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Applying the mountain pass theorem for a
class of asymptotically linear Schrodinger
equation

Kuan-Ju Chen
Abstract — In this paper, we consider the following nonlinear Schrodinger problem

AU+ (AV(X)+Z(X))u= f(u) inR",
{ ue H'(®RY), u>0 inR", N>3
where A >0, f(t) is asymptotically linear at infinity, that is, f(t)~O(t) as t—>o. We
don’t require the following technical condition of the Ambrosetti-Rabinowtiz type, that is, for some
0>2,
osﬁmszmmslumu
0 0

foral (x,u)e R"xR.

We use the so-called mountain pass geometry to prove that if V, Z and f satisfy some suitable
conditions, there exists A" >0, such that the problem admits at least one positive solution for
2e(0,1).

K eywor ds— the mountain pass theorem, Schrodinger equation.

1. INTRODUCTION
We consider the existence of positive solutions for the following Schrodinger equation

AU+ AV (X)+Z(X))u= f(u) inRrR",
{u eH'(R"), u>0inRY,N>3(1L1)
where A4 € (0,00) and we assume on the potentials V (X), Z(x) € C(R",R)
(H1) thereexists M >0 suchthat M >V(X)>0 forall XeR" and the potential well
Q:=Int V*(0) isanon-empty bounded open set composed of K open connected components
denoted by Q;, je{l...,k}, whichsatisfy d(€;,Q;)>0 for i# ], thatis,
Q=0 uQ,U---uQ,,
with smooth boundary 6Q and V~*(0) =Q;
(H2) there exist two positive constants M, and M, suchthat V and Z verify
0<M, <AV(X)+Z(x)

fordl xerMand 1 >0
and

1<Z(x) foral xeRr".
and onthe function f (t) e C'(R,R)
(fy)y f(t)>0 if t>0,andf(t)=0(t) as t >O0;
(f2) thereisaconstant O<| <400 such that Iim@:I and | >inf o(-A+Z(X)),

t—oow

where o (—A+Z(X)) denotes the spectrum of the self-adjoint operator
“A+Z(X): H*R") - L*(RY);



f(t
(3) sug# <My;
>
The main features of problem (1.1) isthat the nonlinearity is asymptotically linear. Our main results

are the following:

Theorem 1.1 Assume that (H1)-(H2), (f1)-(f3) hold, there exists A* >0 such that problem (1.1)
has at least one positive solution for al A € (0,17) .

Theorem 1.2 Assume that (H1)-(H2), (f1)-(f3) hold. Then, for any non-empty subset I" of
{12,...,K}, thereexists A" suchthat, for A > A", problem (P), hasapositive solution U, .

Moreover, the family {u/1 }lZ " has the following properties: For any sequence A, — o0, we can
. 1 N . .
extract a subsequence /lq such that U, converges stronglyin H*(R"™) toafunction U which
satisfies U(X) =0 for X& Q. and therestriction U |Qj isaleast energy solution of
—au+Z(xu=f(u), u>0 InQ,,

Ul =0 for jeT,

where Q  =U, Q.

Asacorollary of Theorem 1.2, we have the following

Corollary 1.3 Under the assumptions of Theorem 1.2, there exists A" >0 suchthat, for A > 1",
problem (P), hasatleast 2 —1 positive solutions.

In all the above mentioned papers, the following technical condition of the Ambrosetti-Rabinowtiz
type were imposed, that is, for some 6 > 2,

<FE=[ fOd<=f @
0 0 0 1.2
foral (x,u) e R"xR.

It iswell known that the main role of (1.2) isto ensure the boundedness of all (PS) . -sequences or

minimizing sequence of the corresponding functional. By asimple calculation, (1.2) showsthat f (t)
must be superlinear with respectto t at infinity, that is,
. f(t
|Im£ =00
t—oo t

However, the study of many practical problems, e.g. special solutions of Maxwell’s equations under
some suitable constitutive assumptions, leads to some problems related to problem (1.1), in which

f(t) isasymptoticaly linear with respectto t at infinity. Without (1.2), it becomes more
complicated.

2. PRELIMINARY REMARKS
In this section, we fix some notations and define some functionals used in this work.
Since weintend to find positive solutions, let us assume that

f(t)=0 for al t e (—»,0].
The nonnegative weak solutions of problem (1.1) are critical points of the functional
l,:H, >R givenby

I, (u)
- % [LVuP vV (9 +Z(pu - [ F (),

t
where F(t) = J.O f(r) and H, isthe space of functions defined by



H/l

={ue H}RY): jRN (AV(X) + Z(X))u? < 0}
Here after, J.RNh denotes the integral IRN hdx . We define

lull,=(] | VU +GV () +Z()u)?

forueH,
and we can easily seethat (H,,||-||,) isaHilbert spacefor 4 >0.
We also writefor anopenset D < RN

H, (D)

={ue Hl(D):jD (AV(X) + Z(X))U? < o0},
lullo=(_1VUF +V () + Z(x)u?)’

forue H, (D).
We also define the following notations:

[ufp=]_lul” dx for pe[icc).
R
lul? :IRN (| Vu[? +Mu)dx.

HY(RN)

Here M, >0 isthe constant appearing in (H2) and thus || - || is equivalent to the standard

HY(RM)
H*(RN) -norm. Since

[[ull <[fufl;, 2.2)

HY(RM)
wehae H, c H'(R") and H, canbeembeddedinto L°(R") (2< p<2Y% for
N>3, 2<p<o for N =2 ) continuously, that is, thereexists C, >0 such that

lul,<C,lu ||H1(RN) for al u.(2.2)

Inview of (H2),
2 2
Mo [[ull o, <l

foralue H(D)and 2 > 0.

We remark that when D isbounded, H (D)= H"(D) and ll-1l, o isequivalentto
1l -

Foreach je{12...,k}, wefix abounded open subset Q'j with smooth boundary such that
i) Q cQ),
(i) Q NQ, =¢ foral j=i,
andfor T {12 ,K}, I"#¢,letusfix

Q. =v,,Q andQ. =u,_ Q..

In what follows, C, isthe minimax level of Mountain Pass Theorem related to the functional

I :Hé(Qj)—HR given by

jer’



| (u)= % Jo IVuF +Z09u* - [ F(W),

We know that the critical pointsof | | ae weak solutions of the following problem
—Au+Z(x)u=f(u) inQ,,
u=0 onaoQ;.

3. AN AUXILIARY PROBLEM
In this section, we introduce a modification of f (U) asin del Pino-Felmer [6] to obtain a family

of solutions described in Theorem 1.1. Since we seek positive solutions, we can assume that
f(t)=0 foral t<0.

Let f(t) beafunction satisfying (f1)-(f2). We choose asmall number v € (O,%) and we set

f, F:R>R the following functions

(o) = min{f (t),vt} fort>0,
B 0 fort <O,

~ t ~
and F(t) :IO f(r). By (f1) we can seethat thereexistsasmall r, >0 suchthat

f(t)=f(t) for|ti<r,.
Moreover there holds
f(t)=vt forlarget >0,
f(t)=0 fort<o.
Note that
ft)< f(t) foranyteR.(3.2)
In what follows, we fix non-empty subset I' {1 2,...,k} and wetry to find a positive solution
described in Theorem

We set
QF :UjeFQj’QF :UjeFQj’
1 forxeQ.,
Zr(x): ;
0, forxeQ,
and let

g(xt) = 2 (X) F () + @ 2 () T (1),

(3.2)
for (x,t) e RV xR,

G(x,t) :J'; g(x,s)

= 2r OF () + (L= 2- D F (1).
Moreover, under the conditions (H1)-(H2) and (f1)-(f3), the functional @, (u): H, - R givenby

@, (u) = % I.RN | VU +(AV(X) + Z(X))u?

= GOCU) (33

belongsto ct (H 25 R) anditscritical points are nonnegative weak solutions of



—Au+ (AV (X) + Z(X))u = g(x,u)
inR". =

From now on we try to find a solution of the problem (3.4). We will find asolution U, (X) of

4)

problem (1.1) viaaversion of the mountain pass theorem used in [5] and besides other properties we
will show that the mountain passsolution U, (X) satisfies |U, (X) |<T, in RN\ Q,, thatis,
u, (X) aso solvesthe original problem.
We now recall the version of the mountain pass theorem.
Proposition 3.1let E beareal Banach space withitsdual space E* and suppose that
| eC'(E,R) satisfiesthe condition
max{l (0),1 (u)}<a < B <inf 1(u)

llull=p
forsome a <f, p>0 and U € E with ||u,|[>f.Let C= B be characterized by

c=inf max | (y(t))

ye® 0<t<l
where @ ={y € C([0,1],E):¥(0) =0,y(1) =u, } isthe set of continuous pathsjoining O and
U, . Then there existsasequence {U, } — E suchthat
[(u)——>c=>p

and
@y, DI () [l ——0.

For the functional defined by (3.3), we have the following lemma.
Lemma 3.2 Assume that (H1)-(H2) and (f1)-(f2) hold. Then we have

(1) thereexist p, >0 and S >0 independentof A >0 suchthat
®, ()= #>0foral|[u],= p,,
@, (u)>0foradl 0O<||u|l,< p,.

o =inf{ jRN (VuP +Z(x)u®—1u?)dx:

(2) let A <3Z where , then there exists

ue HY(RY) with|u3=1}
ee H'(R") suchthat | €|,>p, and @, (€)<O.
Proof. (1) Given £ >0, pe (L (N+2)/(N-2)),by (f1) and (f2), thereexists C_ >0 such
that
0< f(t)<e|t|+C, |t]°,

(3.5)
fordlteRR,
O<F(t)<e|t] +C, |t|"",
(3.6)
foraltelR.

Taking &€ =M /4 in (3.6), using Sobolev embedding and Holder's inequality, we see that, for
any ueH,(R"),



@, @)= ul;
[ (e COF () + (1= 2 () F ()

1. 2
>~ llul; [, F(udx
2SIl =3[ Mo Jul o Notingafunction S(p) =% p—C,C71p"
c. [ Jul o

1 > 1 2 p+l
2Ellulh —ZIIUIIA —C, Ul

1
( 4IIUIIA C.CRAlMIRuI-

satisfiesthat S(0) =0, S(0) >0, S(+w)=- andwefinda p, >0 suchthat
S(py) =sup,., S(p) > 0. Setting B =S(p,)p,, wehave @, (u)=> >0 foral
lull,= o,

(2) Since A <37, thereexistsan & >0 suchthat A+ 3+ <0.Forthis € >0, fromthe
definition of G,Wemaychoose 0<peHR") suchthat

¢ 1=

with jRN (Vo[ +Z(X)p> —1p>)dx <o +e.

deduce that, fort > O,

D, (tg) 1 G(x.t¢)
lim =52 = 2 g1 lim [ =5

< [ AV +Z(39° ~19)dx

Therefore, by (f2) and the Fatou’s Lemmawe

1 then for asufficiently large t, >0 such that
2
2
+ 2)LJ-]RNV(X)(;) dx

s%(lM +0+¢)<0,

e=t,¢ with || e|[,>p, and D, (e)<O0.
We look for a positive solution of problem (1.1) by mountain pass type argument used in [5]. By
Lemma 3.2, we can define the mountain pass value. For A € (0,5%) , we set

c, = inf max®d, (y(t)),

yel'; te[0,1]

where
T, ={r®) eC([0L,H,(R"):
y(0) =0, y(1)=#,
where € isgiveninLemma3.2. From Lemma 3.2 and Ekeland’s principle, for any A € (0,57) , the
functional @, hasaMP geometry, we deduce (see [5]) the existence of a Cerami sequence at the MP

level C,,namelyofa {u,} < H, suchthat



®,(u,)—>c,
(B 10, 1) 119 (U) [}y = O 7
asn— oo,
where H;*(R") denotesthe dual spaceof H,(R"). At this point to get an existence result it
clearly sufficesto show that {U, } isbounded and thenthat {u,} hasaconvergent subsequence
whose limit isanontrivial critical pointof @, . Thus @, (u) hasacritica point u, satisfying
®,(u,)=0 and @, (u,)=c,.Alsoweshowthat {U,} isbounded.

By the above Lemma 3.2, we have the following a priori bound for the mountain passvalue C, .

Corollary 3.3 Thereareconstants b >0, b, >0 suchthatfor 4 € (0,5

b <c, <h, (38

Proof. By Lemma 3.2, we have
max ®, (y(t)) > inf @, (u)> 8.

te[0,1] [lull, =po

On the other hand, taking apath 7, (t) =te, where € isgivenin Lemma3.2, we have
C, < sup maxd, (y,(t)) =h,.

AE(O’;\TU) te[0,1]
Thuswe get (3.8) with I, = 8 and b, giveninthe above formula

Now we will discuss the boundedness of Cerami sequences correspondingto C, and hasa

convergent subsequence.
Lemma 3.4 Assume that (H1)-(H2) and (f1)-(f3) hold. For any A € (0,52),if {u,} < H,(R")

is aCerami sequence for @, , then we have

(i) {u,} isbounded.

(if) There exist asubsequence N, and U, € H, suchthat U, — U, stronglyin H,.

Without the condition of the Ambrosetti-Rabinowtiz type (1.2), it is difficult to show that a Cerami
sequence is bound. Now we establish some preliminary results to prove the Cerami sequence {un } is

boundedin H,(R").Let w, =u./|lu,||,.Clearly, W, isboundedin H,(R") andthere
exits We H, (R") suchthat, up to asequence, as N— o,
w, —w weaklyinH,(R"),
w, —>w aeinR", (3.9)
w, — w strongly in L2_(R").

Lemma 3.5 Assume that (H1)-(H2) and (f1)-(f3) hold. If ||u, ||, +00 as N— o0, then W

given by (3.9) isanontrivial nonnegative solution of
—Au+ (AV (X) + Z(X))u

= (- (Y1 + A= - ())v)u, (3.10)
ueH,(R").

Proof. We prove this lemma through the following three steps.
Stepl. W#0.
Since Q:=Int V*(0) isanon-empty bounded open set, there exist R>0 suchthat

Q c B;(0) andthenby (3.2), (3.1) and (f3), we have



g(xt) f(t) f (t)

sup = sup <sup <M,,
xR t>0 1 xeRt>0 t 0 1
here and below B (0) = {Xe RV x|< R} ,thenforal neN,
J‘ g(xa un) V\/ZdX
X=R n

un

<M,| _wdx (3.11)

0Ji=R
<Jon (AV (X) + Z(X))Wedx < 1.
By contradiction, if W= 0, sincethe embedding H , (B, (0))L?(B,(0)) iscompact, w, — 0
strongly in L|ZOC(I RN) as N—> o0 and, by (f1) and (f2), there exists C >0 such that

@ f(t)<c: foralteR, (3.12)
hence,
J' g(X, un) \deX
IX<R n

U, (3.13)
<C| _wdx—0 asn— o,

[x<R

Therefore, (3.11) and (3.13) give that
limsup| —g(): U) wldx < 1. (3.14)

n—ow

However, since ||U, ||, +o0 as N—> o0, it follows from (3.7) that

<® >
AL ACH LY

2
[y, 1:

that is,

oW=1-| , g(’lj’ Un) weaix,

where, and in what follows, O(1) denotes a quantity which goesto zero as N — . Clearly, this
contradicts (3.14). So, W=0.
Step2. w>0.
Let W, (X) =max{-w,(x),0}, W, (x) isasoboundedin H,(R").If ||u, |,— +o0,
then
<@, (uy), W, >
U 1l

=0(1),

that is,
A
-1 g(X|||| llJJ ||||l 906Uy Il W) iy 4 o), &
A
Since g(x,t)=0 if t<0,itfollowsfrom(3.15) that || W, ||,=0(1).Thus W =0 ae.in
xeR" and w>0.

Step 3. W solves (3.10).
By (3.7)and ||U, ||, +o0 a N—> o0, wehave



W =0(), forany¢eCy(R"),thatis,
L (VW96 + (A () + Z () w, ) dx

= g(x )W¢dx+0(1)

]RN
Since W, — W weaklyin H (RN) as N— o0, we see that
[ (VWY g+ (AV () + Z () )

= _[RN WWn¢dx+ o(D.

So, to show W solves (3.10) we only need have that

I N g(x’u“)wn¢dx
BNy

> [, G 1+ 2 (O )whdx (316)

asn—» oo,

Infact, by (3.12) and (H2),
J‘ | g(x.u,)

RN

w, [* dx
u

n

< CIRN w2dx (3.17)
<C jRN Z(X)WPdx < C,

that is, {g(ﬁ’u")Wn} isbounded in L*(R"). Let
A, ={xeR":w(x) >0}

and
Ay, ={xeR":w(x) =0}
Noting that
W, (X) = ”u ()|(|) —w(x) aeinR"
n A
and

llu, ||,— +casn— o
then U, (X) > aein XeA, as N— 0. Hence (f2) impliesthat
9, w (%)
n
= (2 (N + A= 2 (v)W(x) ae.
inXxeA, asn— o.
Since W,(X) >0 ae.in xe A, as N— o, it follows from (3.12) that



CTT I
u

n

— 0= (2 (1 + A= 2 (v)w(x)
aeinxeA, asn— .

These and (3.17) imply that
908U, (9

— (o (1 + (A= 2 ())v)W(X) (3.18)
weskly in L*(RN) asn— oo.
By ¢ eCJ(R"),weknowthat ¢ e L*(R"), and then (3.18) implies (3.16).
Lemma 3.6 Assume that (H1)-(H2) and (f1)-(f3) hold. If A < 7 Where

a:inf{j (IVUP +Z(x)u?—lu?)dx:
IR , then problem (3.10) has no nontrivial nonnegative

ue H'(IR) with|u[2=1}
solutions.
Proof. Seeking a contradiction, supposethat U € H 1(RN) isanontrivial nonnegative solution of

problem (3.10). First, by the definitionof o , thereexists Ve H'(RN) satisfying
2 2 I\2
IRN(| VV|© +Z(X)v° —Iv7)dx

<—-AM IRN vZdx.

Thus, since C;’(R") isdensein H*(R"), we may assume ve CJ(R").Now,let R>Obe
suchthat Q. < B;(0) and suppv c B;(0) and consider the Dirichlet problem for
—A+(Z(X)—1) on Bg(0).Denoteby i, theinfimum of the spectrumof —A+(Z(X)—1)
on B;(0). By construction,

Hg
'[ (VP HZ(x)Vv - Iv¥)dx
<=k > (3.19)
VI,
<—AM.

Onthe other hand, p, isaneigenvalueof —A+(Z(X)—I) associated to an eigenvector Vg >0
on Bg. It follows from the strong maximum principle that
Vg(X) >0 for all xe B,(0),

aVR—(X)<O, fordl | x|=R

Therefore, if 0#ue H'(RN) isanonnegative solution of problem (3.10), then



Hg < U, Vg g ()

=<u,(-A+Z(x)-I)vg >5 (0
= j "o Vu-VvR+J'BR(O) (Z(x)-1)uv,

- I Ve(X) (X)uda
Bz(0)  On

> jBR(O) (—Au+ (Z(X) - Uu)v,
=<(-A+Z(x)-1)uv>
=—AJ'BR o V (X)uvg
>-IM j UV,

Bz(0)

=—AM<u,v;>

Br(0)

Bz (0)°
where <-,-> ., denotesthe scalar product of L?(Bx(0)).Butsince U>0 and V,>0,we
may choose R >0 large enough suchthat < U, Vg > 0> 0. So, the above calculation shows that

Ug = =AM in contradiction with (3.19).
Now, we give the proof of the Lemma 3.4.
Proof of the Lemma3.4. Clearly, if ||U, ||,—> 4+ as N—> o0, fromLemma3.5 and Lemma6, we

get acontradiction. Hence, {u, } isboundedin H, (R").
To prove (ii) of Lemma, wefix A€ (0,52] and {u,} satisfying(3.7). After extracting a
subsequence if necessary, we may assumethat U, — U, weaklyin H, . Itissufficient to prove that

forany & >0, thereexist R(g) >R, (R, isgivenby Q. < B, (0))and n(s)>0 suchthat
j\x\>R' VU, AV (9 +Z()u; < e,

foral R> R(g) and n> n(e).
Let 75 :R" —[0,1] beasmooth function such that
0, 0gIx|< R
Ns(X) = 2 (321
1 |X=2R

Moreover, there existsaconstant C; independent of R such that

(3.20)

| Vne(X) < % foral xe R".(3.22)

Thenforany ue H,(R") andal R>1,thereexistsaconstant C, >0 such that

Ingull,<C llull, Since <®,(u,),neU, >=0(1), weknow that, for any & >0, there exists
N(e) >0 suchthat

< q);l (u,),nu, >

< C 1D, (Uy) 11Uy

<—,forn>n(e),

&
4



that is, if N> nN(e) , we have for sufficiently large R(¢) > R, with Q. < B (0),

L VU, F+V 00+ Z(9)up)ne
+u,Vu, -V,

e &
< FUmau,+

s &
SVIRN Nk U, | +Z.
Thenfor R>R(g) and n>n(e), combing (3.21), (3.22) and (3.22) we deduce that
[ o (VU PV () +Z(3) —v)ul)n

C e C, ¢
<2y, | +E <242
R 4 R 4
Noting that the constant C, isindependent of R, we canchoose R> 0 large enough such that
(3.20) holds.
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