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Introduction (1/5) 

 Contamination of soil and groundwater by 
petroleum and chlorinated hydrocarbons 
(HC) has become a serious issue worldwide 
due to the large amount of use. 

 Sources of petroleum HC contamination 
• Leakage of USTs and pipelines 
• Accidental spills 
 Sources of chlorinated HC contamination 
• Discharge of wastewater 
• Inappropriate storage and disposal 
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 Groundwater remediation technologies 
• Chemical oxidation 
• Bioremediation  
• Pump and treat 
• Air sparging 
• Adsorption 
 
 Chemical oxidation is a powerful 

remediation technology that is capable of 
destroying an extensive range of 
contaminants effectively.  

Introduction (3/5) 
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  Oxidants 
• Hydrogen peroxide 

(Fenton’s reagent,  
Fenton-like reaction) 

• Ozone 
• Permanganate 
• Persulfate  

  Persulfate 
• Chlorinated ethylenes 
• Chlorinated ethanes  
• Chlorophenols  
• Bisphenol A  
• PAHs  
• Gasoline components  
• Gasoline additives 
• Various volatile 

organic compounds  

Introduction (4/5) 
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Persulfate activation 
• Persulfate can be thermally or chemically activated by 

initiators such as heat or transition metals (e.g., Fe2+) to 
produce more powerful sulfate free radicals (SO4

-·). 

Thermal activation 
S2O8

2- + heat → 2SO4
-· 

SO4
-· + e- →  SO4

2-  E0 = 2.6 V 
 
Chemical activation 
Fe2+ + S2O8

2- → Fe3+ + SO4
2- + SO4

-·  
SO4

-· + Fe2+ → Fe3+ + SO4
2-  

----------------------------------------------------------------------------------------------------- 

2Fe2+ + S2O8
2- → 2Fe3+ + 2 SO4

2-  
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Persulfate activation 
• Heat 
• Transition metals (Fe2+, Ag+, Cu2+, Mn2+) 
• Strong base (pH > 10) 
• Fe-chelating agents (oxalic, citric, EDTA, NTA…) 
• (n)ZVI 
• UV 
• Activated carbon (AC surface-OOH, AC surface-

OH) 
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Introduction (6/6) 

 Methyl tert-butyl ether (MTBE) and 1,2-
dichloroethane (1,2-DCA) are commonly 
found groundwater pollutants. 
 

 MTBE is widely used as a gasoline additive. 
 

 1,2-DCA is used for the production of vinyl 
chloride (VC). 
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• Determine the required pH for alkaline-
activated persulfate. 

• Evaluate the degradation efficiency of 1,2-
DCA and MTBE by alkaline-activated 
persulfate. 

• Evaluate the potential of industrial waste to 
drive alkaline-activated persulfate process. 

Objectives 
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 Batch Experiments 
• Batch experiments were conducted to evaluate MTBE 

and 1,2-DCA removal by persulfate under different 
alkaline conditions (pH 10-13, 25 oC, 150 rpm).  

• 50 mL serum bottles were used as reactors. 
• Each bottle was filled with a mixed solution of the 

contaminant and persulfate.  

Materials and Methods (1/4) 

• pH of the mixed solution 
was adjusted by NaOH.  

• Basic oxygen furnace (BOF) 
slag was also used to 
evaluate its feasibility to 
increase pH.  
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pH Persulfate (%) 
1,2-DCA or 

MTBE (mg/L) 
NaOH/Persulfate (mole ratio) 

3 
(unactivated) 

1 50 

0：1 

10 0.03：1 
11 0.12：1 
12 1.2：1 
13 6：1 

Table1. 1,2-DCA and MTBE degradation by PS under different pH 

Materials and Methods (2/4) 
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Slag (g/L) PS (%) 
1,2-DCA or 

MTBE (mg/L) 

Slag/Persulfate 

(Weight ratio) 
0 

(unactivated) 

1 50 

0：1 

20 2：1 

40 4：1 

60 6：1 

80 8：1 

100 10：1 

Materials and Methods (3/4) 

Table 2. 1,2-DCA and MTBE degradation by PS with different 
dosages of BOF slag 



 Analysis 
• 1,2-DCA, MTBE, and their degradation byproducts 

(vinyl chloride (VC), tributyl formate (TBF), 
tributyl alcohol (TBA)) were analyzed by GC-FID. 

• VC was reconfirmed by GC-MS. 

• Heavy metals (Cr, Cd, Zn, Ni, Pb, Cu) were 
analyzed by ICP-AES. 

 

 

Materials and Methods (4/4) 
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Fig. 1. 1,2-DCA removal by persulfate 
under different alkaline conditions 

Results and Discussion (1/11) 

• 1,2-DCA degradation was increased with increasing pH under 
alkaline conditions. 

• 1,2-DCA removal was stalled at pH 10 and 11. 
• 1,2-DCA degradation was enhanced with pH higher than 12. 14 
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1,2-DCA (mg/L) PS (%) pH k (1/s) R2 

50 1 

3 
(unactivated) 3.77 × 10-6 0.993 

10 1.43 × 10-6 0.962 

11 2.51 × 10-6 0.992 

12 6.57 × 10-6 0.976 

13 11.7 × 10-6 0.994 

Results and Discussion (2/11) 

Table 3. Rate constants of 1,2-DCA degradation by PS under 
different alkaline conditions  
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Results and Discussion (3/11) 
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Fig. 2. Degradation of 1,2-DCA and production of VC during alkaline-
activated PS oxidation (a) pH 12, (b) pH 13.  

pH 12 pH 13 

(a) (b) 

• VC is a byproduct of the reductive dechlorination of 1,2-DCA 
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Fig. 3. Identification of VC production by GC-MS 

Results and Discussion (4/11) 



18 

Results and Discussion (5/11) 

I 

II 
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Results and Discussion (6/11) 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

M
T

B
E

, C
/C

0

Time (hr)

Control Unactivated pH13 pH12 pH11 pH10

Fig. 4. MTBE removal by persulfate under 
different alkaline conditions 

• MTBE degradation was stalled under alkaline conditions. 
• Superoxide radicals are ineffective on the degradation of MTBE. 
• Only sulfate and hydroxyl radicals contributed the removal of 

MTBE. 
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MTBE (mg/L) PS (%) pH k (1/s) R2 

50 1 

3 
(unactivated) 3.51 × 10-6 0.991 

10 1.16 × 10-6 0.990 

11 1.44 × 10-6 0.997 

12 2.05 × 10-6 0.992 

13 1.84 × 10-6 0.997 

Results and Discussion (7/11) 

Table 4. Rate constants of MTBE degradation by PS under different 
alkaline conditions  
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Results and Discussion (8/11) 
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• TBF and TBA were produced during MTBE oxidation. 
• Production of TBF and TBA was inhibited under all alkaline 

conditions. 

Fig. 5. Degradation of 1,2-DCA and production of TBF and TBA during (a) 
unactivated and (b) alkaline-activated PS oxidation.  

Unactivated pH 13 

(b) (a) 
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Results and Discussion (9/11) 

• Acid-catalyzed hydrolysis was limited under alkaline conditions. 
• Production of TBF was limited. 
• TBA formation was also inhibited since TBA is produced from 

the hydrolysis of TBF. 

Fig. 6. Scheme of MTBE degradation with advanced oxidation processes 
     Source: K.C. Huang et al., Chemosphere, 49,413-420, 2002 
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Results and Discussion (10/11) 
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• pH reached 12 immediately in all runs after BOF slag was added. 
• Removal of 1,2-DCA was enhanced with the addition of BOF slag. 
• Production of VC was also observed. 
• The addition of 20 g/L of BOF slag could effectively activate 

persulfate to enhance 1,2-DCA degradation. 
• Heavy metals were not released during the treatment. 

Fig. 7. Degradation of 1,2-DCA (a) and the production of VC (b) during PS 
oxidation with the addition of different dosages of BOF slag.  

(a) (b) 
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Results and Discussion (11/11) 

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

M
T

B
E

, C
/C

0

Time (hr)

Control Unactivated 20 g/L BOF 40 g/L BOF
60 g/L BOF 80 g/L BOF 100 g/L BOF

0

5

10

15

20

0 20 40 60 80 100 120

T
B

A
 (m

g/
L

)

Time (hr)

Unactivated 20 g/L BOF 40 g/L BOF
60 g/L BOF 80 g/L BOF 100 g/L BOF

0

0.05

0.1

0.15

0.2

0

5

10

15

20

0 20 40 60 80 100 120

A
ct

iv
at

ed
 T

B
F 

(m
g/

L
)

U
na

ct
iv

at
ed

 T
B

F 
(m

g/
L

)

Time (hr)

Unactivated 20 g/L BOF 40 g/L BOF
60 g/L BOF 80 g/L BOF 100 g/L BOF

Fig. 8. Degradation of MTBE (a) and 
production of TBF(b) and TBA (c) during 
PS oxidation with the addition of 
different dosages of BOF slag.  

• MTBE degradation was stalled 
with BOF slag addition. 

• Production of TBF and TBA 
was limited in all runs. 

(a) (b) 

(c) 



• Superoxide radicals, hydroxyl radicals, and 
sulfate radicals may all exist in alkaline-activated 
PS. 

• Removal of 1,2-DCA could be enhanced by 
alkaline-activated PS with pH above 12. 

• 1,2-DCA might be dechlorinated by superoxide 
radicals to produce VC during alkaline-activated 
PS oxidation. 

• MTBE degradation was stalled under alkaline 
conditions, possibly due to the presence of 
superoxide radicals. 

• BOF slag could effectively increase the solution 
pH to derive alkaline-activated PS reaction. 
 
 

Conclusions (1/2) 
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• EPR (electron paramagnetic resonance) analysis 
needs to be conducted to confirm the role of the 
reduced superoxide radicals in contaminant 
removal. 

• Since the mechanisms of contaminant removal by 
alkaline-activated PS are complicated, a 
feasibility study is necessary before alkaline-
activated persulfate is applied to other target 
compounds to avoid the retardation of 
contaminant degradation. 
 
 

Conclusions (2/2) 
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Thanks for Your Attention 
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