
 ICSSE 2011

A Fast CAST-based Clustering Algorithm for

Very Large Database

Kawuu W. Lin

Department of Computer Science and Information

Engineering

National Kaohsiung University of Applied Sciences

Kaohsiung, Taiwan

linwc@kuas.edu.tw

Chun-Hung Lin

Department of Computer Science and Information

Engineering

National Kaohsiung University of Applied Sciences

Kaohsiung, Taiwan

tnssh931111@gmail.com

Abstract—The advances in nanometer technology and integrated

circuit technology enable the graphics card to attach individual

memory and one or more processing units, named GPU, in which

most of the graphing instructions can be processed parallelly.

Obviously, the computation resource can be used to improve the

execution efficiency of not only graphing applications but other time

consuming applications like data mining. CAST (Clustering Affinity

Search Technique) is a famous clustering algorithm, which is widely

used in clustering the biological data. In this paper, we will propose

two algorithms, namely Calculation-On-Demand CAST, abbreviated

as COD-CAST and Calculation-On-Demand CAST with GPU,

abbreviated as COD-CAST-GPU, respectively. The first proposed

COD-CAST algorithm is a refined CAST algorithm that can process

large amount of objects more efficiently in terms of execution time.

The proposed COD-CAST-GPU algorithm can utilize the GPU and

the individual memory of graphics card to accelerate the COD-CAST.

The experimental results show that our proposed algorithms deliver

excellent performance in terms of execution time and required

memory.

Keywords—Data Mining, Clustering, CAST, GPU

I. INTRODUCTION

The high definition (HD) and three dimensions (3D)

technologies can bring the users the smooth graphing, which is

important to many interesting applications like 3D game, high

resolution displaying and so forth. Part of the recent progress

in improving the graphing efficiency was achieved by the

development of graphic processing unit (GPU) technology. In

the past, all of the graphing related instructions are processed

in CPU, and the memory is shared from the system. The

displaying action involves the CPU calculation and the data

transmission from the memory to displaying memory.

Therefore, the central processing unit (CPU) and memory unit

are the most important units that affect the performance of

graphing. The advances in nanometer technology and

integrated circuit technology enable the graphics card to attach

individual memory and one or more processing units [19],

named GPU, in which most of the graphing instructions can be

processed parallelly. In this architectural design, the graphing

efficiency can be greatly improved. The popular graphics card

nowadays has one or more GPUs, hundreds of cores and

thousands MB of memory. Obviously, the computation

resource can be used to improve the execution efficiency of

not only graphing applications but other time consuming

applications like data mining.

Data mining consists of four main topics, association rules

mining [1][12], sequential patterns mining, classification and

clustering. The goal of data mining is to discover the hidden

useful information from large databases. Clustering objects is

an important problem and the cluster information is useful in

many fields. CAST (Clustering Affinity Search Technique) [5]

is a famous clustering algorithm, which is widely used in

clustering the biological data. A complete clustering process

when using CAST to cluster data requires a lot of float point

computing. For example, CAST needs to pre-calculate a

similarity matrix for store object similarity. Suppose there are

n objects, to derive the matrix the complexity is O(n
2
). Unlike

CPU, GPU is not a general purpose processing unit, and it is

designed to process complex float point computing. In fact, the

size of biological data is always huge. As the size of database

increases, the computation time and the required memory

increase severely. The traditional clustering methods suffer

from the data size. The difficulty of clustering large amount of

objects launched the research of designing new algorithms that

can utilize the available resources to solve the problem. In this

paper, we will propose two algorithms, namely Calculation-

On-Demand CAST, abbreviated as COD-CAST and

Calculation-On-Demand CAST with GPU, abbreviated as

COD-CAST-GPU, respectively. The first proposed COD-

CAST algorithm is a refined CAST algorithm that can process

large amount of objects more efficiently in terms of execution

time. The proposed COD-CAST-GPU algorithm can utilize

the GPU and the individual memory of graphics card to

accelerate the COD-CAST.
In the following sections, we briefly review related work in

Section 2. In Section 3, the proposed algorithms, COD-CAST
and COD-CAST-GPU, are presented. The empirical evaluation

ICSSE 2011

for performance study is made in Section 4. The conclusions
are given in Section 5.

II. RELATED WORK

In this section, we briefly review the most related work
including clustering algorithms, CAST algorithm, general
purpose computing on GPU (GPGPU), and data mining on
GPGPU.

A. Clustering algorithms

Clustering analysis is an approach to put objects in clusters, in
which the objects in the same cluster are similar and the objects
falling in different clusters are dissimilar. The main types of
clustering algorithms are listed with its famous algorithms:

1) Partitioning-based: K-Means [17], K-Medoids[15],
PAM [15], CLARA [15], CLARANS [18], CAST [5], etc.

2) Hierarchical-based: HAC [22], BIRCH [24][25],
CURE [10], ROCK [11], CHAMELEON [14], etc.

3) Density-based: CAST [5], DBSCAN [7], OPTICS[4],
CLIQUE [2], WaveCluster [21], etc.

4) Grid-based: STING [23], CLIQUE [2], WaveCluster
[21], etc.

5) Model-based: SOM [16], COBWEB [8], CLASSIT
[9], AutoClass [6], etc.

B. CAST(Clustering Affinity Search Technique)

CAST is the algorithm on which we focus to refine and extend.
The input of CAST consists of 1) a similarity matrix to store
the distances of all of the objects, and 2) an affinity threshold.
The algorithm works as follows. It first initializes a set C for
the clusters and a set U containing the unclustered objects. For
each cluster in C, we calculate the affinity of each object. For
each object in U, we calculate the similarity between it and a
targeted object, and the similarity values are summed as the
affinity of the targeted object. If the affinity is greater than or
equal to the affinity threshold, this object should be added to
the current cluster and be marked as clustered in U. In the same
time, the affinity of each object in the cluster should be updated
by adding the similarity between it and the newly added object.
If the affinity is less than the affinity threshold, the object with
lowest affinity will be removed from this cluster and this object
is marked as unclustered in U. The affinity of each object in the
cluster should be updated by subtracting the similarity between
it and the removed object. The add and remove actions are then
repeated until there is no change. The clustering for the current
cluster also terminates. The algorithm starts another clustering
for finding new cluster by repeating the steps, and terminates
when all of the objects of U are marked as clustered.

C. General-Purpose Computing on GPU (GPGPU)

The rapid progress in GPU upgrades the computing power of
personal computer. Several studies have started to explore the
topic of combining GPU and CPU to fasten time consuming

problems. Some well-known platforms were also developed,
such as Compute Unified Device Architecture (CUDA) [19] of
NVIDIA, FireStream [3] of AMD, Open Computing Language
(OpenCL) [20]. The CUDA and FireStream are designed
specific to their own graphics cards, and OpenCL is an open
platform for supported graphics cards.

D. Data Mining on GPGPU

In [26], the authors proposed a Apriori-based method named
FPM-GPU to discover the frequent patterns by using GPGPU.
FPM-GPU uses a new data structure in order to reduce the data
size and then transmit the data to the memory of graphics card
for further mining by GPU. In [13], the authors proposed a
clustering method named GPU-based K-Means, which is a K-
Means-based method. Two approaches were proposed. The
first approach focuses on the centroid. It calculates the distance
between the centroid and each object and then returns the result
to CPU for clustering. The second approach assigns each core
objects and then calculates the distance among the objects.
Afterwards, the result is returned to CPU for clustering.

III. PROPOSED METHOD

In this section, we will introduce the proposed algorithms,
COD-CAST and COD-CAST-GPU. CAST algorithm takes
two inputs, 1) a similarity matrix that stores the similarity
between objects and 2) an affinity threshold, and outputs the
clusters. Deriving the similarity matrix is a time consuming
task. The previous studies however consider the deriving as a
preprocessing task and do not pay attention on this part. The
matrix deriving in fact is the performance bottleneck especially
when the number of objects is large. The proposed COD-CAST
and COD-CAST-GPU are able to cluster large dataset
efficiently in terms of execution time and required memory.

A. Calculation-On-Demand CAST (COD-CAST)

The COD-CAST algorithm is as shown in Figure 1. Note that
the input to this algorithm is the n objects while not the n by n
similarity matrix. When we use CAST to cluster a very large
dataset, the memory usually cannot afford to load the entire
matrix. Although some operation systems or programming
languages can simulate the hard-disk space to memory to load
the entire matrix, the speed will be very slow.

Therefore, we calculate the similarity when it is necessary
but not calculate the entire matrix in advance. The proposed
Update_Affinity function is as shown in Figure 2, in which we
use the Euclidean distance as an example.

B. Calculation-On-Demand CAST with GPU (COD-CAST-

GPU)

To accelerate the CAST with GPU, we parallel the computation
of Update_Affinity function as shown in Figure 3.

ICSSE 2011

Input : the data with n nodes 𝑁, and an affinity threshold 𝑡
Output : the collection of closed clusters 𝐶
Method :

Step 1 : Initialization_U
 𝐶 ← ∅; 𝑈 ← 1,2, … , 𝑛 ;

Step 2 : While(𝑼 ≠ ∅) do
Step 3 : Initialization_𝐶𝑜𝑝𝑒𝑛

 𝐶𝑜𝑝𝑒𝑛 ← ∅; a ∙ ← 0; change = false;
Step 4 : ADD :

 While(max 𝑎 𝑢 𝑢 ∈ 𝑈 ≥ 𝑡 × 𝐶𝑜𝑝𝑒𝑛) do
 𝐶𝑜𝑝𝑒𝑛 ← 𝐶𝑜𝑝𝑒𝑛 ∪ 𝑢 ; U ← U ∖ 𝑢
 For all node x ∈ U ∪ 𝐶𝑜𝑝𝑒𝑛
 𝑎 𝑥 ← 𝑈𝑝𝑑𝑎𝑡𝑒_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑢 ;
 //Update all node affinity with node 𝑢
 change = true;
 End While(step 4)

Step 5 : REMOVE:
 While(min 𝑎 𝑢 𝑢 ∈ 𝐶𝑜𝑝𝑒𝑛 < 𝑡 × 𝐶𝑜𝑝𝑒𝑛) do
 𝐶𝑜𝑝𝑒𝑛 ← 𝐶𝑜𝑝𝑒𝑛 ∖ 𝑢 ; U ← U ∪ 𝑢
 For all node x ∈ U ∪ 𝐶𝑜𝑝𝑒𝑛
 𝑎 𝑥 ← 𝑈𝑝𝑑𝑎𝑡𝑒_𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑢 ;
 //Update all node affinity with node 𝑢
 change = true;
 End While(step 5)

Step 6 : If(change)
 change = false; Repeat Step 4 and Step 5;
 else
 𝐶 ← 𝐶 ∪ 𝐶𝑜𝑝𝑒𝑛 ; Back to Step 2;

Step 7 : End While(step 2)

Figure 1. The proposed COD-CAST algorithm.

Input : the data with 𝑛 nodes 𝑁, and the variational node 𝑢
Output : Affinity array after update 𝑎
Method :

Step 1 : 𝑑𝑚𝑎𝑥 = 𝑑 𝑚𝑎𝑥 𝑁 ,𝑚𝑖𝑛 𝑁 ;

Step 2 : For all nodes 𝑋𝑖 ∈ 𝑁, 0 < 𝑖 ≤ 𝑛

 𝑑 𝑖, 𝑢 = 𝑥𝑖
𝑘 − 𝑥𝑢

𝑘
2𝑚

𝑘=1 ; …………(1)

 𝑆 𝑖, 𝑢 =
𝑑𝑚𝑎𝑥−𝑑 𝑖,𝑢

𝑑𝑚𝑎𝑥 ; …..………(2)

Step 3 : If call from ADD step
 𝑎 𝑖 += 𝑆 𝑖, 𝑢 ;
 else call from REMOVE step
 𝑎 𝑖 −= 𝑆 𝑖, 𝑢 ;

Step 4 : End For

Figure 2. The Update_Affinity function.

ICSSE 2011

IV. EXPERIMENTAL RESULTS

The experiments were conducted on a HP xw6600 workstation
with one Quad Core Intel Xeon 2.0 GHz CPU and 4GB main
memory. The graphics card is NVIDIA Quadro FX570. The
GPU clock rate is 920 MHz, with 16 cores, 2 multi processors,
256 MB memory. The parameter setting for the clustering
algorithms and GPU are listed in Table 1. In the following
section, we select the original CAST for performance study.

Study of varying the number of objects for CAST, COD-
CAST and COD-CAST-GPU

In Figure 4, we observe the effects of varying the number of

objects. We found that as the increase in the number of objects,
COD-CAST and COD-CAST-GPU have better performance
than CAST in terms of execution time. When the number of
objects is 128,000, COD-CAST-GPU requires only 7.7%
execution time of CAST.

V. CONCLUSIONS

In this paper, we have proposed two algorithms, namely COD-
CAST and COD-CAST-GPU, respectively. The first proposed
COD-CAST algorithm is a refined CAST algorithm that can
process large amount of objects more efficiently in terms of

Input : the data with 𝑛 nodes 𝑁, and the variational node 𝑢
Output : Affinity array after update 𝑎
Method :

Step 1 : 𝑑𝑚𝑎𝑥 = 𝑑 𝑚𝑎𝑥 𝑁 ,𝑚𝑖𝑛 𝑁 ;

Step 2 : 𝑁𝐺𝑃𝑈 = 𝑚𝑎𝑙𝑙𝑜𝑐 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒𝑜𝑓 𝑁 ;

Step 3 : 𝑎𝐺𝑃𝑈 = 𝑚𝑎𝑙𝑙𝑜𝑐 𝐺𝑃𝑈 𝑚𝑒𝑚𝑜𝑟𝑦 𝑠𝑖𝑧𝑒𝑜𝑓 𝑎 ;

Step 4 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐻𝑜𝑠𝑡𝑇𝑜𝐷𝑒𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑁 𝑡𝑜 𝑁𝐺𝑃𝑈 ;
Step 5 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐻𝑜𝑠𝑡𝑇𝑜𝐷𝑒𝑣𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎 𝑡𝑜 𝑎𝐺𝑃𝑈 ;
Step 6 : 𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑈𝑝𝑑𝑎𝑡𝑒_𝑜𝑛_𝐺𝑃𝑈 𝑁𝐺𝑃𝑈, 𝑎𝐺𝑃𝑈, 𝑑

𝑚𝑎𝑥, 𝑢 (GPU start)
Step 7 : For all nodes 𝑋𝑖 ∈ 𝑁𝐺𝑃𝑈, 0 < 𝑖 ≤ 𝑛

 𝑑 𝑖, 𝑢 = 𝑥𝑖
𝑘 − 𝑥𝑢

𝑘
2𝑚

𝑘=1 ; …………(1)

 𝑆 𝑖, 𝑢 =
𝑑𝑚𝑎𝑥−𝑑 𝑖,𝑢

𝑑𝑚𝑎𝑥 ; …..………(2)

Step 8 : If call from ADD step
 𝑎𝐺𝑃𝑈 𝑖 += 𝑆 𝑖, 𝑢 ;
 else call from REMOVE step
 𝑎𝐺𝑃𝑈 𝑖 −= 𝑆 𝑖, 𝑢 ;

Step 9 : 𝐸𝑛𝑑𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦_𝑈𝑝𝑑𝑎𝑡𝑒_𝐺𝑃𝑈 (GPU end)

Step 10 : 𝑀𝑒𝑚𝑐𝑝𝑦𝐷𝑒𝑣𝑖𝑐𝑒𝑇𝑜𝐻𝑜𝑠𝑡 𝑓𝑟𝑜𝑚 𝑎𝐺𝑃𝑈 𝑡𝑜 𝑎 ;
Step 11 : 𝑓𝑟𝑒𝑒 𝑁𝐺𝑃𝑈 𝑎𝑛𝑑 𝑎𝐺𝑃𝑈;

Figure 3. Update_Affinity_with_GPU (u) Algorithm

Table 1. Parameter settings.

CAST Algorithm

Parameter Default Value Description

𝑛 the number of data node

𝑚 2
the number of attribute per

node

𝑡 0.8 the affinity threshold

𝑑𝑚𝑎𝑥 10 2
≑ 14.14…

the max of distance
between nodes(if 𝑚 = 2)

CAST with GPU Algorithm

Parameter Default Value Description

THREADS_PER_BLOCK 512
the number of threads per

block

BLOCK_PER_GRID 2
the number of blocks per

grid

Figure 4. The effects of varying the numbers

ICSSE 2011

execution time. The proposed COD-CAST-GPU algorithm can
utilize the GPU and the individual memory of graphics card to
accelerate the COD-CAST. The experimental results also show
that our proposed method delivers excellent performance in
terms of execution time.

Acknowledgement: This research was supported by the
National Science Council in Taiwan through Grant NSC 99-
2622-E-151-005-CC3 and NSC 99-2221-E-151-046.

REFERENCES

[1] R. Agrawal, R. Srikant. (1994) “Fast Algorithms for Mining Association
Rules”, Proc. 20th Int. Conf. Very Large Data Bases(VLDB), Santiago,
Chile.

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. (1998) “Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications”, (SIGMOD '98) Proceedings of the
1998 ACM SIGMOD international conference on Management of data,
Seattle, Washington, June, Volume 27, Issue 2.

[3] AMD Official Website， FireStream GPU Compute Accelerators，
(2011) ，
http://www.amd.com/us/products/workstation/firestream/Pages/firestrea
m.aspx.

[4] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. (1999)
“OPTICS: ordering points to identify the clustering structure”,
Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, Philadephia, Pennsylvania, USA, pages 49-60,
June.

[5] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. (1999) “Clustering
Gene Expression Patterns”, Journal of Computational Biology, Volume
6, Numbers 3/4, October 1999, pp. 281-297. Doi :
10.1089/106652799318274.

[6] P. Cheeseman and J. Stutz. (1996) “Bayesian classification (AutoClass):
Theory and results”, Advances in Knowledge Discovery and Data
Mining, pages 153-180, ISBN: 0-262-56097-6.

[7] Martin Ester, Hans-Peter Kriegel, Jorg Sander and Xiaowei Xu. (1996)
“A density-based algorithm for discovering clusters in large spatial
databases with noise”, Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining, pages 226-231, Portland,
Orgon.

[8] Doug Fisher. (1987) “Improving Inference through Conceptual
Clustering”, (AAAI'87) Proceedings of the sixth National conference on
Artificial intelligence - Volume 2, pages 461-465.

[9] John H. Gennari, Pat Langley, and Doug Fisher. (1989) “Models of
incremental concept formation”, Volume 40, Issues 1-3, Pages 11-61,
September.

[10] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. (1998) “CURE: An
efficient clustering algorithm for large databases”, (SIGMOD '98)
Proceedings of the 1998 ACM SIGMOD International Conference on
Management of Data, pages 73-84, New York.

[11] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. (1999) “ROCK: a
robust clustering algorithm for categorical attributes”, Information
Systems, Volume 25, Issue 5, July, Pages 345-366.

[12] Jiawei Han, Jian Pei, and Yiwen Yin. (2000) “Mining Frequent Patterns
without Candidate Generation”, Proc. the 2000 ACM SIGMOD
international conference on Management of data.

[13] Bai Hong-tao, He Li-li, Ouyang Dan-tong, Li Zhan-shan, and Li
He.(2009) “K-Means on Commodity GPUs with CUDA”, 2009 WRI
World Congress on Computer Science and Information Engineering, Los
Angeles, California USA.

[14] G. Karypis, E. H. Han, and V. Kumar. (1999) “CHAMELEON: A
hierarchical clustering algorithm using dynamic modeling”, Department
of Computer Science, University of Minnesota, Minneapolis, Volume:
32, Issue:8, pages 68-75.

[15] L. Kaufman and P. J. Rousseeuw. (1990) “Finding groups in data: an
Introduction to cluster analysis”, John Wiley & Sons.

[16] Teuvo Kohonen. (1990) “The self-organizing map”, Proceedings of the
IEEE, Vol. 78, No 9, pages 1464-1480, September.

[17] J. B. McQueen. (1967) “Some Methods of Classification and Analysis of
Multivariate Observations.” Proceedings of the 5th Berkeley Symposium
on Mathematical Statistics and Probability, pages 281-297.

[18] Raymond T. Ng and Jiawei Han. (1994) “Efficient and effective
clustering methods for spatial data mining”, Proceedings of the 20th
VLDB Conference, pages 144-155, Santiago, Chile.

[19] NVIDIA Official Website ， CUDA Zone ， (2011) ，
http://www.nvidia.com.tw/object/cuda_home_new_tw.html.

[20] OpenCL Official Website，(2011)，http://www.khronos.org/opencl/.

[21] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.
(1998) “WaveCluster : A multi-resolution clustering approach for very
large spatial databases”, (VLDB '98) Proceedings of the 24rd
International Conference on Very Large Data Bases, Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA.

[22] E. M. Voorhees. (1986) “Implementing agglomerative hierarchical
clustering algorithms for use in document retrieval”, Information
Processing & Management, 22:465-476.

[23] Wei Wang, Jiong Yang, and Richard Muntz. (1997) “STING: a
statistical information grid approach to spatial data mining”, Proc. 23rd
Int. Conf. on Very Large Data Bases (VLDB), 186-195.

[24] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. (1996) “BIRCH:
An Efficient Data Clustering Method for Very Large Databases”,
Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 103-114, Montreal, Canada.

[25] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. (1997) “BIRCH: A
new data clustering algorithm and its applications”, Data Mining and
Knowledge Discovery, pages 141-182.

[26] . Jiayi Zhou, Kun-Ming Yu, and Bin-Chang Wu. (2010) “Parallel
frequent patterns mining algorithm on GPU”, Systems Man and
Cybernetics SMC 2010 IEEE International Conference on (2010), Pages
435-440.

