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Abstract—The advances in nanometer technology and integrated 

circuit technology enable the graphics card to attach individual 

memory and one or more processing units, named GPU, in which 

most of the graphing instructions can be processed parallelly. 

Obviously, the computation resource can be used to improve the 

execution efficiency of not only graphing applications but other time 

consuming applications like data mining. CAST (Clustering Affinity 

Search Technique) is a famous clustering algorithm, which is widely 

used in clustering the biological data. In this paper, we will propose 

two algorithms, namely Calculation-On-Demand CAST, abbreviated 

as COD-CAST and Calculation-On-Demand CAST with GPU, 

abbreviated as COD-CAST-GPU, respectively. The first proposed 

COD-CAST algorithm is a refined CAST algorithm that can process 

large amount of objects more efficiently in terms of execution time. 

The proposed COD-CAST-GPU algorithm can utilize the GPU and 

the individual memory of graphics card to accelerate the COD-CAST. 

The experimental results show that our proposed algorithms deliver 

excellent performance in terms of execution time and required 

memory. 
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I.  INTRODUCTION 

The high definition (HD) and three dimensions (3D) 

technologies can bring the users the smooth graphing, which is 

important to many interesting applications like 3D game, high 

resolution displaying and so forth. Part of the recent progress 

in improving the graphing efficiency was achieved by the 

development of graphic processing unit (GPU) technology. In 

the past, all of the graphing related instructions are processed 

in CPU, and the memory is shared from the system. The 

displaying action involves the CPU calculation and the data 

transmission from the memory to displaying memory. 

Therefore, the central processing unit (CPU) and memory unit 

are the most important units that affect the performance of 

graphing. The advances in nanometer technology and 

integrated circuit technology enable the graphics card to attach 

individual memory and one or more processing units [19], 

named GPU, in which most of the graphing instructions can be 

processed parallelly. In this architectural design, the graphing 

efficiency can be greatly improved. The popular graphics card 

nowadays has one or more GPUs, hundreds of cores and 

thousands MB of memory. Obviously, the computation 

resource can be used to improve the execution efficiency of 

not only graphing applications but other time consuming 

applications like data mining. 

Data mining consists of four main topics, association rules 

mining [1][12], sequential patterns mining, classification and 

clustering. The goal of data mining is to discover the hidden 

useful information from large databases. Clustering objects is 

an important problem and the cluster information is useful in 

many fields. CAST (Clustering Affinity Search Technique) [5] 

is a famous clustering algorithm, which is widely used in 

clustering the biological data. A complete clustering process 

when using CAST to cluster data requires a lot of float point 

computing. For example, CAST needs to pre-calculate a 

similarity matrix for store object similarity. Suppose there are 

n objects, to derive the matrix the complexity is O(n
2
). Unlike 

CPU, GPU is not a general purpose processing unit, and it is 

designed to process complex float point computing. In fact, the 

size of biological data is always huge. As the size of database 

increases, the computation time and the required memory 

increase severely. The traditional clustering methods suffer 

from the data size. The difficulty of clustering large amount of 

objects launched the research of designing new algorithms that 

can utilize the available resources to solve the problem. In this 

paper, we will propose two algorithms, namely Calculation-

On-Demand CAST, abbreviated as COD-CAST and 

Calculation-On-Demand CAST with GPU, abbreviated as 

COD-CAST-GPU, respectively. The first proposed COD-

CAST algorithm is a refined CAST algorithm that can process 

large amount of objects more efficiently in terms of execution 

time. The proposed COD-CAST-GPU algorithm can utilize 

the GPU and the individual memory of graphics card to 

accelerate the COD-CAST.  
In the following sections, we briefly review related work in 

Section 2. In Section 3, the proposed algorithms, COD-CAST 
and COD-CAST-GPU, are presented. The empirical evaluation 
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for performance study is made in Section 4. The conclusions 
are given in Section 5. 

II. RELATED WORK 

In this section, we briefly review the most related work 
including clustering algorithms, CAST algorithm, general 
purpose computing on GPU (GPGPU), and data mining on 
GPGPU. 

A. Clustering algorithms 

Clustering analysis is an approach to put objects in clusters, in 
which the objects in the same cluster are similar and the objects 
falling in different clusters are dissimilar. The main types of 
clustering algorithms are listed with its famous algorithms: 

1) Partitioning-based: K-Means [17], K-Medoids[15], 
PAM [15], CLARA [15], CLARANS [18], CAST [5], etc. 

2) Hierarchical-based: HAC [22], BIRCH [24][25], 
CURE [10], ROCK [11], CHAMELEON [14], etc. 

3) Density-based: CAST [5], DBSCAN [7], OPTICS[4], 
CLIQUE [2], WaveCluster [21], etc. 

4) Grid-based: STING [23], CLIQUE [2], WaveCluster 
[21], etc. 

5) Model-based: SOM [16], COBWEB [8], CLASSIT 
[9], AutoClass [6], etc. 

 

B. CAST(Clustering Affinity Search Technique) 

CAST is the algorithm on which we focus to refine and extend. 
The input of CAST consists of 1) a similarity matrix to store 
the distances of all of the objects, and 2) an affinity threshold. 
The algorithm works as follows. It first initializes a set C for 
the clusters and a set U containing the unclustered objects. For 
each cluster in C, we calculate the affinity of each object. For 
each object in U, we calculate the similarity between it and a 
targeted object, and the similarity values are summed as the 
affinity of the targeted object. If the affinity is greater than or 
equal to the affinity threshold, this object should be added to 
the current cluster and be marked as clustered in U. In the same 
time, the affinity of each object in the cluster should be updated 
by adding the similarity between it and the newly added object. 
If the affinity is less than the affinity threshold, the object with 
lowest affinity will be removed from this cluster and this object 
is marked as unclustered in U. The affinity of each object in the 
cluster should be updated by subtracting the similarity between 
it and the removed object. The add and remove actions are then 
repeated until there is no change. The clustering for the current 
cluster also terminates. The algorithm starts another clustering 
for finding new cluster by repeating the steps, and terminates 
when all of the objects of U are marked as clustered. 

C. General-Purpose Computing on GPU (GPGPU) 

The rapid progress in GPU upgrades the computing power of 
personal computer. Several studies have started to explore the 
topic of combining GPU and CPU to fasten time consuming 

problems. Some well-known platforms were also developed, 
such as Compute Unified Device Architecture (CUDA) [19] of 
NVIDIA, FireStream [3] of AMD, Open Computing Language 
(OpenCL) [20]. The CUDA and FireStream are designed 
specific to their own graphics cards, and OpenCL is an open 
platform for supported graphics cards. 

D. Data Mining on GPGPU 

In [26], the authors proposed a Apriori-based method named 
FPM-GPU to discover the frequent patterns by using GPGPU. 
FPM-GPU uses a new data structure in order to reduce the data 
size and then transmit the data to the memory of graphics card 
for further mining by GPU. In [13], the authors proposed a 
clustering method named GPU-based K-Means, which is a K-
Means-based method. Two approaches were proposed. The 
first approach focuses on the centroid. It calculates the distance 
between the centroid and each object and then returns the result 
to CPU for clustering. The second approach assigns each core 
objects and then calculates the distance among the objects. 
Afterwards, the result is returned to CPU for clustering. 

III. PROPOSED METHOD 

In this section, we will introduce the proposed algorithms, 
COD-CAST and COD-CAST-GPU. CAST algorithm takes 
two inputs, 1) a similarity matrix that stores the similarity 
between objects and 2) an affinity threshold, and outputs the 
clusters. Deriving the similarity matrix is a time consuming 
task. The previous studies however consider the deriving as a 
preprocessing task and do not pay attention on this part. The 
matrix deriving in fact is the performance bottleneck especially 
when the number of objects is large. The proposed COD-CAST 
and COD-CAST-GPU are able to cluster large dataset 
efficiently in terms of execution time and required memory. 

A. Calculation-On-Demand CAST (COD-CAST) 

The COD-CAST algorithm is as shown in Figure 1. Note that 
the input to this algorithm is the n objects while not the n by n 
similarity matrix. When we use CAST to cluster a very large 
dataset, the memory usually cannot afford to load the entire 
matrix. Although some operation systems or programming 
languages can simulate the hard-disk space to memory to load 
the entire matrix, the speed will be very slow.  

Therefore, we calculate the similarity when it is necessary 
but not calculate the entire matrix in advance. The proposed 
Update_Affinity function is as shown in Figure 2, in which we 
use the Euclidean distance as an example. 

B. Calculation-On-Demand CAST with GPU (COD-CAST-

GPU) 

To accelerate the CAST with GPU, we parallel the computation 
of Update_Affinity function as shown in Figure 3. 
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Input : the data with n nodes 𝑁, and an affinity threshold 𝑡 
Output : the collection of closed clusters 𝐶 
Method : 

Step 1 : Initialization_U 
            𝐶 ← ∅; 𝑈 ←  1,2, … , 𝑛 ; 

Step 2 : While(𝑼 ≠ ∅) do 
Step 3 :   Initialization_𝐶𝑜𝑝𝑒𝑛 

  𝐶𝑜𝑝𝑒𝑛 ← ∅; a ∙ ← 0; change = false; 
Step 4 :   ADD : 

    While(max 𝑎 𝑢  𝑢 ∈ 𝑈 ≥ 𝑡 ×  𝐶𝑜𝑝𝑒𝑛 ) do 
      𝐶𝑜𝑝𝑒𝑛 ← 𝐶𝑜𝑝𝑒𝑛 ∪  𝑢 ; U ← U ∖  𝑢  
      For all node x ∈ U ∪ 𝐶𝑜𝑝𝑒𝑛 
        𝑎 𝑥 ← 𝑈𝑝𝑑𝑎𝑡𝑒_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑢 ; 
              //Update all node affinity with node 𝑢 
      change = true; 
    End While(step 4) 

Step 5 :   REMOVE:  
    While(min 𝑎 𝑢  𝑢 ∈ 𝐶𝑜𝑝𝑒𝑛 < 𝑡 ×  𝐶𝑜𝑝𝑒𝑛 ) do 
      𝐶𝑜𝑝𝑒𝑛 ← 𝐶𝑜𝑝𝑒𝑛 ∖  𝑢 ; U ← U ∪  𝑢  
      For all node x ∈ U ∪ 𝐶𝑜𝑝𝑒𝑛 
        𝑎 𝑥 ← 𝑈𝑝𝑑𝑎𝑡𝑒_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑢 ; 
              //Update all node affinity with node 𝑢 
      change = true; 
    End While(step 5) 

Step 6 :   If(change) 
       change = false;      Repeat Step 4 and Step 5; 
  else 
       𝐶 ← 𝐶 ∪  𝐶𝑜𝑝𝑒𝑛 ;     Back to Step 2; 

Step 7 : End While(step 2) 
 

Figure 1. The proposed COD-CAST algorithm. 

Input : the data with 𝑛 nodes 𝑁, and the variational node 𝑢 
Output : Affinity array after update 𝑎 
Method : 

Step 1 : 𝑑𝑚𝑎𝑥 =  𝑑 𝑚𝑎𝑥 𝑁 ,𝑚𝑖𝑛 𝑁  ; 

Step 2 : For all nodes 𝑋𝑖 ∈ 𝑁, 0 < 𝑖 ≤ 𝑛 

  𝑑 𝑖, 𝑢 =    𝑥𝑖
𝑘 − 𝑥𝑢

𝑘 
2𝑚

𝑘=1 ;   …………(1) 

  𝑆 𝑖, 𝑢 =  
𝑑𝑚𝑎𝑥−𝑑 𝑖,𝑢 

𝑑𝑚𝑎𝑥 ;         …..………(2) 

Step 3 :   If call from ADD step 
      𝑎 𝑖  +=  𝑆 𝑖, 𝑢 ; 
  else call from REMOVE step 
      𝑎 𝑖  −=  𝑆 𝑖, 𝑢 ; 

Step 4 : End For 
 

Figure 2. The Update_Affinity function. 
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IV. EXPERIMENTAL RESULTS 

The experiments were conducted on a HP xw6600 workstation 
with one Quad Core Intel Xeon 2.0 GHz CPU and 4GB main 
memory. The graphics card is NVIDIA Quadro FX570. The 
GPU clock rate is 920 MHz, with 16 cores, 2 multi processors, 
256 MB memory. The parameter setting for the clustering 
algorithms and GPU are listed in Table 1. In the following 
section, we select the original CAST for performance study. 

Study of varying the number of objects for CAST, COD-
CAST and COD-CAST-GPU 

In Figure 4, we observe the effects of varying the number of 

objects. We found that as the increase in the number of objects, 
COD-CAST and COD-CAST-GPU have better performance 
than CAST in terms of execution time. When the number of 
objects is 128,000, COD-CAST-GPU requires only 7.7% 
execution time of CAST. 

V. CONCLUSIONS 

In this paper, we have proposed two algorithms, namely COD-
CAST and COD-CAST-GPU, respectively. The first proposed 
COD-CAST algorithm is a refined CAST algorithm that can 
process large amount of objects more efficiently in terms of 

Input : the data with 𝑛 nodes 𝑁, and the variational node 𝑢 
Output : Affinity array after update 𝑎 
Method : 

Step 1 : 𝑑𝑚𝑎𝑥 =  𝑑 𝑚𝑎𝑥 𝑁 ,𝑚𝑖𝑛 𝑁  ; 

Step 2 : 𝑁𝐺𝑃𝑈 = 𝑚𝑎𝑙𝑙𝑜𝑐 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒𝑜𝑓 𝑁  ; 

Step 3 : 𝑎𝐺𝑃𝑈 =  𝑚𝑎𝑙𝑙𝑜𝑐 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒𝑜𝑓 𝑎  ; 

Step 4 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐻𝑜𝑠𝑡𝑇𝑜𝐷𝑒𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁 𝑡𝑜 𝑁𝐺𝑃𝑈 ; 
Step 5 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐻𝑜𝑠𝑡𝑇𝑜𝐷𝑒𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑎𝐺𝑃𝑈 ; 
Step 6 : 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑈𝑝𝑑𝑎𝑡𝑒_𝑜𝑛_𝐺𝑃𝑈 𝑁𝐺𝑃𝑈, 𝑎𝐺𝑃𝑈, 𝑑

𝑚𝑎𝑥, 𝑢   (GPU start) 
Step 7 :   For all nodes 𝑋𝑖 ∈ 𝑁𝐺𝑃𝑈, 0 < 𝑖 ≤ 𝑛 

    𝑑 𝑖, 𝑢 =    𝑥𝑖
𝑘 − 𝑥𝑢

𝑘 
2𝑚

𝑘=1 ;   …………(1) 

    𝑆 𝑖, 𝑢 =  
𝑑𝑚𝑎𝑥−𝑑 𝑖,𝑢 

𝑑𝑚𝑎𝑥 ;         …..………(2) 

Step 8 :     If call from ADD step 
        𝑎𝐺𝑃𝑈 𝑖  +=  𝑆 𝑖, 𝑢 ; 
    else call from REMOVE step 
        𝑎𝐺𝑃𝑈 𝑖  −=  𝑆 𝑖, 𝑢 ; 

Step 9 : 𝐸𝑛𝑑𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑈𝑝𝑑𝑎𝑡𝑒_𝐺𝑃𝑈                 (GPU end) 

Step 10 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐷𝑒𝑣𝑖𝑐𝑒𝑇𝑜𝐻𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑎𝐺𝑃𝑈 𝑡𝑜 𝑎  ; 
Step 11 : 𝑓𝑟𝑒𝑒 𝑁𝐺𝑃𝑈 𝑎𝑛𝑑 𝑎𝐺𝑃𝑈; 

 

Figure 3. Update_Affinity_with_GPU (u) Algorithm 

Table 1. Parameter settings. 

CAST Algorithm 

Parameter Default Value Description 

𝑛  the number of data node 

𝑚 2 
the number of attribute per 

node 

𝑡 0.8 the affinity threshold 

𝑑𝑚𝑎𝑥 10 2
≑ 14.14… 

the max of distance  
between nodes(if 𝑚 = 2) 

 

CAST with GPU Algorithm 

Parameter Default Value Description 

THREADS_PER_BLOCK 512 
the number of threads per 

block 

BLOCK_PER_GRID 2 
the number of blocks per 

grid 

 

 
Figure 4. The effects of varying the numbers 
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execution time. The proposed COD-CAST-GPU algorithm can 
utilize the GPU and the individual memory of graphics card to 
accelerate the COD-CAST. The experimental results also show 
that our proposed method delivers excellent performance in 
terms of execution time. 
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