The Intricacies of the Elusive Lisfranc Sprain Scott T. Doberstein, MS, ATC, LAT Senior Lecturer/Head Athletic Trainer University of Wisconsin – La Crosse National Athletic Trainers' Association Las Vegas, NV June 26, 2013 #### Overview... where we are headed! Introduction Anatomy Mechanism of Injury Clinical Presentation Clinical Evaluation Imaging Treatment/Rehabilitation Complications Prognosis Case Report #### **Common Themes** Accurate diagnosis – 1st line of defense High degree of suspicion Don't downplay this injury Be honest with athlete Patient advocacy Applicative learning #### <u>Introduction</u> Jacques Lisfranc de Saint Martin (1790-1847) French surgeon for Napoleon's Army Foot amputation for equestrian soldiers Lisfranc joint injuries (LJI) rare in athletics but can be very complex 2 broad categories (fracture/dislocations & **subtle sprains**) #### Introduction Often under diagnosed and inadequately treated = poor outcomes Up to 20% LJI missed on initial exam (Myerson et al, 1986) WHY???? → Sherief et al, 2006 #### Introduction Sherief et al, 2006 30 sets of foot x-rays with various diagnoses NWB, 7 normal x-rays Reviewed by 9 MD's (experienced) 18/30 were MRI/CT/Surgery confirmed LJI Only 11/18 (61%) LJI detected by all 9 8/9 (90%) missed the same LJI Overall, 19% missed LJI diagnosis #### Introduction Missed Lisfranc injuries = one of most common reasons for malpractice lawsuits against radiologists and ER MD's (Chesbrough, 2002) Over 50% of patients with LJI pursued legal claims within 2 yrs post injury (Calder et al, 2003) Need high index of suspicion with any foot injury! #### <u>Introduction</u> LJI sprains 2nd only to MTP sprains for most common athletic foot injuries! Reports in **GYM**, SC, FB, BK, BB, running, ballet, equestrian, windsurfing, et al Males affected 2-4x more than females (DeOrio et al, 2009) #### **Anatomy** Tarsometatarsal joint = "the Lisfranc joint" separates midfoot from forefoot Divided into 3 columns/articulations - 1. Medial = 1st MT→ medial cuneiform - 2. Central/Middle = 2nd & 3rd MT's → middle & lateral cuneiforms - 3. Lateral = $4^{th} \& 5^{th} MT's \rightarrow cuboid$ #### <u>Anatomy</u> Little bony inherent stability, but.... "<u>KEYSTONE</u>" = 2nd MT recessed between medial & lateral cuneiforms – "locks" MT's to the midfoot Disruption here = entire LJ instability (Berg et al, 1998) #### Anatomy Peicha, et al 2002 Measured depth of the 2nd MT mortise in 33 LJI patients Most were very significant athletic injuries Controls = 84 cadaveric feet ## Peicha, et al 2002 Anatomy Peicha, et al 2002 LJI patients had significantly shallower mortises than controls Chance of LJI goes up significantly as the depth of the mortise decreases Genetic predisposition?? #### **Anatomy** LIGAMENTS are its "strength" x 3 sets = maintain the "roman arch" <u>Dorsal ligaments</u> – weakest and fail first (significant # of dislocations dorsally) #### Anatomy <u>Plantar ligaments</u> – much stronger Plantar transverse intermetatarsal lig – connects bases of MT's 2-5, not 1 & 2 (weakest link)! Lisfranc ligament (LL) = single large oblique lig from medial cuneiform to 2nd MT, not 1st MT! 3x stronger than dorsal ligaments (Kura et al, 2001) Stabilize the "key in the mortise" Interosseus ligaments - many and varied #### **Mechanism of Injury** High energy (direct, OBVIOUS) – not usually athletic, crush, MVA, fall from height, etc – not our focus Low energy (indirect, SUBTLE) – usually athletic related and usually soft tissue only = false sense of security! ## Mechanism of Injury Severity of injury determined by amount and direction of force on LJ Axial load in plantarflexion – force on hindfoot TWISTING = forced pronation or supination of forefoot MOI → Axial Load in PF MOI → Axial Load in PF MOI → Axial Load in DF MOI → Common in FB MOI → Forefoot Abduction Clinical Presentation Pain & swelling over midfoot are hallmark Normal gross appearance even with LJ instability (Wang 2004) Difficulty bearing weight/antalgic gait Inability to stand on toes/1 legged hop/weak PF #### **Clinical Presentation** Flattened medial longitudinal arch more common with Fx/Dislocation Plantar ecchymosis sign (Ross, 1996) X-rays often read as normal! #### **Clinical Evaluation** NEED high index of suspicion! Pain with palpation over portion/entire TMT joint Clinical evaluation tools at your disposal? #### **Clinical Evaluation** # Several CLINICAL TECHNIQUES - don't MISS subtle LJI Passive abduction/pronation maneuver (Myerson, 1986) Apprehension Sign (Lattermann, 2007) – modification Passive adduction/supination maneuver (Meyer, 1994) Midfoot compression test (Shapiro, 1994) Intermetatarsal glide test (Shapiro, 1994) Midfoot mobility testing #### **Abduction/Pronation Maneuver** Meyerson, 1986 Hindfoot held in neutral/inversion Passively abduct/pronate forefoot Painful? Laxity? ## <u>Abduction/Pronation Maneuver</u> <u>Apprehension Sign</u> Lattermann, 2007 – modification of passive abduction/pronation Passively dorsiflex and abduct the forefoot Create "apprehension" due to pain in patient? #### Apprehension Sign Adduction/Supination Maneuver Meyer, 1994 Hindfoot held in neutral/inversion Passively adduct/supinate forefoot Painful? Laxity? Adduction/Supination Maneuver Midfoot Compression Test Shapiro, 1994 Squeeze metatarsals (mid-shaft) together Attempting to increase height of transverse arch Painful? # Midfoot Compression Test Intermetatarsal Glide Test Shapiro, 1994 Stabilize 2nd MT head Displace 1st MT head dorsally and plantarly Painful? # Intermetatarsal Glide Test Midfoot mobility testing Stabilize hindfoot in eversion (loose-pack) Hold 4th & 5th MT heads Move heads obliquely dorsally and plantarly Repeat with hindfoot in inversion (close- pack) Painful? Laxity? #### **Midfoot mobility testing** <u>Imaging</u> <u>Imaging</u> NWB x-rays will miss the subtle LJI!! Need bilateral WB x-rays! 50% of normal NWB x-rays showed abnormal WB x-rays (Nunley & Vertillo, 2002) MRI very helpful with subtle LJI Used to visualize the integrity of the LL Fleck Sign (Myerson, 1986) - small avulsion of LL from base of 2nd MT #### Fleck Sign **Imaging** Lateral x-ray (Burroughs, 1998) - NWB should show normal dorsal alignment #### **Lateral X-ray** <u>Imaging</u> Lateral x-ray (Fasciszewski et al, 1990) – WB should show normal longitudinal arch alignment Imaging Imaging Gap sign (Davies, 1999) – FWB x-ray to detect 1-2 MT diastasis This needs to be ruled out in every instance! #### **Normal WB X-ray** # Diastasis with WB X-ray Gap Sign Imaging Dorsal injuries = no diastasis of 1st & 2nd intermetatarsal space = <u>STABLE</u> Plantar injuries = progression of dorsal injury, DIASTASIS = <u>UNSTABLE</u> and often results in a fracture and/or dislocation #### **Imaging** Any Fx of 1-3 MT bases needs to raise the suspicion of LJI If no Fx, stress x-rays under general anesthesia may be indicated to assess instability # Stress View Treatment/Rehabilitation Many classification systems – Tx may be based upon??? MUST be individualized – too many variables Stable vs. unstable – is it known or inferred? #### **Treatment/Rehabilitation** How can we get anatomic reduction? = good outcome! Surgical fixation vs. conservative management ** ALL these issues need to be considered by MD so we can better assist our patients #### **Treatment/Rehabilitation** Meyer et al, 1994 Retrospective of 24 non-surgical LJI All FB players over 4 year period 4% of all FB injuries were LJI 29.2% of LJI were OL #### **Treatment/Rehabilitation** Meyer et al, 1994 Increased medial LJ pain = longer healing and RTP Increased lateral LJ pain = shorter healing and RTP #### **Treatment/Rehabilitation** Need early recognition!!!! Immobilization will be part of the protocol NWB → PWB → FWB Arch support is KEY! #### **Treatment/Rehabilitation** Standard mods/exercises for ROM, strength, proprioception apply Slow progression to sport specificity Be honest – months not weeks! #### **Complications** Reinjury = increasing instability/dysfunction Arthritis (traumatic) – most common eventuality DJD Chronic pain #### **Complications** Residual deformity Residual ligamentous instability Antalgic gait #### **Complications** Bony exostosis CRPS (RSD) Flattening of medial longitudinal arch = worse prognosis (Faciszewski et al, 1990) Foot stiffness/intrinsic contracture/dysfunction # **Complications** Difficulty wearing shoes Possible arthrodesis #### Complications increase with delayed diagnosis!! #### **Prognosis** Poor → Fair □ Good → Very Good → Excellent Dependent on: Severity of injury Early diagnosis Anatomic reduction most important prognostic indicator (Hunt et al, 2006) Complications Must give patient accurate info about this kind of injury! #### Faciszewski et al, 1990 15 patients with subtle LJI in 11 yr period All had 2-5mm diastasis between 1-2 MT's None had fracture or other foot injuries Followed up 2-26 yrs post injury #### Faciszewski et al, 1990 #### Major conclusions: Flattened medial longitudinal arch = poor outcome (remember diagram?) Bilateral FWB x-rays vital to assess flattened arch Measurement of the distance between plantar surfaces of medial cuneiform and 5th MT is reliable indicator of degree of longitudinal arch flattening (20 controls had +1.5mm difference, none with negative relationship) #### <u>Faciszewski et al, 1990</u> Faciszewski et al, 1990 #### Major conclusions Flattened medial longitudinal arch = poor outcome Bilateral FWB x-rays vital to asses flattened arch Measurement of the distance between plantar surfaces of medial cuneiform and 5th MT is reliable indicator of degree of longitudinal arch flattening (20 controls had +1.5mm difference, none with negative relationship) #### Faciszewski et al, 1990 #### **Case Report** TY, 20 yo FB player Fall from 10-12 feet through floor (Sat pm) MOI – axial load on PF foot Urgent care x-rays negative (Sun am) Dx = contusion ATR exam (Mon pm, < 48 hrs post) Case Report Case Report - Normal Case Report - Abnormal Case Report Refer to MD for FWB x-rays Read normal by MD, but abnormal by radiologist MRI revealed 30 LL rupture Referred to Mayo for surgery next day #### **Conclusions** LJI can be very subtle but a serious injury Need firm and early diagnosis Need immobilization to provide stability Need individualized treatment and rehab protocols Need slow progression for RTP #### **Conclusions** "The only remarkable feature of the examination of athletes with suspected LJI is that it is often UNREMARKABLE!" (Wadsworth, 2005) #### Questions??? #### THANKS and enjoy the rest of the symposium!! #### References Aronow MS. Treatment of the Missed Lisfranc Injury. Foot Ankle Clin N Am. 2006; 11: 127-142. Berg JH, Silveri CP, Harris M. Variant of the Lisfranc Fracture-Dislocation: A Case Report and Review of the Literature. J Orthop Trauma. 1998; 12(5): 366-369. Burroughs KE, Reimer CD, Fields KB. Lisfranc Injury of the Foot: A Commonly Missed Diagnosis. American Family Physician. 1998; 58 (1): July Calder J, Saxby T. Effect of Compensation claims on Isolated Lisfranc Injuries. American Orthopaedic Foot & Ankle Society, 19th Annual Summer Meeting. Rosemont, IL, 2003;19:93. Chaney DM. The Lisfranc Joint. Clin Podiatr Med Surg. 2010;27: 547-560. Coetzee JC. Making Sense of Lisfranc Injuries. Foot Ankle Clin N Am. 2008; 13: 695-704. Curtis MJ, Myerson M, Szura B. Tarsometatarsal Joint Injuries in the Athlete. Am J Sports Med. 1993; 21 (4): 497-502. Davis ET. Lisfranc Joint Injuries. Trauma. 2006; 8: 225-231. DeOrio M, Erickson M, Giuseppe U, Easley M. Lisfranc Injuries in Sport. Foot Ankle Clin N Am. 2009;14:169-186. Desmond EA, Chou LB. Current Concepts Review: Lisfranc Injuries. Foot Ankle International. 2006; 27 (8): 653-660. Faciszewski T, Burks RT, Manaster BJ. Subtle Injuries to the Lisfranc Joint. J Bone Joint Surg. 1990; 72-A(10):1519-1522. Granata JD, Philbin TM. The Midfoot Sprain: A Review of Lisfranc Ligament Injuries. Physician Sportsmed. 2010;4(38):119-126. Gupta RT, Wadhwa RP, Learch TJ, Herwick SM. Lisfranc Injury: Imaging Findings for this Important but Often-Missed Diagnosis. Curr Probl Diagn Radiol. 2008; 37: 115-126. Hunt SA, Ropiak C, Tejwani NC. Lisfranc Joint Injuries: Diagnosis and Treatment. Am J Orthopedics. 2006; August: 376-385. Kura H, Luo ZP, Kitaoka HB, Smutz WP, An KP. Mechanical Behavior of the Lisfranc and Dorsal Cuneometatarsal Ligaments: in vitro biomechanical study. J Orthop Trauma. 2001;15:107-110. Lattermann C, Goldstein J, Wukich DK, Lee S, Bach BR. Practical Management of Lisfranc Injuries in Athletes. Clin J Sports Med. 2007; 17 (4): 311-315. Mantas JP, Burks RT. Lisfranc Injuries in the Athlete. Clin Sports Med. 1994; 13 (4): 719-730. Meyer SA, Callaghan JJ, Albright JP, Crowley ET, Powell JW. Midfoot Sprains in Collegiate Football Players. Am J Sports Med. 1994; 22 (3): 392-401. Myerson MS, Fisher RT, Burgess AR, Kenzora JE. Fracture Dislocations of the Tarsometatarsal Joints: end results correlated with pathology and treatment. Foot Ankle. 1986;6:225-242. Myerson MS, Cerrato RA. Current Management of Tarsometatarsal Injuries in the Athlete. J Bone Joint Surg. 2008; 90 (11): 2522-2533. Nunley JA, Vertullo CJ. Classification, Investigation, and Management of Midfoot Sprains: Lisfranc Injuries in the Athlete. Am J Sports Med. 2002;30: 871-878 Patillo D, Rudzki JR, Johnson JE, Matava MJ, Wright R. Lisfranc Injury in a National Hockey League Player: A Case Report. Int J Sports Med. 2007; 28: 980-984. Peicha G, Labovitz J, Seibert FJ, Grechenig W, Weiglein A, Preidler KW, Quehenberger F. The Anatomy of the Joint as a Risk Factor for Lisfranc Dislocation and Fracture-Dislocation. J Bone Joint Surg. 2002; 84-B (7): 981-985. Philbin T, Rosenberg G, Sferra JJ. Complications of Missed or Untreated Lisfranc Injuries. Foot Ankle Clin N Am. 2003; 8: 61-71. Ross G, Cronin R, Hauzenblas J. Juliano P. Plantar Ecchymosis Sing: A Clinical Aid to Diagnosis of Occult Lisfranc Tarsometatarsal Injuries. J Orthopaedic Trauma. 1996; 10 (2): 119-122. Shapiro MS, Wascher DC, Finerman GAM. Rupture of Lisfranc's Ligament in Athletes. Am J Sports Med. 1994; 22 (5): 687-691. Sherief TL, Mucci B, Greiss M. Lisfranc Injury: How Frequently Does it Get Missed? And Can We Improve? Injury. 2007;38(7):856-860. Stavlas P, Roberts CS, Xypnitos FN, Giannoudis PV. The Role of Reduction and Internal Fixation of Lisfranc Fracture-Dislocations: A Systematic Review of the Literature. Int Ortho. 2010; 34:1083-1091. Wadsworth DJS, Eadie NT. Conservative Management of Subtle Lisfranc Joint Injury: A Case Report. J Ortho Sports Phys Ther. 2005; 35 (3): 154-164. Wang D. The Lisfranc Injury. Am J Med Sports. 2004; May/June:138-141. Wiley JJ. The Mechanism of Tarsometatarsal Joint Injuries. J Bone Joint Surg. 1971;53:479. Zgonis T, Roukis TS, Polyzois VD. Lisfranc Fracture-Dislocations: Current Treatment and New Surgical Approaches. Clin Podiatr Med Surg. 2006; 23: 303-322.