, F. Guenther, G. Kramer, and S. Wise Analytical Chemistry Division
Chemical Science and Technology Laboratory

T. Gills, J. Colbert, R. Gettings, and B. MacDonald Standard Reference Materials Program Technology Services

National Institute of Standards and Technology Gaithersburg, MD 20899-8390

U.S. DEPARTMENT OF COMMERCE, William M. Daley, Secretary TECHNOLOGY ADMINISTRATION, Dr. Cheryl L. Shavers, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, Raymond G. Kammer, Director

Issued January 2000

FOREWORD

The National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards, was established by the U.S. Congress in 1901 and charged with the responsibility for establishing a measurement foundation to facilitate both U.S. and international commerce. This charge was purposely stated in broad terms to provide NIST with the ability to establish and implement its programs in response to changes in national needs and priorities.

Increased requirements for quality systems documentation for trade and effective decision-making regarding the health and safety of the U.S. population have increased the need for demonstrating "traceability-to-NIST" and establishing a more formal means for documenting measurement comparability with standards laboratories of other nations and/or regions. Standard Reference Materials (SRM7s) are certified reference materials (CRMs) issued under NIST trademark that are well-characterized using state-of-the-art measurement methods for the determination of chemical composition and/or physical properties. SRMs are used to ensure the accuracy, traceability, and comparability of measurement results in many diverse fields of science, industry, and technology, both within the United States and throughout the world. The NIST Special Publication 260 Series is designed to provide details concerning the procedures and philosophy used at NIST to produce and certify SRMs and their appropriate use. A list of these publications can be accessed through the Internet at http://ts.nist.gov/srm.

This document provides definitions of the terms and a description of NIST's current practices for value-assigning SRMs and reference materials (RMs) used for calibrating and/or validating instrumentation and/or methods and procedures used for chemical measurements.

Willie E. May, Chief Analytical Chemistry Division Chemical Science and Technology Laboratory

Thomas E. Gills, Director Office of Measurement Services Technology Services

CONTENTS

I.	Introd	uction	1				
II.	NIST Practices for Value-Assignment of SRMs and RMs for Chemical Measurements						
III.	Mode	s for Value-Assignment and/or Certification	4				
	1.	Certification at NIST Using a Single Primary Method with Confirmation by Other Method(s) 1.1 Certification of Gaseous Mixtures at NIST Using a Primary Method	5 5 6 6				
	2.	Certification at NIST Using Two Independent Critically-Evaluated Methods	7				
	3.	Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories	7				
	4.	Value-Assignment Based On Measurements by Two or More Laboratories Using Different Methods in Collaboration with NIST	8				
	5.	Value-Assignment Based on a Method-Specific Protocol	8				
	6.	Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method.	8				
	7.	Value-Assignment Based on Selected Data from Interlaboratory Studies	9				
IV.	Defini	ition of Terms	10				
V	Dofor	omaas	12				

Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurement

I. Introduction

Standard Reference Materials (SRMs) are certified reference materials (CRMs), issued under the National Institute of Standards and Technology (NIST) trademark that are well-characterized using state-of-the-art measurement methods and/or technologies for the determination of chemical composition and/or physical properties. Traditionally, SRMs have been the primary tools that NIST (formerly National Bureau of Standards) provides to the user community for achieving chemical measurement quality assurance and traceability to national standards.

This publication provides definitions of the terms and descriptions of NIST's current practices for value-assigning SRMs and reference materials (RMs) used for calibrating and/or validating instrumentation and/or methods and procedures used for chemical measurements. The terms and modes as described in this document are applicable for reference materials that support chemical measurements issued by NIST as of October 1, 1998.

Table 1 lists the seven modes used at NIST for value-assigning SRMs and RMs for chemical measurements and links the modes to three possible data quality descriptors: NIST Certified Values, NIST Reference Values, and NIST Information Values. A **NIST Certified Value** represents data for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been fully investigated or accounted for by NIST. A **NIST Reference Value** is a best estimate of the true value provided by NIST where all known or suspected sources of bias have not been fully investigated by NIST. A **NIST Information Value** is a value that will be of interest and use to the SRM/RM user, but insufficient information is available to assess the uncertainty associated with the value. Definitions of these modes are given in section IV.

Table 1. Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements

NIST Certified Value	NIST Reference Value	NIST Information Value
Ž	Ĭ	Ž

1.	Certification at NIST Using a Single Primary Method with Confirmation by Other Method(s)	Y		
2.	Certification at NIST Using Two Independent Critically-Evaluated Methods	Y	Y	
3.	Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories	Y	Y	
4.	Value-Assignment Based On Measurements by Two or More Laboratories Using Different Methods in Collaboration with NIST		Y	Y
5.	Value-Assignment Based on a Method-Specific Protocol		Y	Y
6.	Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method		Y	Y
7.	Value-Assignment Based on Selected Data from Interlaboratory Studies		Y	Y

The choice of mode(s) to be used in the value-assignment for any SRM for chemical measurements is based on our previous experiences and knowledge of the specific matrix, analyte(s) of interest, current measurement capabilities, the quality of the analytical methods results, and the intended use of the material.

The final designation of an assigned-value for an SRM as a NIST Certified Value, NIST Reference Value, or NIST Information Value is based on the specific value-assignment mode used and the assessed quality of the resulting data relative to the intended use of the material.

II. NIST Practices for Value-Assignment of SRMs and RMs for Chemical Measurements

Generally, NIST does not make or fabricate the materials from which SRMs are produced. Rather, U.S. industry, scientific groups, or companies on contract to NIST provide materials that meet NIST specifications.

Techniques and methods used at NIST for providing certified values for SRMs for chemical measurements are critically evaluated and have demonstrated accuracy in the matrix under investigation. Potential sources of error for such methods are evaluated and addressed [1,2]. Methods that are "ratio-based" (i.e., that require instrumental comparison versus calibrants of a known quantity of the measurand) use high-purity, well-characterized primary reference compounds or species as their basis for calibration (either directly or through gravimetrically prepared calibration solutions, e.g., NIST Elemental Solution SRMs).

The details of NIST methods and their testing are well documented (i.e., internal NIST Reports of Analysis) and often published in refereed technical journals. When results from outside laboratories are used in the value-assignment process, the NIST Chemical Science and Technology Laboratory (CSTL) is responsible for the selection of the laboratories and the technical evaluation of these reported data.

Appropriate control materials are concurrently analyzed in all value-assignment activities – both within NIST and by any outside collaborating laboratories. When available, appropriate SRMs or CRMs from other National Metrology Laboratories are used for this purpose.

III. Modes for Value-Assignment and/or Certification

The quality of assigned values for any CRM is based on the existence and application of sound measurement principles and practices. It is with this basic premise that we provide the following seven modes used at NIST to acquire analytical data for the value assignment of our SRMs and RMs for chemical measurements and link these modes to three data quality descriptors: NIST Certified Values, NIST Reference Values and NIST Information Values.

1. Certification at NIST Using a Single Primary Method with Confirmation by Other Method(s)

The Consultative Committee on the Quantity of Material (CCQM) [3] has described a primary method as:

"A primary method of measurement is a method having the highest metrological properties, whose operation can be completely described and understood, for which a complete uncertainty statement can be written down in terms of SI units.

A primary direct method: measures the value of an unknown without reference to a standard of the same quantity.

A primary ratio method: measures the value of a ratio of an unknown to a standard of the same quantity; its operation must be completely described by a measurement equation."

Certification at NIST using a single primary method is only possible when (with the exception of special cases noted below in 1.1, 1.2, and 1.3) [4]:

- All potentially significant sources of error have been evaluated explicitly for the application of the method and the matrix under investigation; a short written description is provided in the Report of Analysis for other sources of error that might reasonably be present and why they are not expected to be significant in this particular case.
- Confirmation of measurements by a primary NIST method can be accomplished by one or more of the following:
 - determination of certified constituents in other SRM(s) or CRM(s) of similar matrix and constituent concentration range;
 - a second NIST technique with appropriate controls; or
 - results of measurements from selected outside collaborating laboratories with appropriate experience.

The required level of agreement between the primary method and any confirmatory method(s) must be predetermined and specified in the experimental plan.

1.1. Certification of Gaseous Mixtures at NIST Using a Primary Method

Certification of gaseous mixture SRMs at NIST requires that:

- Primary standard suites be prepared gravimetrically from well-characterized starting materials and demonstrated to be internally consistent by a well-characterized analytical method.
- NIST primary standards be intercompared with primary standards from other National Metrology Laboratories or verified by a second NIST independent technique.
- Primary standards be documented to be stable for a minimum of two years.
- SRMs be value-assigned relative to the NIST primary standard suites.
- Uncertainty associated with the certified value includes contributions from the uncertainties associated with the primary standard suite, the analytical ratio method used to compare the SRM and primary standards, and the heterogeneity of the SRM lot.
 - The lot homogeneity is determined by NIST analysis of all samples.
- Absence of significant impurities in the SRMs be verified by NIST analyses.

1.2. Certification of NIST pH SRMs

Certification of NIST pH SRMs requires that:

- Homogeneity of the candidate material(s) for each pH SRM be evaluated by intercomparisons of randomly selected aliquots of candidate material(s) normalized to the preceding issuance of the corresponding pH SRM using a glass electrode.
- As an internal control measure, a candidate material be rejected if a significant difference is observed between the mean pH value of the current candidate material and the certified pH of the previous SRM issue (unless redetermination of the pH of the previous issue of the SRM using a Harned cell indicates a significant change from its certified pH value).
- Certification of each pH SRM be performed using cells without liquid junction (Harned cells) at each temperature of interest using at least three independently prepared buffer solutions of composite samples of the candidate SRM.
- Uncertainty associated with the certified value includes the measurement uncertainty (in potential of Harned cell), the uncertainty in standard potential of Ag, AgCl reference electrodes, the theoretical uncertainty in the conventional calculation of $-\log \gamma_{Cl}$, and the replication uncertainty for the overall pH value-assignment.

1.3. Certification of NIST Optical Filter SRMs

Specific requirements for the certification of NIST optical filter SRMs include:

1.3.1 Photometry

- Regular transmittance scale is maintained on the National Reference Spectrophotometer in the NIST Analytical Chemistry Division which is validated by the double-aperture method of light addition and benchmarked through international intercomparisons using optical filter artifact standards.
- Solid (neutral glass and metal-on-silica) SRMs are assigned certified values for transmittance and/or transmittance density at specified wavelengths by individual measurement of each artifact on the National Reference Spectrophotometer.
- Liquid or powder SRMs are assigned certified values for absorbance per unit pathlength or specific absorptivity at specified wavelengths by batch certification on the National Reference Spectrophotometer using a random sampling from the batch.
- The uncertainty for each assigned photometric value includes components to account for the precision and accuracy of the instrument; heterogeneity, temporal drift, and thermal characteristics of the artifact; and the geometry of sample positioning. Uncertainties are not individually evaluated but are based on pooled measurements with more than 30 degrees of freedom. Uncertainties are re-assessed annually for continuously produced solid standards or with each re-issue for batch-certified standards.
- A control filter is run with all data acquisitions, and the data are used to "control-chart" the measurement process and verify consistent performance.

1.3.2 Wavelength

- SRMs are assigned certified values for peak wavelength or wavenumber by comparison to atomic wavelengths (ultimately traceable to the standard meter) using a transfer spectrometer.
- Wavelength standards are batch certified using a random sampling from the lot. The
 uncertainty for each peak position in a wavelength standard includes components to
 account for the calibration accuracy of the transfer spectrometer, the precision in locating
 the standard peaks, and relevant temperature coefficients over the specified temperature
 range of valid certification.

2. Certification at NIST Using Two Independent Critically-Evaluated Methods

A second mode of certification for NIST SRMs involves the use of two or more critically evaluated independent methods [5,6]. Method independence is of critical importance, and while it is rare that two analytical methods have completely different sources of error and variability, they are chosen so that the most significant sources of error are different. For example, the following considerations are carefully evaluated:

- Methods are selected to minimize common steps in sample preparation and the final analytical measurement techniques.
- Methods rely on different physical, spectroscopic, or chemical phenomena that generate the analytical response.
- Methods/procedures selected are appropriate for the required precision and accuracy for measurement of the analyte(s) of interest in the matrix.
- The criteria for between-method agreement required for certification is pre-determined and documented in the experimental plan.

3. Certification/Value-Assignment Using One Method at NIST and Different Methods by Outside Collaborating Laboratories

In some cases, there does not exist a suitable second independent method at NIST. In these instances, we carefully select outside laboratories to collaborate on the certification process. Ideally this collaboration begins at the very start of the experimental design process. In this way, both NIST and outside laboratory analysts are able to coordinate the details of the measurement, data analysis, and reporting requirements for the SRM with careful attention to the following:

- The NIST method and the methods of the outside collaborating laboratories must have been critically evaluated and demonstrated to provide accurate results for the matrix under investigation.
- The method(s) used by outside collaborating laboratories should be different from the method used at NIST as required by the "Two Independent NIST Methods" mode (see Mode 2).
- Data reporting requirements for outside collaborating laboratories should be specified in the experimental plan, and reports should contain sufficient information to evaluate all significant sources of uncertainty.

4. Value-Assignment Based on Measurements by Two or More Laboratories Using Different Methods in Collaboration with NIST

This mode can be used to provide NIST Reference Values or NIST Information Values for an SRM, e.g., in instances in which there do not exist suitable methods at NIST. This mode requires that:

- The outside collaborating laboratories' methods have demonstrated accuracy in the matrix under investigation.
- Analyses provided by the outside collaborating laboratories involve at least two different methods (see Mode 2).
- Data reporting requirements for the outside collaborating laboratories be specified in the experimental plan and their report should contain sufficient information to evaluate all significant sources of uncertainty, unless a large number of labs/methods submit data, in which case the "Interlaboratory Study" criteria apply (see Mode 7).

5. Value-Assignment Based on a Method-Specific Protocol

In cases of method-defined parameters, the value of the parameters of interest result from the appropriate and validated use of a defined protocol. Appropriate implementation of this mode requires that:

- The protocol used be one that is recognized by the user community as the prescribed method for measurement of the analyte (or property) of interest in this matrix.
- Only data from experienced practitioners of the protocol be used.
- Measurements using the method-specific protocol be made by NIST, outside laboratories, or both.
- Method-specific value-assignment typically involve no fewer than three experienced practitioners of the method.

6. Value-Assignment Based on NIST Measurements Using a Single Method or Measurements by an Outside Collaborating Laboratory Using a Single Method

In some cases the intended use by the measurement community does not require a NIST Certified Value as an assigned value. This mode can be used to provide NIST Reference Values or NIST Information Values.

• The NIST method used is typically one that would be used in the "Two Independent NIST Methods" mode (see Mode 2), i.e., the method may have been used in the past as

one of several methods for SRM certification, but in this instance was the only method used.

- The method used by the outside laboratory must have been demonstrated to provide appropriate precision and accuracy in the matrix under investigation.
- Data reporting requirements for outside collaborating laboratories are specified in the experimental plan, and their reports should contain sufficient information to permit evaluation of significant sources of uncertainty.

7. Value-Assignment Based on Selected Data from Interlaboratory Studies

This mode allows NIST to take advantage of interlaboratory studies designed for purposes other than value-assignment of reference materials. In this mode:

- The particular study must be well documented and organized by a reputable organization.
- NIST Chemical Science and Technology Laboratory is responsible for evaluating the appropriateness of analytical procedures to identify a subset of results to be selected for use in value-assignment.

IV. Definition of Terms

NIST references a number of definitions in connection with the production, certification, and use of its SRMs and RMs. The uses of the terms "certified values," "reference values," etc., have multiple meanings based on the intent and practices of a particular reference material supplier. Certain definitions, adopted for NIST use, are derived from international guides and standards on reference materials and measurements while others have been developed by NIST to describe those activities unique to NIST operations and philosophy. To avoid any ambiguity, this publication provides definitions of the terms as they are currently used by NIST and a description of NIST's current practices for value-assigning SRMs and RMs that support chemical measurements. A listing of NIST-adopted and NIST-developed definitions follows.

Reference Material (RM): Material or substance one or more of whose property values are sufficiently homogeneous and well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials.

[ISO VIM: 1993, 6.13 [7]]

Certified Reference Material (CRM): Reference material, accompanied by a certificate, one or more of whose property values are certified by a procedure which establishes traceability to an accurate realization of the unit in which the property values are expressed, and for which each certified value is accompanied by an uncertainty at a stated level of confidence. *[ISO VIM: 1993, 6.14]*

NIST Standard Reference Material® **(SRM®):** A CRM issued by NIST that also meets additional NIST-specified certification criteria. NIST SRMs are issued with Certificates of Analysis or Certificates that report the results of their characterizations and provide information regarding the appropriate use(s) of the material.

NIST Traceable Reference MaterialTM (NTRMTM): A commercially-produced reference material with a well-defined traceability linkage to existing NIST standards for chemical measurements. This traceability linkage is established via criteria and protocols defined by NIST to meet the needs of the metrological community to be served.

NIST Certified Value: A value reported on an SRM Certificate/Certificate of Analysis for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been fully investigated or accounted for by NIST. Values are generally referred to as certified when Modes 1, 2, or 3 have been used for value-assignment and all the criteria for that mode are fulfilled. These three modes all require NIST measurements and oversight of the experimental design for the value-assignment process. The uncertainty associated with a certified value generally specifies a range within which the true value is expected to lie at a level of confidence of approximately 95 % if the sample is homogeneous. If significant sample heterogeneity is included, the uncertainty generally represents a prediction interval within which the true values of 95 % of all samples are expected to lie at a stated level of confidence.

Uncertainty of a Certified Value: An estimate attached to a certified value of a quantity which characterizes the range of values within which the "true value" is asserted to lie with a stated level of confidence. *[ISO Guide 30: 1992 3.4 [8]]*

Uncertainty of a Measurement: Parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand. *[ISO VIM: 1993 3.9]*

NIST Reference Value (formerly called Noncertified Value) for Chemical Composition and Related Properties: A NIST Reference Value is a best estimate of the true value provided on a NIST Certificate/Certificate of Analysis/Report of Investigation where all known or suspected sources of bias have not been fully investigated by NIST. Reference values are generally determined using the following modes:

- Mode 2 or 3 is used when there is lack of sufficient agreement among the multiple methods.
- Modes 4, 5, or 6 are used when the intended use of the value by the measurement community does not require that it be a certified value.
- Mode 7 can be used in special cases, e.g., when results are obtained from another national metrology laboratory with whom NIST has historical comparability data for the method(s) used for the specific matrix/analyte combination.

The uncertainty associated with a NIST Reference Value may not include all sources of uncertainty and may represent only a measure of the precision of the measurement method(s).

NIST Information Value: A NIST Information Value is considered to be a value that will be of interest and use to the SRM/RM user, but insufficient information is available to assess the uncertainty associated with the value. Typically, the information value has no reported uncertainty listed on the certificate and has been derived from one of the following value-assignment modes:

- Results from modes 4, 5, 6, or 7 in which the intended use of the value by the measurement community does not require that it be a certified or reference value. (E.g., information about the composition of the matrix such as the value of "total organic carbon" of a sediment material may be useful to the user in selecting an appropriate analytical method.)
- The results from modes 4, 5, 6, or 7 lack sufficient information to assess the uncertainty.
- Results are provided from outside NIST as supplemental information on the SRM matrix and are not measurements typically made at NIST but may be of interest to the user.

V. References

- [1] Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, 1994 Edition.
- [2] Guide to the Expression of Uncertainty of Measurement: First edition 1993; ISBN 92-67-10188-9; International Organization for Standardization (ISO), 1993.
- [3] Minutes from the Fifth Meeting (February 1998) of the Consultative Committee on the Quantity of Material (CCQM) of the Bureau International des Poids et Mesures (BIPM), Sevres, France (1998).
- [4] Definitive Measurement Methods, Moody, J.R., Epstein, M.S. Spectrochimica Acta, Vol. 46B, No. 12, (1991).
- [5] The Independent Method Concept for Certifying Chemical Composition Reference Materials, Epstein, M.S., Spectrochimica Acta, Vol. 46B, No. 12, (1991).
- [6] Combining Data From Independent Methods, Schiller, S.B. and Eberhardt, K.B., Spectrochimica Acta, Vol. 46B, No. 12, (1991).
- [7] International Vocabulary of Basic and General Terms in Metrology (VIM), 2nd Edition; BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML, International Organization for Standardization (ISO), 1993.
- [8] Terms and Definitions Used in Connection with Reference Materials, ISO Guide 30, International Organization for Standardization (ISO), 1992.

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 2709a

San Joaquin Soil

Baseline Trace Element Concentrations

This Standard Reference Material (SRM) is intended primarily for use in the analysis of soils, sediments, or other materials of a similar matrix. One unit of SRM 2709a consists of 50 g of dried, powdered, agricultural soil.

Certified Values: The certified concentrations for 19 elements, expressed as mass fractions [1] on a dry-mass basis, are provided in Table 1. Certified values are based on results obtained from critically evaluated independent analytical techniques. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [2].

Reference Values: The reference values for 15 constituents, expressed as mass fractions on a dry-mass basis, are provided in Table 2. The reference values are based on results obtained from a single NIST analytical method. Reference values are non-certified values that are the best estimate of the true value; however, the values do not meet NIST criteria for certification and are provided with associated uncertainties that may not include all sources of uncertainty [2].

Information Values: The values for 10 elements are provided in Table 3 for information purposes only. These are non-certified values with no uncertainty assessed. The information values included in this certificate are based on results obtained from one NIST method.

Expiration of Certification: The certification of SRM 2709a is valid, within the measurement uncertainties specified, until **1 November 2018**, provided the SRM is handled in accordance with the instructions given in this certificate (see "Instructions for Use"). This certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

E.A. Mackey and R.R. Greenberg of the NIST Analytical Chemistry Division were responsible for coordination of the technical measurements leading to certification.

Statistical analyses were performed by J.H. Yen of the NIST Statistical Engineering Division.

The support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services Division.

Stephen A. Wise, Chief Analytical Chemistry Division

Robert L. Watters, Jr., Chief Measurement Services Division

Gaithersburg, MD 20899 Certificate Issue Date: 7 April 2009

SRM 2709a Page 1 of 6

INSTRUCTIONS FOR USE

Sampling: The SRM should be thoroughly mixed by repeatedly inverting and rotating the bottle horizontally before removing a test portion for analysis. A minimum mass of 250 mg (dry mass - see *Instructions for Drying*) should be used for analytical determinations to be related to the mass fraction values in this Certificate of Analysis.

To obtain the certified values, sample preparation procedures should be designed to effect complete dissolution. If volatile elements (i.e., arsenic, mercury, selenium) are to be determined, precautions should be taken in the dissolution of SRM 2709a to avoid volatilization losses.

Drying: To relate measurements to the certified, reference, and information values that are expressed on a dry-mass basis, users should determine a drying correction at the time of each analysis. The recommended drying procedure is oven drying for 2 h at 110 °C. Note that analytical determination of volatile elements (i.e., arsenic, mercury, selenium) should be determined on samples as received; separate samples should be dried as previously described to obtain a correction factor for moisture. Correction for moisture is to be made to the data for volatile elements before comparing them to the certified values. This procedure ensures that these elements are not lost during drying. The mass loss on drying for this material as bottled was approximately 3%, but this value may change once the bottle is opened and the soil is exposed to air.

SOURCE, PREPARATION, AND ANALYSIS

Source and Preparation of Material¹: The U.S. Geological Survey (USGS), under contract to NIST, collected and processed the soil for SRM 2709a with assistance from the U.S. Bureau of Reclamation's Sacramento CA office. The agricultural soil used to produce SRM 2709a was collected from a fallow field, in the central California San Joaquin Valley. Three separate collection sites were used to obtain the necessary amount of material. Each collection site covered an area of approximately 4 m². Prior to sample collection the area was scraped clean of surface vegetation. Collected material was transferred to 20 plastic-lined five-gallon plastic buckets and shipped to the USGS laboratory for processing. At USGS, the SRM 2709a soil was dried at room temperature, disaggregated, and sieved to remove coarse material (≥2 mm). The resulting soil was ball-milled in 50 kg portions, and then the entire batch of soil was transferred to a cross-flow V-blender for mixing. The blended soil was radiation sterilized prior to bottling. In the final preparation step the blended material was split into containers using a custom-designed spinning riffler, which was used to divide the material into smaller batches, and then used to apportion approximately 50 g into each pre-cleaned bottle.

Every 100th bottle was set aside for chemical analyses designed to assess material homogeneity using X-ray fluorescence spectrometry (XRF), inductively coupled plasma optical emission spectrometry (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS) at the USGS. Homogeneity assessments were performed at NIST as well, and results indicated that additional processing was needed to achieve optimum homogeneity. The material from all bottles was combined, and then ground in batches between stainless steel plates for a time sufficient to produce a powder of which ≥95%, by mass, passed through a 200 mesh (74 µm) sieve. The resulting powder was blended, and 50 g portions were dispensed into bottles using the spinning riffler. Results from additional analyses indicated material homogeneity was acceptable (see below).

Analysis: The homogeneity was assessed for selected elements in the bottled material using X-ray fluorescence spectrometry and instrumental neutron activation analysis. In a few cases, statistically significant differences were observed, and the variance due to material inhomogeneity is included in the expanded uncertainties of the certified values. The estimated relative standard deviation for material inhomogeneity for most elements is ≤ 1 %, for calcium it is approximately 2 %, and for chromium it is approximately 3 %. Significant material heterogeneity was observed for mercury, for which a reference value with a prediction interval is provided; see Table 2.

Analyses of this material were performed at NIST (Gaithersburg, MD) and at the USGS (Denver, CO). Results from NIST were used to provide the certified, reference, and information values shown in Tables 1, 2, and 3 respectively. Results from the USGS were used to confirm those values. The analytical techniques used for each element are listed in Table 4; the analysts are listed in Tables 5 and 6.

SRM 2709a Page 2 of 6

¹ Certain commercial equipment, instruments, or materials are identified in this certificate in order to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Table 1. Certified Values^(a) (Dry-Mass Basis) for Selected Elements in SRM 2709a

Element Mass Fract (%)		etion Element		Mass Fraction (mg/kg)			
Aluminum	7.37	±	0.16	Antimony	1.55	±	0.06
Calcium	1.91	±	0.09	Barium	979	\pm	28
Iron	3.36	±	0.07	Cadmium	0.371	l ±	0.002
Magnesium	1.46	\pm	0.02	Chromium	130	\pm	9
Phosphorus	0.0688	±	0.0013	Cobalt	12.8	\pm	0.2
Potassium	2.11	±	0.06	Lead	17.3	\pm	0.1
Silicon	30.3	±	0.4	Manganese	529	\pm	18
Sodium	1.22	±	0.03	Strontium	239	\pm	6
Titanium	0.336	±	0.007	Vanadium	110	\pm	11
				Zirconium	195	\pm	46

⁽a) Certified values for all elements except cadmium and lead are the equally weighted means of results from two or three analytical methods. The uncertainty listed with each value is an expanded uncertainty about the mean, with coverage factor determined by the Student's t distribution, calculated by combining a between-method variance with a pooled within-method variance [3] following the ISO Guide [4]. A component for material heterogeneity is incorporated into the uncertainties of aluminum, calcium, chromium, manganese, and sodium. The certified values for cadmium and lead are each results from a single NIST method (isotope dilution (ID)-ICP-MS) for which a complete evaluation of all sources of uncertainty has been performed. The uncertainty for the certified value for cadmium and lead represents an expanded uncertainty with a coverage factor of 2, with uncertainty components combined following the ISO Guide [4].

Table 2. Reference Values^(a) (Dry-Mass Basis) for Selected Elements in SRM 2709a

Element	Mass Fraction (mg/kg)			
Arsenic	10.5	±	0.3	
Cerium	42	\pm	1	
Cesium	5.0	\pm	0.1	
Copper	33.9	±	0.5	
Europium	0.83	±	0.02	
Gadolinium	3.0	\pm	0.1	
Lanthanum	21.7	\pm	0.4	
Mercury ^(b)	0.9	\pm	0.2	
Nickel	85	±	2	
Rubidium	99	±	3	
Scandium	11.1	\pm	0.1	
Thallium	0.58	±	0.01	
Thorium	10.9	\pm	0.2	
Uranium	3.15	±	0.05	
Zinc	103	\pm	4	

⁽a) Reference values for all elements are based on results from one analytical method at NIST. Uncertainty values represent the expanded uncertainties which include the combined Type A and Type B with a coverage factor of 2, following the ISO Guide [4].

SRM 2709a Page 3 of 6

⁽b) The reference value for mercury represents the average value from analysis of portions from six bottles using ID-cold vapor (CV)-ICP-MS. Results indicate significant material heterogeneity; values ranged from 0.8 mg/kg to 1.1 mg/kg. The uncertainty for this reference value is in the form of a prediction interval.

Table 3. Information Values^(a) (Dry Mass Basis) for Selected Elements in SRM 2709a

Element	Mass Fraction (mg/kg)
Boron	74
Dysprosium	3
Hafnium	4
Lutetium	0.3
Neodymium	17
Samarium	4
Selenium	1.5
Tantalum	0.7
Terbium	0.5
Ytterbium	2

 $^{^{(}a)}$ Information values are based on results from one analytical method at NIST.

SRM 2709a Page 4 of 6

Table 4. Methods Used for the Analysis of SRM 2709a

Element	Certification Methods	Element	Certification Methods
Al	INAA; XRF	Nd	INAA
As	INAA	Ni	ICP-MS
В	PGAA	P	ICP-OES; XRF
Ba	ICP-OES; INAA: XRF	Pb	ID-ICP-MS
Ca	INAA; XRF	Rb	INAA
Cd	ID-ICP-MS; PGAA	Sb	INAA; ICP-MS
Ce	INAA	Sc	INAA
Co	INAA; ICP-OES	Se	CCT-ICP-MS
Cr	INAA; XRF	Si	PGAA; XRF
Cs	INAA	Sm	INAA
Cu	ICP-MS	Sr	INAA; ICP-OES; XRF
Dy	INAA	Та	INAA
Eu	INAA	Tb	INAA
Fe	INAA; PGAA; XRF	Th	INAA
Gd	PGAA	Ti	INAA; PGAA; XRF
Hf	INAA	T1	ICP-MS
Hg	CV-ID-ICP-MS	U	ICP-MS
K	INAA; PGAA; XRF	V	INAA; XRF
La	INAA	Yb	INAA
Lu	INAA	Zn	INAA
Mg	INAA; XRF	Zr	INAA; XRF
Mn	INAA; PGAA; XRF		
Na	INAA; XRF		

NIST Methods of Analysis

CCT-ICP-MS	Collision Cell Inductively Coupled Plasma Mass Spectrometry
CV ID-ICP-MS	Cold Vapor Isotope Dilution Inductively Coupled Plasma Mass Spectrometry
ICP-MS	Inductively Coupled Plasma Mass Spectrometry
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry
ID-ICP-MS	Isotope Dilution Inductively Coupled Plasma Mass Spectrometry
INAA	Instrumental Neutron Activation Analysis
PGAA	Prompt Gamma-Ray Activation Analysis
XRF	X-ray Fluorescence Spectrometry

USGS Methods of Analysis^(a) Wavelength Dispersive X-ray Fluorescence Spectrometry Inductively Coupled Plasma Optical Emission Spectrometry Inductively Coupled Plasma Mass Spectrometry

ICP-MS

WD-XRF **ICP-OES**

Page 5 of 6 SRM 2709a

⁽a) USGS Methods of Analysis were used to confirm results from certification methods.

Table 5. Participating NIST Analysts:

S.J. Christopher	J.R. Sieber
R.M. Lindstrom	R.O. Spatz

S.E. Long R.S. Popelka-Filcoff

E.A. Mackey B.E. Tomlin
A.F. Marlow L.J. Wood
K.E. Murphy L.L. Yu
R.L. Paul R. Zeisler

S.A. Rabb

Table 6. Participating USGS Laboratory and Analysts

Laboratory	Analysts
U.S. Geological Survey	M.G. Adams
Branch of Geochemistry	Z.A. Brown
Denver, CO, USA	P.L. Lamothe
	J.E. Taggart
	S.A. Wilson

REFERENCES

- [1] Thompson, A; Taylor, B.N.; *Guide for the Use of the International System of Units (SI)*, NIST Special Publication 811 (2008); available at http://physics.nist.gov/Pubs/
- [2] May, W.E.; Gills, T.E.; Parris, R.; Beck, II, C.M.; Fassett, J.D.; Gettings, R.J.; Greenberg, R.R.; Guenther, F.R.; Kramer, G.; MacDonald, B.S.; Wise, S.A.; Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements, NIST Special Publication 260-136 (1999); available at http://www.cstl.nist.gov/nist839/NIST_special_publications.htm).
- [3] Levenson, M.S.; Banks, D.L.; Eberhardt, K.R.; Gill, L.M.; Guthrie, W.F.; Liu, H.K.; Vangel, M.G.; Yen, J.H.; Zhang, N.F.; J. Res. NIST 105, pp. 571-579 (2000).
- [4] ISO; Guide to the Expression of Uncertainty in Measurement, ISBN 92-67-10188-9, 1st ed.; International Organization for Standardization: Geneva, Switzerland (1993); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297, U.S. Government Printing Office, Washington, DC (1994); available at http://physics.nist.gov/Pubs/.

Users of this SRM should ensure that the certificate in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-2200; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet at http://www.nist.gov/srm.

SRM 2709a Page 6 of 6

Addendum to Certificate

Standard Reference Material® 2709a

San Joaquin Soil

Baseline Trace Element Concentrations

Leachable Concentrations Determined Using USEPA Methods 200.7 and 3050B

The mass fraction values contained in the NIST Certificate of Analysis for SRM 2709a represent the total element content of the material. The measurement results used to provide the certified, reference, or information values are obtained from methods that require complete sample decomposition, or from nondestructive analytical methods such as instrumental neutron activation analysis or prompt gamma-ray activation analysis. Where complete sample decomposition is required, it can be accomplished by digestion with mixed acids or by fusion. For mixed-acid decomposition, hydrofluoric acid must be included in the acid mixture used to totally decompose siliceous materials such as soils and sediments.

In its monitoring programs, the U.S. Environmental Protection Agency (USEPA) has established a number of leach methods for the preparation of soil samples for the determination of extractable elements. Eight laboratories participated, seven of which used USEPA Method 200.7; the remaining laboratory used USEPA SW-846 Method 3050B for preparation of soil samples. All elements were determined in leachates by inductively coupled plasma optical emission spectrometry. Six of the eight laboratories provided individual results from duplicate portions, and these results were averaged together to provide one result for each element from each participating laboratory. Results rejected as outliers by the USEPA Contract Laboratory Program (CLP) officials were not included. Results are summarized in Table A1. The ranges of mass fraction values, median values (to two significant figures), and the number of results included for each are given for 23 elements. The percent recovery values based on the ratios of the median values to the total element content (from the certified, reference, or information values in the Certificate of Analysis) are listed in the last column of Table A1. Note that the certified values provided as total mass fractions in the Certificate of Analysis are the best estimate of the true mass fraction values for this material.

This USEPA CLP Study was coordinated by Clifton Jones, Quality Assurance and Technical Support Program, Shaw Environmental & Infrastructure Group, Las Vegas, NV, under the direction of John Nebelsick, USEPA, Analytical Services Branch. The participating laboratories are listed in Table A2.

SRM 2709a Page 1 of 2

Table A1. Results from Laboratories Participating in the EPA Contract Laboratory Program Study.

Element	n	Range	e (mg	g/kg)	Median (mg/kg)	Recovery (%)
Aluminum	7	13000	_	17000	16000	22
Antimony	2	1.2	-	1.5	1.4	88
Arsenic	8	6.4	-	10	7.8	74
Barium	8	350	-	400	380	39
Beryllium	7	0.50	-	0.72	0.61	
Cadmium	5	0.33	-	0.66	0.40	110
Calcium	8	12000	-	14000	12000	65
Chromium	8	46	-	67	53	41
Cobalt	8	8.2	-	13	10	81
Copper	7	24	-	28	27	81
Iron	8	22000	-	26000	24000	70
Lead	7	8.1	_	11	9.2	53
Magnesium	7	9700	-	11000	10000	71
Manganese	8	380	-	450	420.0	79
Mercury	8	0.79	-	0.92	0.87	97
Nickel	8	59	-	71	66	77
Potassium	8	2600	-	4000	2900	14
Selenium	5	0.69	-	1.9	0.95	63
Silver	4	0.14	-	4.1	0.64	
Sodium	7	460	-	610	500	4
Thallium	2	0.74	-	1.6	1.2	200
Vanadium	8	43	-	71	48	44
Zinc	8	69	-	87	79	77

Table A2. List of CLP and non-CLP Participating Laboratories

A4 Scientific, Inc.
Bonner Analytical Testing Co.
Chem Tech Consulting Group
Datachem Laboratories, Inc.
Liberty Analytical Corporation
MSE Laboratory Services
Shealy Environmental
SVL Analytical Inc.

SRM 2709a Page 2 of 2

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1944

New York/New Jersey Waterway Sediment

Standard Reference Material (SRM) 1944 is a mixture of marine sediment collected near urban areas in New York and New Jersey. SRM 1944 is intended for use in evaluating analytical methods for the determination of selected polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, and trace elements in marine sediment and similar matrices. Reference values are also provided for selected polybrominated diphenyl ether (PBDE) congeners, selected dibenzo-p-dioxin and dibenzofuran congeners, total organic carbon, total extractable material, and particle size characteristics. Information values are provided for selected polychlorinated naphthalenes (PCNs) and hexabromocyclododecanes (HBCDs). All of the constituents for which certified, reference, and information values are provided in SRM 1944 were naturally present in the sediment before processing. A unit of SRM 1944 consists of a bottle containing 50 g of radiation-sterilized, freeze-dried sediment.

Certified Mass Fraction Values: Certified values for mass fractions of PAHs, PCB congeners, chlorinated pesticides, and trace elements are provided in Tables 1 through 4. A NIST certified value is a value for which NIST has the highest confidence in its accuracy in that all known or suspected sources of bias have been investigated or taken into account [1]. The certified values for the PAHs, PCB congeners, and chlorinated pesticides are based on the agreement of results obtained at NIST using two or more chemically independent analytical techniques. The certified values for the trace elements are based on NIST measurements by one technique and additional results from several collaborating laboratories.

Reference Mass Fraction Values: Reference values are provided for mass fractions of additional PAHs (some in combination) in Tables 5 and 6, additional PCB congeners and chlorinated pesticides in Table 7, PBDE congeners in Table 8, and additional inorganic constituents in Tables 9 and 10. Reference values are provided in Table 11 for the 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin and dibenzofuran congeners and total tetra-, penta-, hexa-, and hepta-congeners of polychlorinated dibenzo-p-dioxin and dibenzofuran. Reference values for particle size characteristics are provided in Table 12 and 13. Reference values for total organic carbon and percent extractable mass are provided in Table 14. Reference values are noncertified values that are the best estimate of the true value; however, the values do not meet the NIST criteria for certification and are provided with associated uncertainties that may reflect only measurement precision, may not include all sources of uncertainty, or may reflect a lack of sufficient statistical agreement among multiple analytical methods [1].

Information Mass Fraction Values: Information values are provided in Table 15 for mass fractions of additional trace elements, in Table 16 for PCN congeners (some in combination), and in Table 17 for HBCD isomers. An information value is considered to be a value that will be of interest and use to the SRM user, but insufficient information is available to assess the uncertainty associated with the value or only a limited number of analyses were performed [1].

Expiration of Certification: The certification of **SRM 1944** is valid, within the measurement uncertainties specified, until **31 March 2017**, provided the SRM is handled and stored in accordance with the instructions given in this certificate (see "Instructions for Handling, Storage, and Use"). The certification is nullified if the SRM is damaged, contaminated, or otherwise modified.

Stephen A. Wise, Chief Analytical Chemistry Division

Robert L. Watters, Jr., Chief Measurement Services Division

Gaithersburg, MD 20899 Certificate Issue Date: 27 September 2011

Certificate Revision History on Page 20

SRM 1944 Page 1 of 22

Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

The coordination of the technical measurements leading to the certification was performed by M.M. Schantz and S.A. Wise of the NIST Analytical Chemistry Division.

Consultation on the statistical design of the experimental work and evaluation of the data were provided by S.D. Leigh, M.G. Vangel, and M.S. Levenson of the NIST Statistical Engineering Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services Division.

The sediment was collected with the assistance of the New York District of the U.S. Army Corp of Engineers (ACENYD), who provided the expertise in the site selection, the ship, sampling equipment, and personnel. L. Rosman of ACENYD and R. Parris (NIST) coordinated the collection of this sediment. Collection and preparation of SRM 1944 were performed by R. Parris, M. Cronise, and C. Fales (NIST); L. Rosman and P. Higgins (ACENYD), and the crew of the *Gelberman* from the ACE Caven Point facility in Caven Point, NJ.

Analytical measurements for the certification of SRM 1944 were performed at NIST by E.S. Beary, D.A. Becker, R.R. Greenberg, J.M. Keller, J.R. Kucklick, M. Lopez de Alda, K.E. Murphy, R. Olfaz, B.J. Porter, D.L. Poster, L.C. Sander, P. Schubert, M.M. Schantz, S.S. Vander Pol, and L. Walton of the Analytical Chemistry Division. Measurements for percent total organic carbon measurements were provided by three commercial laboratories and T.L. Wade of the Geochemical and Environmental Research Group, Texas A&M University (College Station, TX, USA). The particle-size distribution data were provided by Honeywell, Inc. (Clearwater, FL, USA). Additional results for PBDE congeners were used from ten laboratories (see Appendix A) that participated in an interlaboratory study specifically for PBDEs in Marine Sediment coordinated by H.M. Stapleton of the NIST Analytical Chemistry Division. M. LaGuardia of Virginia Institute of Marine Science (Gloucester Point, VA, USA) provided one set of measurements for the HBCDs.

Values for the polychlorinated dibenzo-*p*-dioxins and dibenzofurans were the results of an interlaboratory comparison study among fourteen laboratories (see Appendix B) coordinated by S.A. Wise of the NIST Analytical Chemistry Division and R. Turle and C. Chiu of Environment Canada Environmental Technology Centre, Analysis and Air Quality Division (Ottawa, ON, Canada). Analytical measurements for selected trace elements were provided by the International Atomic Energy Agency (IAEA, Seibersdorf, Austria) by M. Makarewicz and R. Zeisler. Results were also used from seven laboratories (see Appendix C) that participated in an intercomparison exercise coordinated by S. Willie of the Institute for National Measurement Standards, National Research Council Canada (NRCC; Ottawa, ON, Canada).

INSTRUCTIONS FOR HANDLING, STORAGE, AND USE

Handling: This material is naturally occurring marine sediment from an urban area and may contain constituents of unknown toxicities; therefore, caution and care should be exercised during its handling and use.

Storage: SRM 1944 must be stored in its original bottle at temperatures less than 30 °C away from direct sunlight.

Use: Prior to removal of test portions for analysis, the contents of the bottle should be mixed. The concentrations of constituents in SRM 1944 are reported on a dry-mass basis. The SRM, as received, contains a mass fraction of approximately 1.3 % moisture. The sediment sample should be dried to a constant mass before weighing for analysis or, if the constituents of interest are volatile, a separate test portion of the sediment should be removed from the bottle at the time of analysis and dried to determine the mass fraction on a dry-mass basis.

SRM 1944 Page 2 of 22

PREPARATION AND ANALYSIS⁽¹⁾

Sample Collection and Preparation: The sediment used to prepare this SRM was collected from six sites in the vicinity of New York Bay and Newark Bay in October 1994. Site selection was based on contaminant levels measured in previous samples from these sites and was intended to provide relatively high concentrations for a variety of chemical classes of contaminants. The sediment was collected using an epoxy-coated modified Van Veen-type grab sampler designed to sample the sediment to a depth of 10 cm. A total of approximately 2100 kg of wet sediment was collected from the six sites. The sediment was freeze-dried, sieved (nominally 250 μ m to 61 μ m), homogenized in a cone blender, radiation sterilized at an estimated minimum dose of 32 kilograys (60 Co), and then packaged in screw-capped amber glass bottles.

Conversion to Dry-Mass Basis: The results for the constituents in SRM 1944 are reported on a dry-mass basis; however, the material as received contains residual moisture. The amount of moisture in SRM 1944 was determined by measuring the mass loss after freeze drying test portions of 1.6 g to 2.5 g for five days at 1 Pa with a -10 °C shelf temperature and a -50 °C condenser temperature. The mass fraction of moisture in SRM 1944 at the time of the certification analyses was 1.25 % \pm 0.03 % (95 % confidence level).

Polycyclic Aromatic Hydrocarbons: The general approach used for the value assignment of the PAHs in SRM 1944 consisted of combining results from analyses using various combinations of different extraction techniques and solvents, cleanup/isolation procedures, and chromatographic separation and detection techniques [2]. Techniques and solvents involved were Soxhlet extraction and pressurized fluid extraction (PFE) using dichloromethane (DCM) or a hexane/acetone mixture, clean up of the extracts using solid-phase extraction (SPE), or normal-phase liquid chromatography (LC), followed by analysis using the following techniques: (1) reversed-phase liquid chromatography with fluorescence detection (LC-FL) analysis of the total PAH fraction, (2) reversed-phase LC-FL analysis of isomeric PAH fractions isolated by normal-phase LC (i.e., multidimensional LC), (3) gas chromatography/mass spectrometry (GC/MS) analysis of the PAH fraction on four stationary phases of different selectivity, i.e., a 5 % (mole fraction) phenyl-substituted methylpolysiloxane phase, a 50 % phenyl-substituted methylpolysiloxane phase, a proprietary non-polar polysiloxane phase, and a smectic liquid crystalline stationary phase.

Seven sets of GC/MS results, designated as GC/MS (I), GC/MS (II), GC/MS (III), GC/MS (IV), GC/MS (V), GC/MS (VI), and GC/MS (Sm), were obtained using four columns with different selectivities for the separation of PAHs. For GC/MS (I) analyses, duplicate test portions of 1 g from eight bottles of SRM 1944 were Soxhlet extracted for 24 h with DCM. Copper powder was added to the extract to remove elemental sulfur. The concentrated extract was passed through a silica SPE cartridge and eluted with 2 % DCM in hexane. (All extraction and LC solvent compositions are expressed as volume fractions unless otherwise noted.) The processed extract was then analyzed by GC/MS using a 0.25 mm i.d. × 60 m fused silica capillary column with a 5 % phenyl-substituted methylpolysiloxane phase (0.25 μm film thickness) (DB-5 MS, J&W Scientific, Folsom, CA). The GC/MS (II) analyses were performed using 1 g to 2 g test portions from three bottles of SRM 1944 and 2 g to 3 g test portions from three bottles of SRM 1944 that had been mixed with a similar amount of water (i.e., a wetted sediment). These test portions were Soxhlet extracted with DCM and processed through the silica SPE as described above; however, the extract was further fractionated using normal-phase LC on a semi-preparative aminopropylsilane column to isolate the PAH fraction. The PAH fraction was then analyzed using the same column as described above for GC/MS (I); however, the test portions were extracted, processed, and analyzed as part of three different sample sets at different times using different calibrations for each set. For the GC/MS (III), 1 g to 2 g test portions from six bottles of SRM 1944 were Soxhlet extracted for 18 h with 250 mL of a mixture of 50 % hexane/50 % acetone. The extracts were then processed and analyzed as described for GC/MS (II). For GC/MS (IV) analyses, 1 g to 2 g test portions from six bottles of SRM 1944 were extracted using PFE with a mixture of 50 % hexane/50 % acetone, and the extracts were processed as described above for GC/MS (II). The GC/MS (V) results were obtained by analyzing three of the same PAH fractions that were analyzed in GC/MS (III) and three of the PAH fractions that were analyzed in GC/MS (IV) using a 50 % (mole fraction) phenyl-substituted methylpolysiloxane stationary phase (0.25 mm i.d. × 60 m, 0.25 µm film thickness) (DB-17MS, J&W Scientific, Folsom, CA). For GC/MS (VI) analyses, three test portions of 0.7 g from one bottle of SRM 1944 were Soxhlet extracted for 24 h with DCM. Copper powder was added to the extract to remove elemental sulfur. The concentrated extract was passed through an aminopropyl SPE cartridge and eluted with 20 % DCM in hexane. The processed extract was then analyzed by GC/MS using a 0.25 mm i.d. × 60 m fused silica capillary column with a proprietary non-polar polysiloxane phase (0.25 µm film thickness) (DB-XLB, J&W Scientific). For GC/MS (Sm) 1 g to 2 g test portions from six bottles of SRM 1944 were Soxhlet extracted for 24 h with 250 mL of DCM. The extracts were processed as described above for

⁽¹⁾Certain commercial equipment, instruments, or materials are identified in this report to adequately specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

SRM 1944

Page 3 of 22

GC/MS (I) using an aminopropylsilane SPE cartridge followed by GC/MS analysis using 0.2 mm i.d. × 25 m (0.15 µm film thickness) smectic liquid crystalline phase (SB-Smectic, Dionex, Lee Scientific Division, Salt Lake City, UT).

Two sets of LC-FL results, designated as LC-FL (Total) and LC-FL (Fraction), were used in the certification process. Test portions of approximately 1 g from six bottles of SRM 1944 were Soxhlet extracted for 20 h using 200 mL of 50 % hexane/50 % acetone. The extracts were concentrated and then processed through two aminopropylsilane SPE cartridges connected in series to obtain the total PAH fraction. A second 1 g test portion from the six bottles was Soxhlet extracted and processed as described above; the PAH fraction was then fractionated further on a semi-preparative aminopropylsilane column (μ Bondapak NH₂, 9 mm i.d. × 30 cm, Waters Associates, Milford, MA) to isolate isomeric PAH fractions. The total PAH fraction and the isomeric PAH fractions were analyzed using a 5- μ m particle-size polymeric octadecylsilane (C_{18}) column (4.6 mm i.d. × 25 cm, Hypersil-PAH, Keystone Scientific, Inc., Bellefonte, PA) with wavelength-programmed fluorescence detection. For all of the GC/MS and LC-FL measurements described above, selected perdeuterated PAHs were added to the sediment prior to solvent extraction for use as internal standards for quantification purposes.

Homogeneity Assessment for PAHs: The homogeneity of SRM 1944 was assessed by analyzing duplicate test portions of 1 g from eight bottles selected by stratified random sampling. Test portions were extracted, processed, and analyzed as described above for GC/MS (I). No statistically significant differences among bottles were observed for the PAHs at the 1 g test portion size.

PAH Isomers of Molecular Mass 300 and 302: For the determination of the molecular mass 300 and 302 PAH isomers, three test portions of approximately 5 g each were extracted using PFE with DCM. The extracts were then concentrated with a solvent change to hexane and passed through an aminopropyl SPE cartridge and eluted with 10 % DCM in hexane. The processed extract was then analyzed by GC/MS using a 0.25 mm i.d. \times 60 m fused silica capillary column with a 50 % phenyl-substitued methylpolysiloxane phase (0.25 μ m film thickness; DB-17MS, J&W Scientific, Folsom, CA). Perdeuterated dibenzo[a,i]pyrene was added to the sediment prior to extraction for use as an internal standard.

PCBs and Chlorinated Pesticides: The general approach used for the determination of PCBs and chlorinated pesticides in SRM 1944 consisted of combining results from analyses using various combinations of different extraction techniques and solvents, cleanup/isolation procedures, and chromatographic separation and detection techniques [2]. This approach consisted of Soxhlet extraction and PFE using DCM or a hexane/acetone mixture, clean up/isolation using SPE or LC, followed by analysis using GC/MS and gas chromatography with electron capture detection (GC-ECD) on two columns with different selectivity.

Eight sets of results were obtained designated as GC-ECD (I) A and B, GC-ECD (II) A and B, GC/MS (I), GC/MS (II), GC/MS (III), and QA Exercise. For the GC-ECD (I) analyses, 1 g test portions from four bottles of SRM 1944 were Soxhlet extracted with DCM for 18 h. Copper powder was added to the extract to remove elemental sulfur. The concentrated extract was passed through a silica SPE cartridge and eluted with 10 % DCM in hexane. The concentrated eluant was then fractionated on a semi-preparative aminopropylsilane column to isolate two fractions containing: (1) the PCBs and lower polarity pesticides and, (2) the more polar pesticides. GC-ECD analyses of the two fractions were performed on two columns of different selectivities for PCB separations: 0.25 mm × 60 m fused silica capillary column with a 5 % phenyl-substituted methylpolysiloxane phase (0.25 µm film thickness) (DB-5, J&W Scientific, Folsom, CA) and a 0.32 mm × 100 m fused silica capillary column with a 50 % (mole fraction) octadecyl (C18) methylpolysiloxane phase (0.1 µm film thickness) (CPSil 5 C18 CB, Chrompack International, Middelburg, The Netherlands). The results from the 5 % phenyl phase are designated as GC-ECD (IA) and the results from the C18 phase are designated as GC-ECD (IB). A second set of samples was also analyzed by GC-ECD (i.e., GC-ECD IIA and IIB). Test portions of 1 g to 2 g from three bottles of SRM 1944 and 2 g to 3 g test portions from three bottles of SRM 1944 that had been mixed with a similar amount of water (i.e., a wetted sediment) were extracted, processed, and analyzed as described above for GC-ECD (I); however, the test portions were extracted, processed and analyzed as part of three different sample sets at different times using different calibrations for each set.

SRM 1944 Page 4 of 22

Three sets of results were obtained by GC/MS. For GC/MS (I), 1 g to 2 g test portions from six bottles were Soxhlet extracted with a mixture of 50 % hexane/50 % acetone. Copper powder was added to the extract to remove elemental sulfur. The concentrated extract was passed through a silica SPE cartridge and eluted with 10 % DCM in hexane. The extract was then analyzed by GC/MS using a 0.25 mm \times 60 m fused silica capillary column with a 5 % phenyl-substituted methylpolysiloxane phase (0.25 µm film thickness). The GC/MS (II) results were obtained in the same manner as the GC/MS (I) analyses except that the six test portions were extracted using PFE. The GC/MS (III) analyses were performed on the same extract fractions analyzed in GC-ECD (II) using the 5 % phenyl-substituted methylpolysiloxane phase describe above for GC/MS (I). For both the GC-ECD and GC/MS analyses, two PCB congeners that are not significantly present in the sediment extract (PCB 103 and PCB 198 [3]), and 4,4'-DDT- d_8 were added to the sediment prior to extraction for use as internal standards for quantification purposes.

In addition to the analyses performed at NIST, SRM 1944 was used in an interlaboratory comparison exercise in 1995 as part of the NIST Intercomparison Exercise Program for Organic Contaminants in the Marine Environment [4]. Results from nineteen laboratories that participated in this exercise were used as the eighth data set in the determination of the certified values for PCB congeners and chlorinated pesticides in SRM 1944. The laboratories participating in this exercise used the analytical procedures routinely used in their laboratories to measure PCB congeners and chlorinated pesticides.

Polybrominated Diphenyl Ethers: Value assignment of the concentrations of eight PBDE congeners was based on the means of results from two interlaboratory studies [5,6] and two sets of data from NIST. The laboratories participating in the interlaboratory exercises (see Appendix A) employed the analytical procedures routinely used in their laboratories to measure PBDEs. For the two methods used at NIST, six test portions (between 1 g and 2 g) were extracted using PFE at $100\,^{\circ}\text{C}$ with DCM. The extracts were cleaned up using an alumina column (5 % deactivated) SPE column. Size exclusion chromatography (SEC) on a divinylbenzene-polystyrene column (10 μ m particle size, 10 nm (100 angstrom) pore size, 7.5 mm i.d. \times 300 mm, PL-Gel, Polymer Labs, Inc.) was then used to remove the sulfur. The PBDEs, as well as PCBs and pesticides, were quantified using GC/MS in the electron impact mode on a 0.18 mm i.d. \times 30 m fused silica capillary column with a 5 % (mole fraction) phenyl methylpolysiloxane phase (0.18 μ m film thickness; DB-5MS, Agilent Technologies). The PBDEs were also quantified using GC/MS in the negative chemical ionization mode on a 0.18 mm i.d. \times 10 m fused silica capillary column with a 5 % (mole fraction) phenyl methylpolysiloxane phase (0.18 μ m film thickness; DB-5MS, Agilent Technologies). Selected Carbon-13 labeled PBDE and PCB congeners were added to the sediment prior to extraction for use as internal standards for quantification purposes.

Polychlorinated Dibenzo-*p***-dioxins and Dibenzofurans:** Value assignment of the concentrations of the polychlorinated dibenzo-*p*-dioxin and dibenzofuran congeners and the total tetra- through hepta- substituted polychlorinated dibenzo-*p*-dioxins and dibenzofurans was accomplished by combining results from the analysis of SRM 1944 by fourteen laboratories that participated in an interlaboratory comparison study (see Appendix B). Each laboratory analyzed three test portions (typically 1 g) of SRM 1944 using their routine analytical procedures and high resolution gas chromatography with high resolution mass spectrometry detection (GC-HRMS). The analytical procedures used by all of the laboratories included spiking with ¹³C-labeled surrogates (internal standards); Soxhlet extraction with toluene; sample extract cleanup with acid/base silica, alumina, and carbon columns; and finally analysis of the cleaned up extract with GC-HRMS. Most of the laboratories used a 5 % phenyl-substituted methylpolysiloxane phase capillary column (DB-5), and about half of the laboratories confirmed 2,3,7,8-tetrachlorodibenzofuran using a 50 % cyanopropylphenyl-substituted methylpolysiloxane (DB-225, J&W Scientific, Folsom, CA) capillary column.

Analytical Approach for Inorganic Constituents: Value assignment for the concentrations of selected trace elements was accomplished by combining results of the analyses of SRM 1944 from NIST, NRCC, IAEA, and seven laboratories that participated in an interlaboratory comparison exercise coordinated by NRCC [7] (see Appendix C). The analytical methods used for the determination of each element are summarized in Table 18. For the certified concentration values listed in Table 4, results were combined from: (1) analyses at NIST using isotope dilution inductively coupled plasma mass spectrometry (ID-ICPMS) or instrumental neutron activation analysis (INAA), (2) analyses at NRCC using ID-ICPMS, graphite furnace atomic absorption spectrometry (GFAAS), and/or inductively coupled plasma optical emission spectroscopy (ICPOES), (3) analyses at IAEA using INAA, and (4) the mean of the results from seven laboratories that participated in the NRCC interlaboratory comparison exercise. The reference mass fraction values in Table 9 were determined by combining results from (1) analyses performed at NIST using INAA; (2) analyses at IAEA using INAA; and (4) the mean of the results from five to seven laboratories that participated in the NRCC interlaboratory comparison exercise. The information concentration values in Table 15 were determined by INAA at NIST and IAEA.

NIST Analyses using ID-ICPMS: Lead, cadmium, and nickel were determined by ID-ICPMS [8]. Test portions (0.4 g to 0.5 g) from six bottles of the SRM were spiked with ²⁰⁶Pb, ¹¹¹Cd, and ⁶²Ni and wet ashed using a combination of nitric, SRM 1944

hydrochloric, hydrofluoric, and perchloric acids. Lead and cadmium were determined in the same test portions; nickel was determined in a second sample set. A small amount of crystalline material remained after the acid dissolution. Lithium metaborate fusion was performed on this residue to confirm that the residue contained insignificant amounts of the analytes. Cadmium and nickel were separated from the matrix material to eliminate the possibility of spectral interferences, and concentrations were determined from the measurement of the ¹¹²Cd/¹¹¹Cd and ⁶²Ni/⁶⁰Ni ratios, respectively. The ²⁰⁸Pb/²⁰⁶Pb ratios were measured directly because interferences at these masses are negligible.

NIST Analyses using INAA: Analyses were performed in two steps [9]. Elements with short-lived irradiation products (Al, Ca, Cl, K, Mg, Mn, Na, Ti, and V) were determined by measuring duplicate 300 mg test portions from each of ten bottles of SRM 1944. The samples, standards, and controls were packaged in clean polyethylene bags and were individually irradiated for 15 s in the NIST Reactor Pneumatic Facility RT-4. Reactor power was 20 MW, which corresponds to a neutron fluence rate of about 8×10^{13} cm⁻² s⁻¹. After irradiation, the samples, controls, and standards were repackaged in clean polyethylene bags and counted (gamma-ray spectrometry) three times at different decay intervals. A sample-to-detector distance (counting geometry) of 20 cm was used. Elements with long-lived irradiation products (Ag, As, Br, Co, Cr, Cs, Fe, Rb, Sb, Sc, Se, Th, and Zn) were determined by measuring one 300 mg test portion from each of nine bottles of SRM 1944. The samples, standards, controls, and blank polyethylene bags were irradiated together for a total of 1 h at a reactor power of 20 MW. Approximately four days after irradiation, the polyethylene bags were removed, and each sample, standard, control, and blank was counted at 20 cm from the detector. The samples were then recounted at 10 cm from another detector. After an additional decay time of about one month, the samples, standards, controls, and blanks were counted a third time (at 10 cm) from the second detector.

Homogeneity Assessment for Inorganic Constitutents: For some of the trace elements, most notably Cd, Fe, Pb, Rb, Sb, Sc, and Th, the variations among the test portions measured at NIST (between 0.3 g and 0.5 g) were larger than expected from the measurement process. Based on experience, it was concluded that there is some material inhomogeneity for trace elements in the test portions used. Sample variations among the NIST measurements are used as slightly conservative estimates of the sample inhomogeneities.

Particle Size Information: Dry particle-size distribution measurements for SRM 1944 were obtained as part of a collaborative effort with Honeywell's Particle and Components Measurements Laboratory (Clearwater, FL). A Microtrac particle analyzer, which makes use of light-scattering techniques, was used to measure the particle-size distribution of SRM 1944. Briefly, a reference beam is used to penetrate a field of particles and the light that scatters in the forward direction from the field is measured and the particle-size as a volume distribution is derived via a computer-assisted analysis. From these data, the total volume, average size, and a characteristic width of the particle size distribution are calculated. The system has a working range from 0.7 μm to 700 μm.

Total Organic Carbon and Percent Extractable Mass: Four laboratories provided results for total organic carbon (TOC) using similar procedures. Briefly, test portions of approximately 200 mg were reacted with 6 mol/L hydrochloric acid and rinsed with deionized water prior to combustion in a gas fusion furnace. The carbon monoxide and carbon dioxide produced were measured and compared to a blank for calculation of the percent TOC. Each laboratory analyzed test portions from six bottles of SRM 1944. For the determination of percent extractable mass, six test portions of approximately 1 g to 2 g of SRM 1944 were extracted using Soxhlet extraction for 18 h with DCM. The extraction thimbles were allowed to air dry. After reaching constant mass, the difference in the mass before and after extraction was determined.

Polychlorinated Naphthalenes: Value assignment of PCN congener concentrations was accomplished by combining results from the analysis of SRM 1944 by six laboratories that participated in an interlaboratory comparison study (see Appendix D). Each laboratory analyzed three test portions (typically 1 g to 2 g) of SRM 1944 using their routine analytical procedures that included high-resolution gas chromatography with either high-resolution mass spectrometry detection (GC-HRMS) or low-resolution MS in the negative chemical ionization mode. Calibration mixtures included either Halowax mixtures with known volume fractions of individual congeners or individual PCN congeners.

SRM 1944 Page 6 of 22

HBCDs: Value assignment of the concentrations of three HBCD isomers was accomplished by combining results from the analysis of SRM 1944 in two sets from NIST and one set from Virginia Institute of Marine Science. For the two sets analyzed at NIST, the second fraction from an acidified silica SPE clean-up was analyzed by LC/MS/MS for the HBCDs using both electrospray ionization (ESI) and atmospheric pressurized photoionization (APPI). A C18 column (3.0 mm \times 150 mm \times 3.5 μ m column, Eclipse Plus, Agilent Technologies) and YMC Carotenoid S5 C30 column (4.6 mm \times 250 mm \times 5 μ m column) were used with a solvent gradient using 2.5 mmol/L ammonium acetate in 12.5 % water in methanol and acetonitrile at a flow rate of 0.3 mL/min. Carbon-13 labeled HBCDs were added to the sediment prior to solvent extraction for use as internal standards for quantification purposes.

Table 1. Certified Mass Fraction Values for Selected PAHs in SRM 1944 (Dry-Mass Basis)

	Mass Fraction ^(a,b) (mg/kg)		
Phenanthrene ^(c,d,e,f,g)	5.27	±	0.22
Fluoranthene ^(c,d,e,f,g)	8.92	±	0.32
Pyrene ^(c,d,e,f,g)	9.70	±	0.42
Benzo[c]phenathrene $^{(c,d,e,f,h)}$	0.76	±	0.10
Benz[a]anthracene $^{(c,d,e,f,g,h)}$	4.72	±	0.11
Chrysene, (h,k)	4.86	±	$0.10^{(i)}$
Triphenylene ^(h,k)	1.04	±	0.27
Benzo[b]fluoranthene ^(g,h,j)	3.87	\pm	0.42
Benzo[<i>j</i>]fluoranthene ^(h,j)	2.09	\pm	0.44
Benzo[k]fluoranthene $^{(c,d,e,f,g,h,j)}$	2.30	±	0.20
Benzo[a]fluoranthene $^{(c,d,e,f,h,j)}$	0.78	\pm	0.12
Benzo[e]pyrene ^(c,d,e,f,h,j)	3.28	±	0.11
Benzo[a]pyrene $^{(c,d,e,f,g,h,j)}$	4.30	±	0.13
Perylene ^(c,d,e,f,g,h,j)	1.17	±	0.24
Benzo[ghi]perylene $^{(c,d,e,f,j,k)}$	2.84	±	0.10
Indeno[1,2,3- cd]pyrene ^(c,d,e,f,j,k)	2.78	±	0.10
Dibenz $[a,j]$ anthracene $^{(c,d,e,f,j,k)}$	0.500	±	0.044
Dibenz[a,c]anthracene $^{(j,k)}$	0.335	±	0.013
Dibenz[a,h]anthracene ^(j,k)	0.424	±	0.069
Pentaphene ^(c,d,e,f,j,k)	0.288	±	0.026
Benzo[b]chrysene $^{(c,d,e,f,j,k,h)}$	0.63	±	0.10
Picene (c,d,e,f,j,k)	0.518	±	0.093

(a) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

SRM 1944 Page 7 of 22

⁽b) Each certified value is a mean of the means from two or more analytical methods, weighted as described in Paule and Mandel [10]. Each uncertainty, computed according to the Comité International des Poids et Mesures (CIPM) approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty within each analytical method as well as uncertainty due to the drying study. The expanded uncertainty defines a range of values within which the true value is believed to lie, at a level of confidence of approximately 95 %.

⁽c) Gas chromatography/mass spectrometry (GC/MS) (I) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽d) GC/MS (II) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽e) GC/MS (III) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

⁽f) GC/MS (IV) on 5 % phenyl-substituted methylpolysiloxane phase after PFE with 50 % hexane/50 % acetone mixture.

⁽g) LC-FL of total PAH fraction after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

⁽h) GC/MS (Sm) using a smectic liquid crystalline phase after Soxhlet extraction with DCM.

⁽i) The uncertainty interval for chrysene was widened in accordance with expert consideration of the analytical procedures, along with the analysis of the data as a whole, which suggests that the half-widths of the expanded uncertainties should not be less than 2 %.

⁽i) GC/MS (V) on 50 % phenyl-substituted methylpolysiloxane phase of extracts from GC/MS (III) and GC/MS (IV).

⁽k) LC-FL of isomeric PAH fractions after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

Table 2. Certified Mass Fraction Values for Selected PCB Congeners^(a) in SRM 1944 (Dry-Mass Basis)

		Mass Fraction ^(b,c) (μg/kg)		
		(45/NS)	
PCB 8	$(2,4'-Dichlorobiphenyl)^{(d,e,f,g,h,i,j,k)}$	22.3	±	2.3
PCB 18	$(2,2',5$ -Trichlorobiphenyl) $^{(d,e,f,g,h,i,j,k)}$	51.0	±	2.6
PCB 28	$(2,4,4'$ -Trichlorobiphenyl $)^{(d,e,f,g,j,k)}$	80.8	±	2.7
PCB 31	(2,4',5-Trichlorobiphenyl) ^(d,e,f,g,j)	78.7	±	$1.6^{(1)}$
PCB 44	(2,2'3,5'-Tetrachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	60.2	±	2.0
PCB 49	$(2,2'4,5'-Tetrachlorobiphenyl)^{(d,e,f,g,h,i,j,k)}$	53.0	±	1.7
PCB 52	(2,2',5,5'-Tetrachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	79.4	±	2.0
PCB 66	(2,3',4,4'-Tetrachlorobiphenyl) ^(e,g,h,i,j)	71.9	±	4.3
PCB 95	(2,2',3,5',6-Pentachlorobiphenyl) ^(e,g,h,i,j)	65.0	±	8.9
PCB 87	$(2,2',3,4,5'$ -Pentachlorobiphenyl) $^{(d,e,f,g,h,i,j)}$	29.9	±	4.3
PCB 99	(2,2',4,4',5-Pentachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	37.5	±	2.4
PCB 101	(2,2',4,5,5'-Pentachlorobiphenyl) ^(d,e,f,g,h,l,j,k)	73.4	±	2.5
PCB 105	(2,3,3',4,4'-Pentachlorobiphenyl) ^(e,f,g,h,i,j,k)	24.5	±	1.1
PCB 110	(2,3,3',4',6-Pentachlorobiphenyl) ^(g,h,i,j)	63.5	\pm	4.7
PCB 118	(2,3',4,4',5-Pentachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	58.0	±	4.3
PCB 128	$(2,2',3,3',4,4'$ -Hexachlorobiphenyl) $^{(d,e,f,g,h,i,j,k)}$	8.47	±	0.28
PCB 138	$(2,2',3,4,4',5'$ -Hexachlorobiphenyl) $^{(d,e,f,g,h,i,j,k)}$	62.1	±	3.0
PCB 149	(2,2',3,4',5',6-Hexachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	49.7	±	1.2
PCB 151	$(2,2',3,5,5',6$ -Hexachlorobiphenyl) $^{(d,e,f,g,h,i,j,k)}$	16.93	\pm	0.36
PCB 153	$(2,2',4,4',5,5'$ -Hexachlorobiphenyl) $^{(d,e,f,g,h,i,j,k)}$	74.0	±	2.9
PCB 156	(2,3,3',4,4',5-Hexachlorobiphenyl) ^(d,e,f,g,h,i,j)	6.52	±	0.66
PCB 170	(2,2',3,3',4,4',5-Heptachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	22.6	\pm	1.4
PCB 180	(2,2',3,4,4',5,5'-Heptachlorobiphenyl) ^(d,e,f,g,h,i,j,k)	44.3	±	1.2
PCB 183	(2,2',3,4,4',5',6-Heptachlorobiphenyl) ^(d,e,f,g,h,i,j)	12.19	±	0.57
PCB 187	(2,2',3,4',5,5',6-Heptachlorobiphenyl) ^(d,e,f,g,h,1,J,k)	25.1	±	1.0
PCB 194	$(2,2',3,3',4,4',5,5'-Octachlorobiphenyl)^{(d,e,f,g,h,i,j)}$	11.2	±	1.4
PCB 195	(2,2',3,3',4,4',5,6-Octachlorbiphenyl) (d,e,f,g,h,i,j,k)	3.75	±	0.39
PCB 206	(2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl) ^(d,e,f,g,h,1,J,k)	9.21	±	0.51
PCB 209	$Decachlorobiphenyl^{(d,e,f,g,h,i,j,k)}$	6.81	±	0.33

⁽a) PCB congeners are numbered according to the scheme proposed by Ballschmiter and Zell [13] and later revised by Schulte and Malisch [3] to conform with IUPAC rules; for the specific congeners mentioned in this SRM, the Ballschmiter-Zell numbers correspond to those of Schulte and Malisch.

SRM 1944 Page 8 of 22

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

⁽c) Each certified value is a mean of the means from two or more analytical methods, weighted as described in Paule and Mandel [10]. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty within each analytical method as well as uncertainty due to the drying study. The expanded uncertainty defines a range of values within which the true value is believed to lie, at a level of confidence of approximately 95 %.

⁽d) GC-ECD (IA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽e) GC-ECD (IB) on the 50 % C-18 dimethylpolysiloxane phase; same extracts analyzed as in GC-ECD (IA).

⁽f) GC-ECD (IIA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽g) GC-ECD (IIB) on the 50 % octadecyl (C-18) methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IIA).

⁽h) GC/MS (l) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

⁽i) GC/MS (II) on 5 % phenyl-substituted methylpolysiloxane phase after PFE extraction with 50 % hexane/50 % acetone mixture.

⁽i) GC/MS (III) on 5 % phenyl-substituted methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IIA).

⁽k) Results from nineteen laboratories participating in an interlaboratory comparison exercise.

⁽¹⁾ The uncertainty interval for PCB 31 was widened in accordance with expert consideration of the analytical procedures, along with the analysis of the data as a whole, which suggests that the half-widths of the expanded uncertainties should not be less than 2 %.

Table 3. Certified Mass Fraction Values for Selected Chlorinated Pesticides in SRM 1944 (Dry-Mass Basis)

		s Frac (µg/k	etion ^(a,b) g)
$Hexachlorobenzene^{(e,f,g,h,i,j)}$	6.03	±	0.35
<i>cis</i> -Chlordane (α -Chlordane) ^(c,d,e,f,g,h,i,j)	16.51	\pm	0.83
trans-Nonachlor (c,d,e,f,g,h,i,j)	8.20	\pm	0.51

⁽a) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

Table 4. Certified Mass Fraction Values for Selected Elements in SRM 1944 (Dry-Mass Basis)

	Degrees of Freedom	Ma	ss Frac (%)	tions ^(a,b)
Aluminum ^(c,d,e)	4	5.33	±	0.49
Iron ^(c,d,e)	6	3.53	±	0.16
		Mas	ss Frac (mg/k	tions ^(a,b) g)
$Arsenic^{(c,d,e,f,g)}$	10	18.9	±	2.8
Cadmium ^(c,f,,h,i)	6	8.8	±	1.4
Chromium ^(c,d,f,g,i)	9	266	\pm	24
Lead ^(c,h,i)	5	330	\pm	48
Manganese ^(c,d,e)	8	505	\pm	25
Nickel ^(c,g,h,i)	6	76.1	\pm	5.6
$Zinc^{(c,d,e,g,i)}$	9	656	±	75

⁽a) The certified value is the mean of four results: (1) the mean of NIST INAA or ID-ICPMS analyses, (2) the mean of two methods performed at NRCC, and (3) the mean of results from seven selected laboratories participating in the NRCC intercomparison exercise, and (4) the mean results from INAA analyses at IAEA. The expanded uncertainty in the certified value is equal to $U = ku_c$ where u_c is the combined standard uncertainty and k is the coverage factor, both calculated according to the ISO Guide [11,12]. The value of u_c is intended to represent at the level of one standard deviation the combined effect of all the uncertainties in the certified value. Here u_c accounts for both possible method biases, within-method variation, and material inhomogeneity. The coverage factor, k, is the Student's t-value for a 95 % confidence interval with the corresponding degrees of freedom. Because of the material inhomogeneity, the variability among the measurements of multiple samples can be expected to be greater than that due to measurement variability alone.

SRM 1944 Page 9 of 22

⁽b) Each certified value is a mean of the means from two or more analytical methods, weighted as described in Paule and Mandel [10]. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty within each analytical method as well as uncertainty due to the drying study. The expanded uncertainty defines a range of values within which the true value is believed to lie, at a level of confidence of approximately 95 %.

⁽c) GC-ECD (IA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽d) GC-ECD (IB) on the 50 % octadecyl (C-18) methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IA).

⁽e) GC-ECD (IIA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽f) GC-ECD (IIB) on the 50 % octadecyl (C-18) methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IIA).

⁽g) GC/MS (I) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

⁽h) GC/MS (II) on 5 % phenyl-substituted methylpolysiloxane phase after PFE extraction with 50 % hexane/50 % acetone mixture.

⁽i) GC/MS (III) on 5 % phenyl-substituted methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IIA).

⁽i) Results from nineteen laboratories participating in an interlaboratory comparison exercise.

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

⁽c) Results from five to seven laboratories participating in the NRCC interlaboratory comparison exercise.

⁽d) Measured at NIST using INAA.

⁽e) Measured at NRCC using ICPOES.

⁽f) Measured at NRCC using GFAAS.

⁽g) Measured at IAEA using INAA.

⁽h) Measured at NIST using ID-ICPMS.

⁽i) Measured at NRCC using ID-ICPMS.

Table 5. Reference Mass Fraction Values for Selected PAHs in SRM 1944

	Mass Fractions ^(a) (mg/kg)		
Naphthalene ^(b)	1.28	±	$0.04^{(c)}$
1-Methylnaphthalene ^(b)	0.47	±	$0.02^{(c)}$
2-Methylnaphthalene ^(b)	0.74	±	$0.06^{(c)}$
Biphenyl ^(b)	0.25	±	$0.02^{(c)}$
Acenaphthene ^(b)	0.39	±	$0.03^{(c)}$
Fluorene ^(b)	0.48	±	$0.04^{(c)}$
Dibenzothiophene ^(b)	0.50	±	$0.03^{(c)}$
Anthracene ^(b)	1.13	±	$0.07^{(c)}$
1-Methylphenanthrene ^(d,e,f,g)	1.7	±	$0.1^{(h)}$
2-Methylphenanthrene ^(d,e,f,g)	1.90	±	$0.06^{(h)}$
3-Methylphenanthrene ^(d,e,f,g)	2.1	±	$0.1^{(h)}$
4-Methylphenanthrene			
and 9-Methylphenanthrene (d,e,f,g)	1.6	±	$0.2^{(h)}$
2-Methylanthracene ^(d,e,f,g)	0.58	\pm	$0.04^{(h)}$
3,5-Dimethylphenanthrene ^(d)	1.31	\pm	$0.04^{(h)}$
2,6-Dimethylphenanthrene ^(d)	0.79	±	$0.02^{(h,i)}$
2,7-Dimethylphenanthrene ^(d)	0.67	\pm	$0.02^{(h,i)}$
3,9-Dimethylphenanthrene ^(d)	2.42	±	$0.05^{(h,i)}$
1,6-, 2,9-, and 2,5-Dimethylphenanthrene ^(d)	1.67	±	$0.03^{(h,i)}$
1,7-Dimethylphenanthrene ^(d)	0.62	\pm	$0.02^{(h,i)}$
1,9- and 4,9-Dimethylphenanthrene ^(d)	1.20	±	$0.03^{(h,i)}$
1,8-Dimethylphenanthrene ^(d)	0.24	\pm	$0.01^{(h,i)}$
1,2-Dimethylphenanthrene ^(d)	0.28	\pm	$0.01^{(h,i)}$
8-Methylfluoranthene ^(d)	0.86	\pm	$0.02^{(h,i)}$
7-Methylfluoranthene ^(d)	0.69	\pm	$0.02^{(h)}$
1-Methylfluoranthene ^(b)	0.39	\pm	$0.01^{(c)}$
3-Methylfluoranthene ^(b)	0.56	\pm	$0.02^{(c)}$
2-Methylpyrene ^(d)	1.81	\pm	$0.04^{(h,i)}$
4-Methylpyrene ^(d)	1.44	\pm	$0.03^{(h,i)}$
1-Methylpyrene ^(d)	1.29	±	$0.03^{(h)}$
Anthanthrene ^(j)	0.9	±	0.1 ^(h)

⁽a) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

SRM 1944 Page 10 of 22

⁽b) GC/MS (VI) on proprietary non-polar methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽c) Reference values are the means of results obtained by NIST using one analytical technique. The expanded uncertainty, U, is calculated as $U = ku_c$, where u_c is one standard deviation of the analyte mean, and the coverage factor, k, is determined from the Student's t-distribution corresponding to the associated degrees of freedom (df = 2) and 95 % confidence level for each analyte.

⁽d) GC/MS (I) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽e) GC/MS (II) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽f) GC/MS (III) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with 50 % hexane/50 % acetone mixture

⁽g) GC/MS (IV) on 5 % phenyl-substituted methylpolysiloxane phase after PFE with 50 % hexane/50 % acetone mixture.

⁽h) The reference value for each analyte is the equally-weighted mean of the means from two or more analytical methods or the mean from one analytical technique. The uncertainty in the reference value defines a range of values that is intended to function as an interval that contains the true value at a level of confidence of 95 %. This uncertainty includes sources of uncertainty within each analytical method, among methods, and from the drying study.

⁽i) The uncertainty interval for this compound was widened in accordance with expert consideration of the analytical procedures, along with the analysis of the data as a whole, which suggests that the half-widths of the expanded uncertainties should not be less than 2 %.

⁽i) LC-FL of isomeric PAH fractions after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

Table 6. Reference Mass Fractions for Selected PAHs of Relative Molecular Mass 300 and 302 in SRM 1944 (Dry-Mass Basis)

		Mass Fraction ^(a,b,c) (mg/kg)		
Coronene	0.53	±	0.04	
Dibenzo[b,e]fluoranthene	0.076	±	0.008	
Naphtho[1,2-b]fluoranthene	0.70	±	0.06	
Naphtho[1,2- <i>k</i>]fluoranthene				
and Naphtho[2,3-j]fluoranthene	0.66	\pm	0.05	
Naphtho[2,3-b]fluoranthene	0.21	±	0.01	
Dibenzo[b,k]fluoranthene	0.75	±	0.06	
Dibenzo[a,k]fluoranthene	0.22	±	0.02	
Dibenzo[<i>j</i> , <i>l</i>]fluoranthene	0.56	±	0.03	
Dibenzo[a,l]pyrene	0.12	±	0.02	
Naphtho[2,3-k]fluoranthene	0.11	±	0.01	
Naphtho[2,3-e]pyrene	0.33	±	0.02	
Dibenzo[a,e]pyrene	0.67	\pm	0.05	
Naphtho[2,1-a]pyrene	0.76	±	0.05	
Dibenzo[e,l]pyrene	0.28	\pm	0.02	
Naphtho[2,3-a]pyrene	0.23	±	0.01	
Benzo[b]perylene	0.43	±	0.04	
Dibenzo $[a,i]$ pyrene	0.30	±	0.03	
Dibenzo[a,h]pyrene	0.11	±	0.01	

 $^{^{(}a)}$ Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

SRM 1944 Page 11 of 22

⁽b) Reference values are the means of results obtained by NIST using one analytical technique. The expanded uncertainty, U, is calculated as $U = ku_c$, where u_c is one standard deviation of the analyte mean, and the coverage factor, k, is determined from the Student's t-distribution corresponding to the associated degrees of freedom (df = 2) and 95 % confidence level for each analyte. (c) GC/MS on 50 % phenyl-substituted methylpolysiloxane phase after PFE with DCM.

Table 7. Reference Mass Fractions for Selected PCB Congeners^(a) and Chlorinated Pesticides in SRM 1944 (Dry-Mass Basis)

		s Fra 1g/kg	ection ^(b) g)
PCB 45 (2,2',3,6-Tetrachlorobiphenyl) ^(c)	10.8	±	1.4 ^(d)
PCB 146 (2,2',3,4',5,5'-Hexachlorobiphenyl) ^(c)	10.1	\pm	$1.9^{(d)}$
PCB 163 (2,3,3',4',5,6-Hexachlorobiphenyl) ^(c)	14.4	±	$2.0^{(d)}$
PCB 174 (2,2',3,3',4,5,6'-Heptachlorobiphenyl) ^(c)	16.0	\pm	$0.6^{(d)}$
α -HCH $^{(f,g,h,i)}$	2.0	±	$0.3^{(e)}$
<i>trans</i> -Chlordane (γ-Chlordane) ^(c)	19.0	±	$1.7^{(d)}$
cis-Nonachlor ^(g,h,i,l,m)	3.7	±	$0.7^{(e)}$
$2,4'$ -DDE $^{(f,g,h,i,j,k,l,m)}$	19	\pm	3 ^(e)
$2.4'$ -DDD $^{(h,j,k,l,m)}$	38	±	8 ^(e)
$4.4'$ -DDE $^{(f,g,h,ihj,k,l,m)}$	86	\pm	12 ^(e)
4,4'-DDD (f,g,h,I,j,k,l,m)	108	±	16 ^(e)
4,4'-DDT ^(c)	170	±	$32^{(d)}$

⁽a) PCB congeners are numbered according to the scheme proposed by Ballschmiter and Zell [13] and later revised by Schulte and Malisch [3] to conform with IUPAC rules; for the specific congeners mentioned in this SRM, the Ballschmiter-Zell numbers correspond to those of Schulte and Malisch.

SRM 1944 Page 12 of 22

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

⁽c) NIST participation in the 2007 interlaboratory study using GC/MS.

⁽d) Reference values are the means of results obtained by NIST using one analytical technique. The expanded uncertainty, U, is calculated as $U = ku_c$, where u_c is one standard deviation of the analyte mean, and the coverage factor, k, is determined from the Student's t-distribution corresponding to the associated degrees of freedom (df = 2) and 95 % confidence level for each analyte.

⁽e) The reference value for each analyte is the equally-weighted mean of the means from two or more analytical methods or he mean from one analytical technique. The uncertainty in the reference value defines a range of values that is intended to function as an interval that contains the true value at a level of confidence of 95 %. This uncertainty includes sources of uncertainty within each analytical method, among methods, and from the drying study.

⁽f) GC-ECD (IA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽g) GC-ECD (IB) on the 50 % octadecyl (C-18) methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IA).

⁽h) GC-ECD (IIA) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with DCM.

⁽i) GC-ECD (IIB) on the 50 % octadecyl (C-18) methylpolysiloxane phase; same extracts analyzed as in GC-ECD (IIA).

⁽f) GC/MS (l) on 5 % phenyl-substituted methylpolysiloxane phase after Soxhlet extraction with 50 % hexane/50 % acetone mixture.

⁽k) GC/MS (II) on 5 % phenyl-substituted methylpolysiloxane phase after PFE extraction with 50 % hexane/50 % acetone mixture.

⁽¹⁾ GC/MS (III) on 5 % phenyl-substituted methylpolysiloxane phase; same extracts anlayzed as in GC-ECD (IIA).

⁽m)Results from nineteen laboratories participating in an interlaboratory comparison exercise.

Table 8. Reference Mass Fraction Values for Selected PBDEs in SRM 1944 (Dry-Mass Basis)

	Mass Fractions ⁽ (μg/kg)	
PBDE 47 (2,2',4,4'-Tetrabromodiphenyl ether) ^(c,d,e,f)	1.72 ±	0.28 ^(b)
PBDE 99 (2,2',4,4',5-Pentabromodiphenyl ether) ^(c,d,f)		$0.26^{(b)}$
PBDE 100 (2,2',4,4',6-Pentabromodiphenyl ether) ^(c,d)	$0.447~\pm$	$0.027^{(b)}$
PBDE 153 (2,2',4,4',5,5'-Hexabromodiphenyl ether) ^(c,d,e,f)	$6.44 \pm$	$0.37^{(b)}$
PBDE 154 (2,2',4,4',5,6'-Hexabromodiphenyl ether) ^(c,d,f)	$1.06 \pm$	$0.08^{(b)}$
PBDE 183 (2,2',3,4,4',5',6-Heptabromodiphenyl ether) ^(c,d,e,f)	$31.8 \pm$	$0.1^{(b)}$
PBDE 206 (2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether) ^(d,e)	6.2 \pm	$1.0^{(b)}$
PBDE 209 (Decabromodiphenyl ether) (c,d,e,f)	$93.5 \pm$	4.4 ^(b)

⁽a) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

Table 9. Reference Mass Fraction Values for Selected Elements in SRM 1944 (Dry-Mass Basis)

	Degrees of Freedom	Ma	Mass Fraction ^{(a,t} (%)	
Silicon ^{c,d}	81	31	±	3
			ss Fra (mg/k	action ^(a,b)
Antimony ^(c,e,f,g)	18	4.6	±	0.9
Beryllium ^(c,h)	17	1.6	\pm	0.3
Copper ^(c,d,f)	101	380	±	40
Mercury ^(c,1)	18	3.4	±	0.5
Selenium ^(c,e,f)	24	1.4	±	0.2
Silver ^(c,d,e,g)	8	6.4	±	1.7
Thallium ^(c,f)	12	0.59	\pm	0.1
Tin ^(c,f)	22	42	±	6

⁽a) The reference value is the equally weighted mean of available results from: (1) NIST INAA analyses, (2) two methods performed at NRCC, (3) results from seven selected laboratories participating in the NRCC intercomparison exercise, and (4) results from INAA analyses at IAEA. The expanded uncertainty in the reference value is equal to $U = ku_c$ where u_c is the combined standard uncertainty and k is the coverage factor, both calculated according to the ISO Guide [11,12]. The value of u_c is intended to represent at the level of one standard deviation the uncertainty in the value. Here u_c accounts for possible method differences, within-method variation, and material inhomogeneity. The coverage factor, k, is the Student's t-value for a 95 % confidence interval with the corresponding degrees of freedom. Because of material inhomogeneity, the variability among the measurements of multiple test portions can be expected to be greater than that due to measurement variability alone.

SRM 1944 Page 13 of 22

⁽b) Reference values are weighted means of the results from two to four analytical methods [14]. The uncertainty listed with each value is an expanded uncertainty about the mean, with coverage factor 2 (approximately 95 % confidence), calculated by combining a between-method variance incorporating inter-method bias with a pooled within-source variance following the ISO/NIST Guide to the Expression of Uncertainty in Measurements [11,12].

⁽c) Results from ten laboratories participating in an interlaboratory study for PBDEs in sediment [12].

⁽d) Results from four laboratories participating in the 2007 interlaboratory study [13].

⁽e) NIST participation in the 2007 interlaboratory study using GC/MS.

⁽f) Data set from NIST for PBDEs using GC/MS following PFE with alumina SPE and SEC clean-up.

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

⁽c) Results from five to seven laboratories participating in the NRCC interlaboratory comparison exercise.

⁽d) Measured at NRCC using GFAAS.

⁽e) Measured at NIST using INAA.

⁽f) Measured at NRCC using ID-ICPMS.

⁽g) Measured at IAEA using INAA.

⁽h) Measured at NRCC using ICPOES.

⁽i) Measured at NRCC using cold vapor atomic absorption spectroscopy (CVAAS).

Table 10. Reference Mass Fraction Values for Elements in SRM 1944 as Determined by INAA (Dry-Mass Basis)

	Effective Degrees of Freedom		Mass Frac	tion ^(a,b)
Calcium	21	1.0	<u>±</u>	0.1
Chlorine	21	1.4	±	0.2
Potassium	21	1.6	±	0.2
Sodium	25	1.9	±	0.1
			Mass Frac (mg/kg)	
Bromine	10	86	±	10
Cesium	11	3.0	±	0.3
Cobalt	10	14	±	2
Rubidium	14	75	±	2
Scandium	37	10.2	±	0.2
Titanium	21	4300	\pm	300
Vanadium	21	100	±	9

⁽a) The reference value is based on the results from an INAA study. The associated uncertainty accounts for both random and systematic effects, but because only one method was used, the results should be used with caution. The expanded uncertainty in the reference value is equal to U = kuc where uc is the combined standard uncertainty and k is the coverage factor, both calculated according to the ISO Guide [11,12]. The value of uc is intended to represent at the level of one standard deviation the uncertainty in the value. Here uc accounts for possible method differences, within-method variation, and material inhomogeneity. The coverage factor, k, is the Student's t-value for a 95 % confidence interval with the corresponding degrees of freedom. Because of material inhomogeneity, the variability among the measurements of multiple test portions can be expected to be greater than that due to measurement variability alone.

SRM 1944 Page 14 of 22

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

Table 11. Reference Mass Fraction Values for Selected Dibenzo-p-Dioxin and Dibenzofuran Congeners in SRM 1944 (Dry-Mass Basis)

	Mass Fraction ^(a,b) (μg/kg)		
2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin	0.133	±	0.009
1,2,3,7,8-Pentachlorodibenzo- <i>p</i> -dioxin	0.019	±	0.002
1,2,3,4,7,8-Hexachlorodibenzo- <i>p</i> -dioxin	0.026	\pm	0.003
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.056	±	0.006
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.053	±	0.007
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.80	±	0.07
Octachlorodibenzo-p-dioxin	5.8	±	0.7
2,3,7,8-Tetrachlorodibenzofuran ^(c)	0.039	±	0.015 ^(d)
1,2,3,7,8-Pentachlorodibenzofuran	0.045	±	0.007
2,3,4,7,8-Pentachlorodibenzofuran	0.045	\pm	0.004
1,2,3,4,7,8-Hexachlorodibenzofuran	0.22	±	0.03
1,2,3,6,7,8-Hexachlorodibenzofuran	0.09	±	0.01
2,3,4,6,7,8-Hexachlorodibenzofuran	0.054	±	$0.006^{(e)}$
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.0	±	0.1
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.040	±	$0.006^{(e)}$
Octachlorodibenzofuran	1.0	±	0.1
Total Toxic Equivalents (TEQ) ^(f)	0.25	±	0.01
Total Tetrachlorodibenzo-p-dioxins	0.25	±	0.05 ^(e)
Total Pentachlorodibenzo-p-dioxins	0.19	±	0.06
Total Hexachlorodibenzo-p-dioxins	0.63	\pm	0.09
Total Heptachlorodibenzo-p-dioxins	1.8	±	0.2
Total Tetrachlorodibenzofurans	0.7	±	0.2
Total Pentachlorodibenzofurans	0.74	±	0.07
Total Hexachlorodibenzofurans	1.0	±	0.1
Total Heptachlorodibenzofurans	1.5	±	0.1
Total Dibenzo-p-dioxins ^(g)	8.7	±	0.9
Total Dibenzofurans ^(g)	5.0	\pm	0.5

⁽a) Each reference value is the mean of the results from up to fourteen laboratories participating in an interlaboratory exercise. The expanded uncertainty in the reference value is equal to $U = ku_c$ where u_c is the combined standard uncertainty calculated according to the ISO Guide [11,12] and k is the coverage factor. The value of uc is intended to represent at the level of one standard deviation the combined effect of all the uncertainties in the reference value. Here u_c is the uncertainty in the mean arising from the variation among the laboratory results. The degrees of freedom is equal to the number of available results minus one (13 unless noted otherwise). The coverage factor, k, is the value from a Student's t-distribution for a 95 % confidence interval.

SRM 1944 Page 15 of 22

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

⁽c) Confirmation results using a 50 % cyanopropyl phenyl polysiloxane or 90 % bis-cyanopropyl 10 % cyanopropylphenyl polysiloxane phase columns.

⁽d) Degrees of freedom = 7 for this compound.
(e) Degrees of freedom = 12 for this compound.

⁽f) TEQ is the sum of the products of each of the 2,3,7,8-substituted congeners multiplied by their individual toxic equivalency factors (TEFs) recommended by the North Atlantic Treaty Organization (NATO) [15]. 2,3,7,8-tetrachlorodibenzofuran, the results of the confirmation column were used when available to calculate the TEQ.

⁽g) Total of tetra- through octachlorinated congeners.

Table 12. Reference Values for Particle Size Characteristics for SRM 1944

Particle Measurement	Value ^(a)		
Mean diameter (volume distribution, MV, μm) ^(b)	151.2 ±	0.4	
Mean diameter (area distribution, μm) ^(c)	120.4 \pm	0.1	
Mean diameter (number distribution, μm) ^(d)	75.7 \pm	0.3	
Surface Area (m ² /cm ³) ^(e)	$0.050~\pm$	0.013	

⁽a) The reference value is the mean value of measurements from the analysis of test portions from four bottles. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty. The expanded uncertainty defines a range of values for the reference value within which the true value is believed to lie, at a level of confidence of 95 %.

Table 13. Percentage of the Volume That is Smaller Than the Indicated Size

Percentile	Particle (J	Diam ım)	eter ^(a)
95	296	±	5
90	247	\pm	2
80	201	\pm	1
70	174	\pm	1
60	152	\pm	1
50 ^(b)	135	\pm	1
40	120	\pm	1
30	106	\pm	1
20	91	\pm	1
10	74	\pm	1

⁽a) The reference value for particle diameter is the mean value of measurements from the analysis of test portions from four bottles. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty. The expanded uncertainty defines a range of values for the reference value within which the true value is believed to lie, at a level of confidence of 95 %.

SRM 1944 Page 16 of 22

⁽b) The mean diameter of the volume distribution represents the center of gravity of the distribution and compensates for scattering efficiency and refractive index. This parameter is strongly influenced by coarse particles.

⁽c) The mean diameter of the area distribution, calculated from the volume distribution with less weighting by the presence of coarse particles than MV.

⁽d) The mean diameter of the number distribution, calculated using the volume distribution weighted to small particles.

⁽e) Calculated specific surface area assuming solid, spherical particles. This is a computation and should not be interchanged with an adsorption method of surface area determination as this value does not reflect porosity or topographical characteristics.

 $^{^{(}b)}$ Median diameter (50 % of the volume is less than 135 μ m).

Table 14. Reference Values for Total Organic Carbon and Percent Extractable Mass in SRM 1944

	Mass Fraction		
		(%)	
Total Organic Carbon (TOC) ^(a,b)	4.4	±	0.3
Extractable Mass ^(c,d)	1.15	\pm	0.04

⁽a) Mass fraction is reported on a dry-mass basis; material as received contains approximately 1.3 % moisture.

Table 15. Information Mass Fraction Values for Selected Elements in SRM 1944 as Determined by INAA (Dry-Mass Basis)

	Mass Fraction ^(a) (%)
Magnesium ^(b)	1.0
	Mass Fraction ^(a) (mg/kg)
Cerium ^(b)	65
Europium ^(b)	1.3
Gold ^(b)	0.10
Lanthanum ^(b)	39
Thorium ^(b)	13
Uranium ^(b)	3.1

^(a) Mass fraction is reported on a dry-mass basis; material as received contains approximately 1.3 % moisture.

SRM 1944 Page 17 of 22

⁽b) The reference value for total organic carbon is an equally weighted mean value from routine measurements made by three laboratories. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty. The expanded uncertainty defines a range of values for the reference value within which the true value is believed to lie, at a level of confidence of 95 %.

(c) Extractable mass as determined from Soxhlet extraction using DCM.

⁽d) The reference value for extractable mass is the mean value of six measurements. Each uncertainty, computed according to the CIPM approach as described in the ISO Guide [11,12], is an expanded uncertainty at the 95 % level of confidence, which includes random sources of uncertainty. The expanded uncertainty defines a range of values for the reference value within which the true value is believed to lie, at a level of confidence of 95 %.

⁽b) Measured at IAEA using INAA

Table 16. Information Mass Fraction Values for Selected Polychlorinated Naphthalenes in SRM 1944 (Dry-Mass Basis)

			Mass Fraction ^(a) (μg/kg)
PCN	19	(1,3,5-Trichloronaphthalene)	1.4
PCN	23	(1,4,5-Trichloronaphthalene)	2.4
PCN	42	(1,3,5,7-Tetrachloronaphthalene)	2.7
PCN	47	(1,4,6,7-Tetrachloronaphthalene)	3.5
PCN	52	(1,2,3,5,7-Pentachloronaphthalene)	2.5
	60	(1,2,4,6,7-Pentachloronaphthalene)	
PCN	50	(1,2,3,4,6-Pentachloronaphthalene)	1.0
PCN	66	(1,2,3,4,6,7-Hexachloronaphthalene)	0.63
	67	(1,2,3,5,6,7-Hexachloronaphthalene)	
PCN	69	(1,2,3,5,7,8-Hexachloronaphthalene)	1.6
PCN	73	(1,2,3,4,5,6,7-Heptachloronaphthalene)	0.51
PCN	75	(Octachloronaphthalene)	0.20

⁽a) Mass fractions reported on dry-mass basis; material as received contains approximately 1.3 % moisture. Information values are the median of the results from six laboratories participating in an interlaboratory comparison exercise (Appendix D).

Table 17. Information Mass Fraction Values for Three HBCD Isomers in SRM 1944 (Dry-Mass Basis)

	Mass Fraction ^(a,b) (μ g/kg)
alpha-HBCD ^(b) beta-HBCD ^(b)	2.2 1.0
gamma-HBCD ^(b)	18

⁽a) The information value is the median of the results from three analytical methods.

SRM 1944 Page 18 of 22

⁽b) Mass fractions are reported on dry-mass basis; material as received contains approximately 1.3 % moisture.

Table 18. Analytical Methods Used for the Measurement of Elements in SRM 1944

Elements

Analytical Methods

Aluminum FAAS, ICPOES, INAA, XRF

Antimony GFAAS, HGAAS, ICP-MS, ID-ICPMS, INAA Arsenic GFAAS, HGAAS, ICPMS, INAA, XRF

Beryllium GFAAS, ICP-AES, ICPMS

Bromine INAA

Cadmium FAAS, GFAAS, ICPMS, ID-ICPMS

Calcium INAA
Cerium INAA
Cesium INAA
Chlorine INAA

Chromium FAAS, GFAAS, ICPMS, ID-ICPMS, INAA, XRF

Cobalt INAA

Copper FAAS, GFAAS, ICPOES, ICPMS, ID-ICPMS, XRF

Europium INAA Gold INAA

Iron FAAS, ICPOES, ICPMS, ID-ICPMS, INAA, XRF

Lanthanum INAA

Lead FAAS, GFAAS, ICPMS, ID-ICPMS, XRF

Magnesium INAA

Manganese FAAS, ICPOES, ICPMS, INAA, XRF

Mercury CVAAS, ICPMS

Nickel GFAAS, ICPOES, ICPMS, ID-ICPMS, INAA, XRF

Potassium INAA Rubidium INAA Scandium INAA

Selenium GFAAS, HGAAS, ICPMS, INAA

Silicon FAAS, ICPOES, XRF

Silver FAAS, GFAAS, ICPMS, INAA

Sodium INAA

Thallium GFAAS, ICPOES, ICPMS, ID-ICPMS,

Thorium INAA

Tin GFAAS, ICPMS, ID-ICPMS

Titanium INAA Uranium INAA Vanadium INAA

Zinc FAAS, ICPOES, ICPMS, ID-ICPMS, XRF, INAA

Methods

CVAAS Cold vapor atomic absorption spectrometry FAAS Flame atomic absorption spectrometry

GFAAS Graphite furnace atomic absorption spectrometry
HGAAS Hydride generation atomic absorption spectrometry
ICPOES Inductively coupled plasma optical emission spectrometry

ICPMS Inductively coupled plasma mass spectrometry

ID-ICPMS Isotope dilution inductively coupled plasma mass spectrometry

INAA Instrumental neutron activation analysis XRF X-ray fluorescence spectrometry

SRM 1944 Page 19 of 22

REFERENCES

- [1] May, W.; Parris, R.; Beck, C.; Fassett, J.; Greenberg, R.; Guenther, F.; Kramer, G.; Wise, S.; Gills, T.; Colbert, J.; Gettings, R.; MacDonald, B.; *Definitions of Terms and Modes Used at NIST for Value-Assignment of Reference Materials for Chemical Measurements*; NIST Special Publication 260-136, U.S. Government Printing Office: Gaithersburg, MD (2000); available at http://ts.nist.gov/MeasurementServices/ReferenceMaterials/PUBLICATIONS.cfm (accessed Sep 2011)
- [2] Wise, S.A.; Poster, D.L.; Schantz, M.M.; Kucklick, J.R.; Sander, L.C.; Lopez de Alda, M.; Schubert, P.; Parris, R.M.; Porter, B.J.; *Two New Marine Sediment Standard Reference Materials (SRMs) for the Determination of Organic Contaminants*; Anal. Bioanal. Chem., Vol. 378, pp. 1251-1264 (2004).
- [3] Schulte E.; Malisch, R.; Calculation of the Real PCB Content in Environmental Samples. I. Investigation of the Composition of Two Technical PCB Mixtures; Fresenius Z. Anal. Chem., Vol. 314, pp. 545-551 (1983).
- [4] Parris, R.M.; Schantz, M.M.; Wise, S.A.; NIST/NOAA NS&T/EPA EMAP Intercomparison Exercise Program for Organic Contaminants in the Marine Environment: Description and Results of 1995 Organic Intercomparison Exercises; NOAA Technical Memorandum NOS ORCA 104, Silver Spring, MD (1996).
- [5] Stapleton, H.M.; Keller, J.M.; Schantz, M.M.; Kucklick, J.R.; Wise, S.A.; NIST Inter-Comparison Exercise Program for Polybrominated Diphenyl Ethers (PBDEs) in Marine Sediment: Description and Results of the 2004 Inter-Comparison Exercise; NISTIR 7278 (2005).
- [6] Schantz, M.M.; Parris, R.M.; Wise, S.A.; NIST Intercomparison Exercise Program for Organic Contaminants in the Marine Environment: Description and Results of the 2007 Organic Intercomparison Exercises; NISTIR 7501 (2008)
- [7] Willie, S; Berman, S.; NOAA National Status and Trends Program Tenth Round Intercomparison Exercise Results for Trace Metals in Marine Sediments and Biological Tissue; NOAA Technical Memorandum NOS ORCA 106, Silver Spring, MD (1996).
- [8] Beary, E.S.; Paulson, P.J.; Selective Application of Chemical Separations to Isotope Dilution Inductively Coupled Plasma Mass Spectrometric Analysis of Standard Reference Materials; Anal. Chem., Vol. 65, pp. 1602-1608 (1993).
- [9] Greenberg, R.R.; Flemming, R.F.; Zeisler, R.; High Sensitivity Neutron Activation Analysis of Environmental and Biological Standard Reference Materials; Environ. Intern., Vol. 10, pp. 129-136 (1984).
- [10] Paule, R.C.; Mandel, J.; Consensus Values and Weighting Factors; J. Res. Nat. Bur. Stand., Vol. 87 pp. 377-385 (1982).
- [11] JCGM 100:2008; Evaluation of Measurement Data Guide to the Expression of Uncertainty in Measurement (ISO GUM 1995 with Minor Corrections); Joint Committee for Guides in Metrology (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed Sep 2011); see also Taylor, B.N.; Kuyatt, C.E.; Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results; NIST Technical Note 1297; U.S. Government Printing Office: Washington, DC (1994); available at http://www.nist.gov/physlab/pubs/index.cfm (accessed Sep 2011).
- [12] JCGM 101:2008; Evaluation of measurement data Supplement 1 to the Guide to Expression of Uncertainty in Measurement; Propagation of Distributions Using a Monte Carlo Method; Joint Committee for Guides in Metrology (BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML), International Bureau of Weights and Measures (BIPM), Sèvres, France (2008); available at http://www.bipm.org/utils/common/documents/jcgm/JCGM_101_2008_E.pdf (accessed Sep 2011).
- [13] Ballschmiter, K.; Zell, M.; Analysis of Polychlorinated Biphenyls (PCB) by Glass Capillary Gas Chromatography -Composition of Technical Aroclor- and Clophen-PCB Mixtures; Fresenius Z. Anal. Chem, Vol 302, pp. 20-31 (1980)
- [14] Ruhkin, A.L.; Vangel, M.G. Estimation of a Common Mean and Weighted Means Statistics; J. Am. Statist. Assoc., Vol. 93, pp. 303-308 (1998).
- [15] International Toxicity Equivalency Factor (I-TEF) Method of Risk Assessment for Complex Mixtures of Dioxins and Related Compounds, North Atlantic Treaty Organization Committee on Challenges in the Modern Society, Report No. 176, North Atlantic Treaty Organization (NATO), Brussels, Belgium (1988).

Certificate Revision History: 27 September 2011 (Addition of mass fraction values for PBDE and PCN congeners; change of mass fraction reference values; editorial changes); 22 December 2008 (Extension of certification period); 14 May 1999 (Original certificate date).

Users of this SRM should ensure that the Certificate of Analysis in their possession is current. This can be accomplished by contacting the SRM Program at: telephone (301) 975-2200; fax (301) 926-4751; e-mail srminfo@nist.gov; or via the Internet at http://www.nist.gov/srm.

SRM 1944 Page 20 of 22

APPENDIX A

The analysts and laboratories listed below participated in the interlaboratory comparison exercise for the determination of PBDEs in SRM 1944 [4].

- D. Hoover and C. Hamilton, AXYS Analytical, Sidney, BC, Canada
- S. Klosterhaus and J. Baker, Chesapeake Biological Laboratory, Solomons, MD, USA
- S. Backus, Environment Canada, Ecosystem Health Division, Burlington, ON, Canada
- E. Sverko, Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
- P. Lepom, Federal Environmental Agency, Berlin, Germany
- R. Hites and L. Zhu, Indiana University, Bloomington, IN, USA
- G. Jiang, Research Center for Eco-Environmental Sciences, Beijing, China
- H. Takada, Tokyo University of Agriculture and Technology, Tokyo, Japan
- A. Covaci and S. Vorspoels, University of Antwerp, Antwerp, Belgium
- A. Li, Universtiy of Illinois at Chicago, Chicago, IL, USA

APPENDIX B

The analysts and laboratories listed below participated in the interlaboratory comparison exercise for the determination of polychlorinated dibenzo-*p*-dioxins and dibenzofurans in SRM 1944.

- W.J. Luksemburg, Alta Analytical Laboratory, Inc., El Dorado Hills, CA, USA
- L. Phillips, AXYS Analytical Services Ltd., Sidney, British Columbia, Canada
- M.J. Armbruster, Battelle Columbus Laboratories, Columbus, OH, USA
- G. Reuel, Canviro Analytical Laboratories Ltd., Waterloo, Ontario, Canada
- C. Brochu, Environment Québec, Laval, Québec, Canada
- G. Poole, Environment Canada Environmental Technology Centre, Ottawa, Ontario, Canada
- B. Henkelmann, GSF National Research Center for Environment and Health, Neuherberg, Germany
- R. Anderson, Institute of Environmental Chemistry, Umeå University, Umeå, Sweden
- C. Lastoria, Maxxam Analytics Inc., Mississauga, Ontario, Canada
- E. Reiner, Ontario Ministry of Environment and Energy, Etobicoke, Ontario, Canada
- J. Macaulay, Research and Productivity Council, Fredericton, New Brunswick, Canada
- T.L. Wade, Texas A&M University, College Station, TX, USA
- C. Tashiro, Wellington Laboratories, Guelph, Ontario, Canada
- T.O. Tiernan, Wright State University, Dayton, OH, USA

APPENDIX C

The analysts and laboratories listed below participated in the interlaboratory comparison exercise for the determination of trace elements in SRM 1944.

- A. Abbgy, Applied Marine Research Laboratory, Old Dominion University, Norfolk, VA, USA
- A. Scott, Australian Government Analytical Laboratories, Pymble, Australia
- H. Mawhinney, Animal Research Institute, Queensland Department of Primary Industries, Queensland, Australia
- E. Crecelius, Battelle Pacific Northwest, Sequim, WA, USA
- M. Stephenson, California Department of Fish and Game, Moss Landing, CA, USA
- B. Presley, Department of Oceanography, Texas A&M University, College Station, TX, USA
- K. Elrick, U.S. Geological Survey, Atlanta, GA, USA

SRM 1944 Page 21 of 22

APPENDIX D

The analysts and laboratories listed below participated in the interlaboratory comparison exercise for the determination of polychlorinated naphthalenes in SRM 1944.

- J. Kucklick, National Institute of Standards and Technology, Charleston, SC, USA
- E. Sverko, Environment Canada, Canada Centre for Inland Waters, Burlington, ON, Canada
- P. Helm, Ontario Ministry of the Environment, Etobicoke, ON, Canada
- N. Yamashita, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- T. Harner, Environment Canada, Meteorological Service of Canada, Toronto, ON, Canada
- R. Lega, Ontario Ministry of the Environment, Etobicoke, ON, Canada

SRM 1944 Page 22 of 22