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RNFPALER Z BB LR B R iy T A2 PR Eraf i 4H 4% & <~ — (organizer), 4H4%
FHA8 A 1.Hongbin Chen (FEIFG L AL AER) 2.20418k (GEHEIKE ) 3.
Huilian Jia (F PG LA AL ) 4. ZRIT(FEIPEZACEARE: ) 5. Yi Li(REIPE 258
AARER) 6 (T RS ERHRER) 7. Jigen Peng (PEIPEZACEAE: ) 8IERRK
CEMERIZZ RER). M B R o TR B e e A AE PR e 2 . &
LA 26(E S0y RS, B8 A2 AN Br TARAIN H— A2 EERELIMT
REL L. LEREE R EEI R TR & (0], AR A 2 FT .
KEB o HeE AR TR, RS R, IR IRy T2 R E LR R i
Sy TR RIS, IS iU RHEE 2 B (Scientific Committee) & 1. Neil
Trudinger(£J&, BUMNBIZZ KER) 2. TREEACGEEE M ITTEAEL). 3. Nicola Fusco (K
FIZEHE EBRER). 4. MR B(HhE{E HOKER) 5. Duong Hong Phong (350 EHf EE 52 AER)
6. Zongben Xu, (FPEPEZ AT AER).

2854 (Invited Speakers)&: 1. Ben Andrews CHUMEZZAREE ) 2. REES (SEEIE
PREFIEAER) 3. Philippe Delanoe (JABERTAEE ) 4. Mike Eastwood (EUMEIZR KEE)
5. Alessio Figalli (ZEEEHTT KE2) 6. Joseph Grotowski (BN EET-FF AE) 7.
Cristian Gutierrez (£ Temple K £2) 8. Matthew Gursky ( 3£ Notre Dame, K£2) 9.
AR (R EIAE HREE) 10. Rl CBUME L rRER) 11 B E(H A RREHAE)
12. Peter Kloeden (fEE/ARH TE(EARE) 13. A A (ZEEFRutgers K&2) 14. Yi Li GEE
Wright State KE2) 15. #A 5 5E(E K Courant Institute) 16. MEE(EEKE) 17. fififs
FE (B & AERHS ACER) 18. Gaven Martin (4175 Massey K22) 19. Giuseppey (FK
F|Parma X£2). 20. Duong Hong Phong (2B &} mhin AEZ2) 21. Lihe Wang CGEEIE 52
FLREE) 22. TFIRFCEMNEIZR ARER) 23. 3 EA(F BT SCKER) 24. Paul Yang (3EH]
WEHRAFUEAE) 25. Valentino Tosatti (S2EIEHAELTARE) 26, Febh (ERAERFAAE).
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SeErRE R P R TR R B (. IE R A A EFE STk, KT
ITEEE AR PRA, dhROTAG R, JRRIERIR T TR A B R RE AR (R W3 75
RHZEAIMEE. S5—HIVERENL BIFEHIEEE Neil Trudinger [ t-CEINEIZ b+
KIEBIEREEN 70 BRAEH, R—EBEBERESE L. FREENENIT. i
¥ Neil Trudinger [ HAEEIRE EIEESE. FILIZBEAREESI, RELA M)
ETSIEHE. A 2B EAEREEE
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ANBEHREBE T — WFEE 20116 B2 N AGEN SR, S EE
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Time June 12 (Tue) June 13 (Wed) June 14 (Thu) | Jupe 15 (Fri) June 16 (Sat)
Chair Neil Trudinger Fanghua Lin Changshou Lin Paui Yang
. §:45-9:30 | Opemng Ceremony | Duong Hong Phong Alice Chang Jiaxing Hong
2 9.33-10.20 Mike Eastwood Ben Andrews Matthew Gursky | Valentio Tosatts
E Tea Break Tea Break
?“ 10.50-11:33 Gaven Martin Hitoshi Isha Zhouping Xin Xinan Ma
11:40-12:25 Yanvan Li Cristian Gutierrez Het Tenr Yo Yoan Yils
Lunch Break Lunch Break
_ Char Mike Eastwood | Duong Hong Pheng Alice Chang
% 13:45-14:30 Fanghua Lin (Changshou Lin Paul Yang
é 14:35-15:20 Peter Kloeden Lihe Wang Alessio Frgall
é Tea Break Tea Break
5 15.50-16:35 | Plulippe Delanoe | Joseph Grotowsk Mmchun Hong
It SRR H AT

1. Ben Andrews CEMNEIZ AER )
e H IR ba bR

( Noncollapsing for curvature flows and minimal surfaces)

i P

L — (&Y 2& (5T 28 P B A RS T Y R RO

N> FEREEF N

o v o SRR o DURAHBARYIED o DU IR B BAFY(E BT
I BAHRE A2 - B IR Brendle S ATsg I 2 40 - S5 AIERE (BIE =4E<RIS0E
—HR AR/ NIEER Clifford B2H] ) > 22 BUA A Z5H Pinkall-Sterling J5748 (Bl
AR P R E = BRAY e Ry R ) -

(I will describe a new geometric estimate which applies to embedded hypersurfaces
moving by curvature flows, and also in some situations to minimal surfaces, constant
mean curvature surfaces, and related situations. As well as giving good information about
the mean curvature flow and related equations, it was used by Brendle recently to prove
the Hsiang-Lawson conjecture (that the only embedded minimal torus in the three-
dimensional sphere is the Clifford torus), and by the speaker and Haizhong Li to prove the
Pinkall-Sterling conjecture (that embedded constant mean curvature tori in the three-

sphere are surfaces of rotation).
2. REEE(GEBE MR L)

VEEEREH: OAREHE BAVEFHREME (Boundary regularity of Bach flat metrics)



S (EIE(EPH - PoRfai iR BT R PREEIS AL [E] TAF e iy —Ee 2
P ERUDEF VAR R - Poffatimnyse BT ECHYE SRt — R
HIEESR » {F R — B — g nsS R P R E R 4- RPN S & -
In this talk, I will report some joint work with Sophie Chen, Paul Yang and myself on a
regularity problem of Bach flat metrics on 4-manifolds with boundary. I will discuss the
setup of a matching boundary condition; an gregularity result, and as an application some
compactness result for metrics of conformal compact Einstein 4-manifolds.
3. Philippe Delanoe (;EEEHT AL )
i H - PDE BT AR AR S i R i

(PDE approach to smooth Riemannian optimal transport)
L PRl —E 4%y PDE J77% » Ffiiit Monge WYERE » F2H T —(EEPAHY
REE M _LHY Brenier-McCann BEALKEY » 457E —H M _EREF IR
J& > DA/ DHYEERCA - R — DRI RS iR F 55— -
(I will describe a purely PDE approach for solving Monge's problem, posed on a closed
Riemannian manifold M, with the Brenier-McCann cost function. Given a couple of
smooth positive probability measures on M, this approach aims at constructing a

diffeomorphism of M, pushing one measure to the other, with least total cost.)

4. Mike Eastwood (CEMNEZ KEE)
g H: —EEETY - TR EHE &)
(Some elliptic and subelliptic complexes from geometry)

S AR BT —EIREI &M - EEFEAN - & VT2
HMEIZHEHT de Rham complex ° 15 —{E2 E AR - BEE B HIES
> BAEEZHIGIT - Fia - {RE 2R, an elliptic complex #¢E FRAFEEH
symplectic i BRI —{EAR DI E Z A B R B subelliptic complex, the Rumin
complex ° PR A7 4818 #R I HY IS 1R 4 S )0 — S — e MRV ER DA R — LR fE A AR
F}* o
(It is often the case that natural linear differential operators fit together into an elliptic
complex. The ubiquitous example is the exterior derivative and de Rham complex. This
one is defined on any smooth manifold. With more structure, there are more examples.
There is, for example, an elliptic complex naturally defined on any symplectic manifold
and a similar subelliptic complex, the Rumin complex, defined on any contact manifold. I
shall describe a menagerie of such complexes, some general theory, and some
applications.)
5. Alessio Figalli (ZEEEHTT X&)
EEE A H : Monge-Ampére J77F£HY Sobolev 1 RI[TE

(Sobolev regularity for Monge-Ampere type equations)
{2 Monge-Ampere type J%2 H Y 2& (R TR B 70 AT F15% ] « FEEI0ERET - L
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RS H— B AT AT Sobolev ZERIH AN AR MEAVAE SR - F0 L — L R Fray 7o i
SRR 5 ZEHY semigeostrophic 2L BEFELTE -
(Monge-Ampere type equations arise in several problems combing both from analysis and
geometry. In this talk I'll describe some recent interior regularity results in Sobolev spaces,
together with some applications to the global existence of distributional solutions for the
semigeostrophic equations.)
6. Joseph Grotowski (BN 1 A2
s H 2% b TR SO R s e S

(Geometric Evolution Equations in the critical dimension)
S SN EOR Yang-Mills BURUE BB AUHRBARYRF E RV RETRTIRE - fEFT%
JFEHTHESS (HESE 2 for the NI EENR, 4E[E 4 for the Yang-Mills #U57) - MHEANVAE
ReE (B P - AU - BEE T —SABIIES  fFiE
ToERET - BAMETaR T AR AR RS
(Harmonic map heat flow and Yang-Mills heat flow are the gradient flows associated to
particular geometric energy functional. In the considered dimension, (i.e. dimension two
for the harmonic map heat flow, dimension four for the Yang-Mills heat flow), the
associated energy functional is (locally) conformally invariant, that is, the dimension is
critical. This leads to a number of interesting phenomena when comparing the flows: in
this talk we discuss some of the qualitative similarities and differences.)
7. Cristian Gutierrez (3£ Temple /E2)
VG RE H - Monge-Ampére 2= ()
S FEEIOEET - ORI BRIV ZEEE R - iR (ER S AR m E M E T
I > BN EHTREREE TR AR - R, 20— EREE—4H Rz A= 0ves
S EFIE TR H AR E 1T BUERE AN HEER - K2 - PR
S A i ACAE 8 FTRE - R ITEE > ke B Monge-Ampere BUTTRE
(In this talk, I will describe recent results on the problem of designing surfaces separating
two homogeneous and isotropic media I and II, with different refractive indices, so that
radiation emanating from a point or a set of points in medium I, reaches a targeted
destination in medium II, with prescribed input and output energies. In particular, I will
show several models describing this problem. The surface solutions satisfy Monge-

Ampere type equations.)
8. Matthew Gursky ( 5[ Notre Dame, K22)
g H: EAMERY R E ARSI T

(Regularized determinants and conformally invariant operators) °
S EEIOERR T PoRF T EE 4 — S S IR AT R B B - IR R BV E
NIZ - JEICRIZEMAL 1 Osgood-Phillips-Sarnak #y T{ES B EHI HEHITHE THIR
EMERZER - MRS EN R U 4 E TR R — (BB AR Az EIPE
(BRI ERZE » g akak Connes HREFLE MR Paneitz B F1-E SR » Wi
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ST LR o RS S ARAVAE IR -

(In this talk I will give an overview of some geometric and analytic issues related to the
regularized determinant of an elliptic operator. I will begin with a quick overview of the
work of Osgood-Phillips-Sarnak on the determinant of the laplacian for surfaces, then
move to four dimensions, where the starting point is a formula of Branson-Orsted for
conformal variations of the determinant. I will talk about a question posed by Connes
concerning the determinant of the Paneitz operator and the half-torsion, and describe
some variational properties, including multiplicity results.)

9. MR B(TPE{E HRER)

B H: E4ERE 3 (IENE SRR A Dirichlet 57,

(Dirichlet Problem for Isometric Embedding of positive disks in R3)

S FEEIOHERET - FORHE S  4E4EE 3 AR ERYSFEERR ARY Dirichlet [
FErlE M5 7E Alexsandroff FY4ERE 3 HY[EIfE FAVSEERER ARTRE. RS J0HEH -
WA 4EAEHESE 3 BB B FEERR AR Dirichlet FERY —E&E R - 1572
differomorphic BA7 [BI# 4R ST R 470 FIEE— (B[RS £/ 0 - 7£ 1930 4
Alexsandroff f5H » SFFFHER AHVERRHYR A FHIZE L - Bl TRESIH LR
T RBRRRAVIES - GGERVFRIA A DUE A —(EDEEI BRIV - R
PEARA ©

(In this talk we shall introduce some results about the isometric embedding of positive
disks in R®. Particularly, the talk will focus on the isometric embedding of the
Alexsandroff positive disks in R’. By Alexsandroff positive disk we mean a smooth
surface which is differomorphic to the unit disk, positively curved inside with total
Gaussian curvature 4z and vanishing on the boundary at the first degree. In 1930's
Alexsandroff pointed out that the isometric embedding of such a surface in R® must be of
planar boundary. We shall show this condition that the geodesic curvature of the
boundary of the given surface can generate a smooth convex planar curve, is also
sufficient for the existence of smooth isometric embedding inR’.)

10. 4T CEMNE T RIRER)
AR H AU R RE S B T AR 2 B A AE R RE( Global existence of solutions of the
liquid crystal flow for the Oseen-Frank model Oseen -Frank © )
S RO TR —H ot BB B - FhR e A - TR 2D
HRES (BB ) JFRAEAIERFFAE © £ Ericksen-Leslie 4 HY U AGEN /1S B R TR
FEEAYEURRR MRS > A 2-BREFFIBL Y2 — (A - Ericksen-Leslie Z:4t/2—
{l&l Navier-Stokes J7R2 (Y S 4 HIR AR AR AR - 1EIE IO TS &7 > Oseen-
Frank —figfH A1 1Y Ericksen-Leslie S &RRHT = EFAE © B2 FRBLHT P22
bi e LAF
(In the first part of this talk, we will establish global existence of solutions of the liquid
crystal (gradient) flow for the well-known Oseen-Frank model. The liquid crystal flow is

VIII



a prototype of equations from the Ericksen-Leslie system in the hydrodynamic theory and
generalizes the heat flow for harmonic maps into the 2-sphere. The Ericksen-Leslie
system is a system of the Navier-Stokes equations coupled with the liquid crystal flow. In
the second part of this talk, we also prove global existence of solutions of the Ericksen-
Leslie system for a general Oseen-Frank model in R’ . This is my joint work with Prof.
Zhouping Xin.)
1. A E(H AR REEARE)
EEERE H: Neumann 32 L& 4T Hamilton-Jacobi 2 fEAYRAFE]{T F (Large time
behavior of solutions of Hamilton-Jacobi equations with the Neumann boundary
condition.) °
2 5w Hamilton-Jacobi 7722 u, + H(x,Du) =0 in Qx(0,0) with the FJE&RM:
NeumanniZ 554 B(x, Du)=00n0Qx(0,0), [LEE Q in-4EEHYA FLEFE,. Based on
a recent joint work with Guy Barles and Hiroyoshi Mitake, I explain the large time
asymptotic behavior of solutions of the above problem as well as the corresponding
Skorokhod problem and Aubry-Mather sets.
12. Peter Kloeden ({51 A R v (i A E2)
e H . 2 e TN BB R R (v oy T A2 AV BB 2T

(Taylor expansions and numerical approximation of stochastic PDEs.)
L — Ry e IR Py O i A ISR ERBE R g =U - — By = i
BEt Gy TR EE VT AN AR T R - SRR TR - fEsma(T - 22 A ik
HIFREAT o 55— Tl AR BE I (R Wy TR 07740 mild fERYZR SR REHIER
— LY R S HET S -

( Stochastic Taylor expansions based on an iterated application of the Ito formula are the
basic tool for deriving consistent higher order numerical schemes for stochastic ordinary
differential equations. For stochastic partial differential equations, however, there is no
general Ito formula. An alternative method for deriving Taylor expansions of mild
solutions of stochastic partial differential equations will be presented together with some
new higher order schemes.)

13. 255 (3B Rutgers AE2)
R H . — Lo i 7T 58 2 SR ME TR AV A B -

(Some analytic aspects of conformally invariant fully nonlinear equations)
s eMiratam— L IR - AR A SAIEETI AR GaiEE AL 2 FrE 4= Hy 4t
T 2&fn] - iZtbtE i Bl Liouville B 7EH » Harnack RZ55 » Bocher ZU g BHAVAE S -
(We will discuss some work on conformally invariant elliptic and degenerate elliptic
equations arising from conformal geometry. These include results on Liouville type
theorems, Harnack inequalities, and Bocher type theorems.)
14.Yi Li (2[5 Wright State /£2)
B fRE H: WEEIEHHEE Vortex Pairs fif ERY 25 fi# R H



(Multiple Solutions to an Elliptic Problem Related to Vortex Pairs.)
2 5x Q7 n [EZERIVES, ¢ & (TR HFIHT 0 A

“AU=A(U=0)"" xeQ
M P, (U-p); €
u==0 X e 0Q)

HEE Q,={xeQ, uX) > ik L - BT S EEHIT L M T 5
IR HELT TR E ATRK -
( Let Q be a bounded domain in, ¢ is a harmonic function in Q . In this talk we study the

existence of solutions to the following problem arising in the study of vortex pairs

{—Au =Au-9)’" xeQ
Pl

u=0 X e 0Q)

The set QQ, = {X e, ux)> go} is called “vortex core”. Existence of solutions whose

“vortex core” consisting of one component and asymptotic behavior of “vortex core”

were studied by many authors for large A recently.)

15. M F2E(ZEE Courant Institute)
e H . BEEIA TR B AR BN S R

( Elliptic Equations with Period Coefficients and Theory of Homogenization.)
e PR A B B R DT AR AT o BRSSPl B i (E R - (e o —
SCEECHVERERIAST - FrAlE - PR TimEan oy —IHEL-R7EHT Kenig 1 Zhongwei
Shen S EHIIAFTAER -
(After a quick review of some now classical results on elliptic equations with period
coefficients, I shall describe two problems that motivated some theoretical studies of the
homogenization. In particular, I shall discuss some recent joint works with Carlos Kenig
and Zhongwei Shen.)
16 FREFH(EEALR)
SR A ETEL source [1Y Toda Zffy =T 77 H8

( Classification of entire solution of Toda systems with singular sources )
T AEEICHERT MR RN — AR — e B - 4G (R A%
R o EREPE AR ERE E RN - MBS E R bHV R T ZVRRE T -
(In this talk, we will show the general theorem with singular sources and give an explicit
form for solution. This form would be important for future development. We also obtain

the quantization of the total integral of solutions.)

17, A (PGS HERHS R ER)



s H e E A TR A MR
( Convexity estimates for some elliptic equations. )
fR: fSE s ARME IR A - R SUE, FFI4E H T —ERREHY R E MY R A T
[EITRRH I -
(Using the maximum principle, we give some sharp determinant estimates for the solution

of a class elliptic equation via the boundary data.)

18. Gaven Martin (41755 Massey K E2)

g H RGBSR TR B2 - Nitsche PGB Al cR 8y i M B (New
phenomena in nonlinear materials science — the Nitsche phenomenon and minimisers of
distortion functionals.)

S EEIOER T - Poffalim— Iy TR R — (R A BEVIER T - 8
AR IMERY [ BRI RHE AV 2DV~ (B3DIERITER ) MIELEIAR
SRS ME M E PR MR SR - & NEERIHUE » BB TR 19624
NitschefFfigg 5 A AR AR NHTET © 75 Ry —(E AR —(ERA SEPE L - & —{E A A]
DRI R P A SR (=2k B g5/ YR AE ) - EEITE ey T #=A —(E
FEWVHI 30k o BT AR B - R AR R RE LR AZ S Z AT A B
2 o DI EIR RS &SR - YRRV ER RIS DU i AR e

(In this talk I will discuss some recent work about a special interesting case modeling
nonlinear phenomena in elastic media by minimizing a scale invariant measure of the
anisotropic properties of the material in the simplest 2D case (with 3D applications).
Surprisingly this is connected with a conjecture from J.C.C. Nitsche in 1962 (solved this
year) concerning harmonic mappings and minimal surfaces. There is a wonderful
dichotomy in the solutions to these equations as one passes through a critical phase when
one can identify conformal invariants of the material (= geometric quantities derived from
infinitesimal information). This dichotomy shows, for instance, that materials can only be
stretched so far before breaking or tearing. There appear to be other applications in
modelling cellular structures, foam physics and tissues as well.)

19. Giuseppe (F AR Parma AE2)

VEEERE H: pluricomplex FE AR LAY 5214 (On the singularities of the pluricomplex
Green's function)

{2 5 Monge Ampere {87V MRy =7 M HAT B2 A EIREEDT
FEAHEST o A am ia 8 I RERY 2% (1 U7 10, B M EERERY T 2 I8y A .

(The singularities of the Green's function for the complex Monge-Amp\'ere equation can
behave quite differently from the real case. We discuss several aspects of this problem,
and their role in complex differential geometry.)

20. Duong Hong Phong (S5 &L oE AER)

SRR H: FEOREERA FAYIYEL Monge-Ampére J5f2(Parabolic complex
Monge-Ampere equations on compact complex manifolds).
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2 BoRiaTimin i 8 SR AT E R Y Monge-Ampére J512 - 75 A] IEE F/Z
LT R X ERER R E - EIEFBYIRE EHY Ricci it - (IRZRE) - Tk
T WG EHE R B R AERFE - NS A AR UM — e S 4R P B
1T Fy - BB Weinkove T{F ©
(I will discuss the parabolic complex Monge-Ampere equation on compact complex
manifolds. This can be viewed as an evolution equation for a family of Hermitian metrics,
which coincides with the Ricci flow if the initial metric is Kahler. I will describe the
maximal existence time for the flow in terms of the initial data, and then discuss the
behavior of the flow on complex surfaces and on some higher-dimensional manifolds.
This is joint work with Ben Weinkove.)
21. Lihe Wang (ZEE " FLRE)
VEEERE H . ME1E 5 FEAY 21 ## (Global solution of elliptic equations.)
fE % In this talk, I will show a boundary Holder regularity for the quasiconvex
functional on the Reifenberg flat domain. This is a joint work with S.S.Byun.
22, TERFCEMBIZRER)
vHaEE H:  Neil Trudinger [+ V4% 5452 (The work of Neil Trudinger).
f%L: 1RF Neil Trudinger 52 LAY S ZE/E— 20 H s
23. EEP(EEFSORE)
el H: AE AJBR4E Navier-Stokes JiA% i it f 0K ] RE
(On Blowup of Classical Solutions to the Compressible Navier-Stokes.)

S FEEIOHERET - PR am —Co T AV e S SRR 2% 4 il BR4E Navier-Stokes
F A T BT YA PRI ] PO TR L9 4a R B & vacuum - 3SR » (]

A R4 RS A o SR PRISE R AR O B A — (B I LAY B RS 14
(In this talk, I will discuss some recent results on finite blowup of classical solutions to
the multi-dimensional compressible Navier-Stokes system when the initial data contains
vacuum. It will be shown that any classical solutions of the viscous compressible fluids
will blowup in finite time as long as the initial data has an isolated mass group. The main
ideas of the blow-up argument will be presented.)
24. Paul Yang (GEEIE M RER)
VEEEE H 3 B2 A At B R 44 (o] (Pseudo-Hermitian geometry in 3-D).
fE = 1 will report on progress in a family of problems about conformally invariant
equations in CR geometry, that has bearing on imbedding, CR-Yamabe problem and a
formulation of a sphere theorem in CR geometry.
25. T (RRERIEALE)
g H ARSI SRS ELHRFA Lagrangian J7F2HY Hessian {51 (Hessian
estimates for special Lagrangian equations with critical and supercritical phases)
S FeMeTsm¥% Lagrangian 7721 a priori Hessian Hessian {51 o 8 B i1
JiFEZ /N Lagrangian SRR o MV —HY50% » BIEZSCRTERIAY =4
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LR EE WAL ST o BTN counterexamples for subcritical phase J7FE
Wit} - 125 /2 81 F Dake (Y& {ETAE ©

( We talk about a priori Hessian estimates for special Lagrangian equation with critical
and supercritical phases in general higher dimensions. The "gradient" graphs of solutions
are minimal Lagrangian submanifolds. Our unified approach leads to sharper estimates
even for the previously known three dimensional or convex solution cases. Recent
counterexamples for subcritical phase equations will also be mentioned. This is joint work
with Dake Wang.)
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FERL S, BB TS E 2 —. (54 2011 B BRGSO E A A0 A% E AR BT,
[ErtbaT e fREfies - LB e (PR E )RR - ERASREY
B - =] ER] - FEEERESU BN R BT o KRG L PSR -
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