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摘要

本文係針對海軍官校應用科學系陳冠如教授出國發表學術論文之過程進行報

告。報告內容包括參加會議目的、參加會議過程、與會心得及建議事項。
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一、會議目的

World Academy of Science, Engineering and Technology is a scientific

society of distinguished scholars engaged in scientific, engineering and technological

research, dedicated to the furtherance of science, engineering and technology. 本會

議為第三十二屆資訊科學與應用數學的國際會議。這會議讓計算機科學和應用數

學的學術科學家、研究員和學者交換和分享他們的經驗和研究結果。WASET 會議

每年在世界各地舉辦數個重要國際研討會，本人參加今年於 01 月 29 至 01 月 31

日為期三天在阿拉伯聯合大公國的杜拜舉行的會議，與會者約數百餘人，發表論

文達數百篇；其目的在分享各國數學學者研究之成果。本人所發表論文題目：

中文題目：利用山路引理來證得漸進線性薛丁格方程式解的存在性

英文題目：Applying the mountain pass theorem for a class of asymptotically linear

Schrodinger equation

二、參加會議經過

非常感謝國科會自然處的經費支援，使得本人得以參加 2012 年 01 月的第三

十二屆資訊科學與應用數學的國際會議在阿拉伯聯合大公國的杜拜所辦的國際

研討會，參加之各地的學者專家十分踴躍，將近有數百餘人註冊，大多為中東、

歐美人士，大會選在阿拉伯聯合大公國的杜拜的一家飯店舉行。大會總共發表了

百多場大會學術演講，及二百多個海報張貼論文。此次的會議內容主題主要是計

算機科學在數學上的應用，讓會議的參與者除了可以和各國學者分享自己的研究

成果以外，也有機會可以聆聽與學習各國學者的研究主題，充實自己在研究領域

中的基本知能。

本人同時於會中發表海報張貼學術論文。所發表海報論文

中文題目：利用山路引理來證得漸進線性薛丁格方程式解的存在性

英文題目：Applying the mountain pass theorem for a class of asymptotically linear

Schrodinger equation



此偏論文很高興已被 WASET 收錄到期刊。

三、與會心得

首先要感謝行政院國家科學委員會自然處給予本人出席國際會議的差旅補

助，讓本人有機會去見識到所謂的國際大型會議，參與過程本人增加不少國際觀

與吸收到專業的研究知識。此次參與會議和往年參加的國際會議有一個最大的不

同，即是會議在飯店舉行，感覺有點不夠有學術氛圍，且閒雜人等太多，常有路

人來探頭探腦參觀，影響演講者情緒。

現在正是杜拜的冬季，氣候宜人，大體而言，整個環境給人相當舒服的感受。

拿到會議手冊後，一般就是需要好好規劃一番，想看看有沒有可合作的方向。

一路聽下來發覺到一些能夠繼續拿來研究的題材，收獲良多。在報告完本人

的研究後發現，與會的聽眾都很專注地聆聽報告者的報告，並且從不同的角度提

出的建議與肯定，這些意見確實使本人受到相當的啟發，受益良多。

四、建議

這次發表論文有許多是研究生，看到準備充分，演說自然，深深感到一定

要持續努力，否則一定會被超越。非常感謝國科會與自然處提供此機會讓本人

能夠出國參加國際研討會與國際研究接觸，對於個人未來的研究視野有著一定

的正向影響作用，也提昇研究動機與能力。建議能夠鼓勵並補助更多同仁參與

類似的會議，提升國際觀。



Applying the mountain pass theorem for a
class of asymptotically linear Schrodinger

equation
Kuan-Ju Chen

Abstract－In this paper, we consider the following nonlinear Schrodinger problem
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where 0 , ( )f t is asymptotically linear at infinity, that is, ( ) ( )f t O t as t . We
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We use the so-called mountain pass geometry to prove that if V, Z and f satisfy some suitable

conditions, there exists 0 , such that the problem admits at least one positive solution for

(0 )   .

Keywords－the mountain pass theorem, Schrodinger equation.

1. INTRODUCTION
We consider the existence of positive solutions for the following Schrodinger equation
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where (0 )  and we assume on the potentials ( )V x , ( ) ( )NZ x C 
(H1) there exists 0M  such that ( ) 0M V x  for all Nx and the potential well

Int 1(0)V  is a non-empty bounded open set composed of k open connected components

denoted by j , 1j { k}   , which satisfy ( ) 0i jd   for i j , that is,

1 2 k  
with smooth boundary  and 1(0)V  ;
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The main features of problem (1.1) is that the nonlinearity is asymptotically linear. Our main results
are the following:

Theorem 1.1 Assume that (H1)-(H2), (f1)-(f3) hold, there exists 0 such that problem (1.1)

has at least one positive solution for all (0 )   .

Theorem 1.2 Assume that (H1)-(H2), (f1)-(f3) hold. Then, for any non-empty subset  of

1 2{ k}  , there exists  such that, for   , problem ( )P  has a positive solution u.

Moreover, the family {u }  
has the following properties: For any sequence n, we can

extract a subsequence
in such that

inu converges strongly in 1( )NH  to a function u which

satisfies ( ) 0u x  for x  , and the restriction
j
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where j j    .

As a corollary of Theorem 1.2, we have the following

Corollary 1.3 Under the assumptions of Theorem 1.2, there exists 0 such that, for   ,

problem ( )P  has at least 2 1k  positive solutions.

In all the above mentioned papers, the following technical condition of the Ambrosetti-Rabinowtiz
type were imposed, that is, for some 2 ,
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(1.2)

It is well known that the main role of (1.2) is to ensure the boundedness of all (PS) c -sequences or

minimizing sequence of the corresponding functional. By a simple calculation, (1.2) shows that ( )f t
must be superlinear with respect to t at infinity, that is,

( )
lim
t

f t
t



However, the study of many practical problems, e.g. special solutions of Maxwell’s equations under 
some suitable constitutive assumptions, leads to some problems related to problem (1.1), in which

( )f t is asymptotically linear with respect to t at infinity. Without (1.2), it becomes more
complicated.

2. PRELIMINARY REMARKS
In this section, we fix some notations and define some functionals used in this work.
Since we intend to find positive solutions, let us assume that

( ) 0 for all ( 0]f t t 
The nonnegative weak solutions of problem (1.1) are critical points of the functional

I H   given by
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and we can easily see that ( )H  is a Hilbert space for 0 .
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We also define the following notations:
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We remark that when D is bounded, 1( ) ( )H D H D and D is equivalent to
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For each 1 2j { k}   , we fix a bounded open subset j
 with smooth boundary such that
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In what follows, jc is the minimax level of Mountain Pass Theorem related to the functional
1
0 ( )j jI H   given by
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We know that the critical points of jI are weak solutions of the following problem
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3. AN AUXILIARY PROBLEM
In this section, we introduce a modification of ( )f u as in del Pino-Felmer [6] to obtain a family

of solutions described in Theorem 1.1. Since we seek positive solutions, we can assume that
( ) 0f t  for all 0t  .

Let ( )f t be a function satisfying (f1)-(f2). We choose a small number 0
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Moreover, under the conditions (H1)-(H2) and (f1)-(f3), the functional ( )u H    given by
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belongs to 1( )C H and its critical points are nonnegative weak solutions of
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From now on we try to find a solution of the problem (3.4). We will find a solution ( )u x of

problem (1.1) via a version of the mountain pass theorem used in [5] and besides other properties we

will show that the mountain pass solution ( )u x satisfies ( )u x r   in N 
  , that is,

( )u x also solves the original problem.

We now recall the version of the mountain pass theorem.

Proposition 3.1 let E be a real Banach space with its dual space E and suppose that
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For the functional defined by (3.3), we have the following lemma.
Lemma 3.2 Assume that (H1)-(H2) and (f1)-(f2) hold. Then we have
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Taking 0 4M  in (3.6), using Sobolev embedding and Holder's inequality, we see that, for

any ( )Nu H  ,
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  

 

   

  

















Noting a function 11
14( ) p p

pS C C  
 

satisfies that (0) 0S  , (0) 0S  , ( )S   and we find a 0 0 such that

0 0( ) sup ( ) 0S S   . Setting 0 0( )S   , we have ( ) 0u    for all

0u   .

(2) Since M
  , there exists an 0 such that 0M M

    . For this 0 , from the

definition of , we may choose 10 ( )NH   such that
2
2

2 2 2

1

with ( ( ) )
N

Z x l dx



    



    
Therefore, by (f2) and the Fatou’sLemma we

deduce that, for 0t  ,

2
2 2

2 2 2

2 2

( ) 1 ( )
lim lim

2
1

( ( ) )
2
1

( )
2
1

( ) 0
2

N

N

N

t t

t G x t
dx

t t

Z x l dx

V x dx

M




 


  

 

  

 

 
 

   



   













then for a sufficiently large 0 0t  such that

0e t  with 0e   and ( ) 0e  .

We look for a positive solution of problem (1.1) by mountain pass type argument used in [5]. By
Lemma 3.2, we can define the mountain pass value. For (0 )M

   , we set

[0 1]
inf max ( ( ))

t
c t


 


  

  

where

 { ( ) [0 1] ( )

(0) 0 (1) }

Nt C H

e
 

 

    

  



where e is given in Lemma 3.2. From Lemma 3.2and Ekeland’s principle, for any (0 )M
   , the

functional  has a MP geometry, we deduce (see [5]) the existence of a Cerami sequence at the MP

level c, namely of a n{u } H such that



1 ( )

( )

(1 ) ( ) 0

as

N

n

n n H

u c

u u

n


 

  


 

   




(3.7)

where 1( )NH
  denotes the dual space of ( )NH . At this point to get an existence result it

clearly suffices to show that n{u } is bounded and then that n{u } has a convergent subsequence

whose limit is a nontrivial critical point of  . Thus ( )u has a critical point u satisfying

( ) 0u 
  and ( )u c    . Also we show that n{u } is bounded.

By the above Lemma 3.2, we have the following a priori bound for the mountain pass value c

Corollary 3.3 There are constants 1 0b  , 2 0b  such that for (0 )M
  

1 2b c b  (3.8)

Proof. By Lemma 3.2, we have

0[0 1]
max ( ( )) inf ( )

ut
t u


 
 

 
    

On the other hand, taking a path 0 ( )t te  , where e is given in Lemma 3.2, we have

0 2[0 1](0 )
sup max ( ( ))

M
t

c t b


 



   

   

Thus we get (3.8) with 1b  and 2b given in the above formula.

Now we will discuss the boundedness of Cerami sequences corresponding to c and has a

convergent subsequence.
Lemma 3.4 Assume that (H1)-(H2) and (f1)-(f3) hold. For any (0 )M

   , if ( )N
n{u } H 

is a Cerami sequence for  , then we have

(i) n{u } is bounded.

(ii) There exist a subsequence kn and 0u H such that 0knu u strongly in H.

Without the condition of the Ambrosetti-Rabinowtiz type (1.2), it is difficult to show that a Cerami
sequence is bound. Now we establish some preliminary results to prove the Cerami sequence n{u } is

bounded in ( )NH . Let n n nw u u   . Clearly, nw is bounded in ( )NH and there

exists ( )Nw H  such that, up to a sequence, as n ,

2

weakly in ( )
a e in

strongly in ( )

N
n

N
n

N
n loc

w w H
w w

w w L

 
   
  







(3.9)

Lemma 3.5 Assume that (H1)-(H2) and (f1)-(f3) hold. If nu   as n , then w
given by (3.9) is a nontrivial nonnegative solution of

( ( ) ( ))
( ( ) (1 ( )) )

( )N

u V x Z x u
x l x u

u H


   

  
   

 
(3.10)

Proof. We prove this lemma through the following three steps.
Step1. 0w .

Since Int 1(0)V  is a non-empty bounded open set, there exist 0R  such that

(0)RB and then by (3.2), (3.1) and (f3), we have




0

00 0

( ) ( ) ( )
sup sup sup

tx R t x R t

g x t f t f t
M

t t t   


   

here and below  (0) N
RB x x R   , then for all n,

2

2
0

2

( )

( ( ) ( )) 1

n
nx R

n

nx R

nx R

g x u
w dx

u

M w dx

V x Z x w dx











  






(3.11)

By contradiction, if 0w  , since the embedding 2( (0)) ( (0))R RH B L B is compact, 0nw 

strongly in 2 ( )N
locL IR as n  and, by (f1) and (f2), there exists 0C  such that

( ) ( )
for all

g x t f t
C t

t t


     (3.12)

hence,

2

2

( )

0 as

n
nx R

n

nx R

g x u
w dx

u

C w dx n







  




(3.13)

Therefore, (3.11) and (3.13) give that

2( )
1limsup N

n
n

nn

g x u
w dx

u


 (3.14)

However, since nu   as n , it follows from (3.7) that

2

( )
(1)n n

n

< u u >
o

u




 
 

 
that is,

2( )
(1) 1

N

n
nIR

n

g x u
o w dx

u


 
where, and in what follows, (1)o denotes a quantity which goes to zero as n . Clearly, this

contradicts (3.14). So, 0w .

Step 2. 0w  .

Let ( ) max ( ) 0n nw x { w x }    , ( )nw x is also bounded in ( )NH . If nu  ,

then

( )
(1)n n

n

< u w >
o

u




  
 

 
that is,

2

( )
(1)

N

n

n n
nIR

n

w

g x u w
w dx o

u











 

 
  

 
(3.15)

Since ( ) 0g x t if 0t  , it follows from (3.15) that (1)nw o
  . Thus 0w a.e. in

Nx and 0w  .
Step 3. w solves (3.10).

By (3.7) and nu   as n , we have



0

( )
(1) for any ( )Nn

n

< u >
o C

u








 

   
 

 that is,

( ( ( ) ( )) )

( )
(1)

N

N

n n

n
n

n

w V x Z x w dx

g x u
w dx o

u

  



   


  








Since nw w weakly in 1( )NH  as n , we see that

( ( ( ) ( )) )

( )
(1)

N

N

n
n

n

w V x Z x w dx

g x u
w dx o

u

  



   


  








So, to show w solves (3.10) we only need have that

( )

( ( ) (1 ( )) )

as

N

N

n
n

n

g x u
w dx

u

x l x w dx

n



    



  









(3.16)

In fact, by (3.12) and (H2),

2

2

2

( )

( )

N

N

N

n
n

n

n

n

g x u
w dx

u

C w dx

C Z x w dx C


 



  












(3.17)

that is, ( )n

n

g x u
nu{ w } is bounded in 2 ( )NL  . Let

( ) 0N{x w x }    
and

0 ( ) 0N{x w x }     
Noting that

( )
( ) ( ) a e in Nn

n
n

u x
w x w x

u 

  
 



and
asnu n  

then ( )nu x  a.e. in x  as n . Hence (f2) implies that

( )
( )

( ( ) (1 ( )) ) ( ) a e
in as

n
n

n

g x u
w x

u

x l x w x
x n
   





   
 

Since ( ) 0nw x  a.e. in 0x as n , it follows from (3.12) that



0

( )
( )

0 ( ( ) (1 ( )) ) ( )
a e in as

n
n

n

g x u
w x

u

x l x w x
x n
   



   
  

These and (3.17) imply that

2

( )
( )

( ( ) (1 ( )) ) ( )

weakly in ( ) as

n
n

n

N

g x u
w x

u

x l x w x

L n

   



 


 (3.18)

By 0 ( )NC   , we know that 2 ( )NL  , and then (3.18) implies (3.16).

Lemma 3.6 Assume that (H1)-(H2) and (f1)-(f3) hold. If M
  where

2 2 2

1 2
2

inf ( ( ) )

( ) with 1

NIR

N

{ u Z x u lu dx

u H u }IR

    

 


, then problem (3.10) has no nontrivial nonnegative

solutions.

Proof. Seeking a contradiction, suppose that 1( )Nu H  is a nontrivial nonnegative solution of

problem (3.10). First, by the definition of , there exists 1( )Nv H  satisfying
2 2 2

2

( ( ) )
N

N

v Z x v lv dx

M v dx

  

 








Thus, since 0 ( )NC  is dense in 1( )NH  , we may assume 0 ( )Nv C  . Now, let 0R  be

such that (0)RB  and supp (0)Rv B and consider the Dirichlet problem for

( ( ) )Z x l  on (0)RB . Denote by R the infimum of the spectrum of ( ( ) )Z x l 

on (0)RB . By construction,

2 2 2

2
2

( ( ) )
N

R

v Z x v lv dx

v
M





  



 

 (3.19)

On the other hand, R is an eigenvalue of ( ( ) )Z x l  associated to an eigenvector 0Rv 

on RB . It follows from the strong maximum principle that

( ) 0 for all (0)

( )
0 for all

R R

R

v x x B

v x
x R

n

  


  


Therefore, if 10 ( )Nu H   is a nonnegative solution of problem (3.10), then



(0)

(0)

(0) (0)

(0)

(0)

(0)

(0)

(0)

(0)

( ( ) )

( ( ) )

( )

( ( ( ) ) )

( ( ) )

( )

R

R

R R

R

R

R

R

R

R

R R B

R B

R R
B B

R

B

RB

R B

R
B

R
B

R B

< u v >

< u Z x l v >

u v Z x l uv

v x ud
n
u Z x l u v

< Z x l u v >

V x uv

M uv

M<u v >















  

   




   

   





  

 







where (0)RB< > denotes the scalar product of 2 ( (0))RL B . But since 0u  and 0Rv  , we

may choose 0R  large enough such that (0) 0
RR B< u v >  . So, the above calculation shows that

R M  in contradiction with (3.19).

Now, we give the proof of the Lemma 3.4.
Proof of the Lemma 3.4. Clearly, if nu   as n , from Lemma 3.5 and Lemma 6, we

get a contradiction. Hence, n{u } is bounded in ( )NH .

To prove (ii) of Lemma , we fix (0 ]M
   and n{u } satisfying (3.7). After extracting a

subsequence if necessary, we may assume that 0nu u weakly in H. It is sufficient to prove that

for any 0 , there exist 0( )R R ( 0R is given by 0
2

(0)RB
  ) and ( ) 0n  such that

2 2( ( ) ( ))

for all ( ) and ( )

n nx R
u V x Z x u

R R n n

 

 


    

  

 (3.20)

Let [0 1]N
R    be a smooth function such that

0 0
( ) 2

1
R

R
x

x
x R


 
  

(3.21)

Moreover, there exists a constant 0C independent of R such that

0( ) for all N
R

C
x x

R
    (3.22)

Then for any ( )Nu H  and all 1R  , there exists a constant 1 0C  such that

1Ru C u    Since ( ) (1)n R n< u u > o    , we know that, for any 0 , there exists

( ) 0n  such that

11 ( )

( )

( )

for ( )
4

N

n R n

n nH

< u u >

C u u

n n





 



 







 

    

   





that is, if ( )n n  , we have for sufficiently large 0( )R R with
0
(0)RB

  ,



2 2

2

( ( ( ) ( )) )

( )
4

4

N

N

N

n n R

n n R

n R n

R n

u V x Z x u

u u

f u u

u

 




 

  

  

 

   













Then for ( )R R  and ( )n n  , combing (3.21), (3.22) and (3.22) we deduce that
2 2

20 2

( ( ( ) ( ) ) )

4 4

N n n RIR

n

u V x Z x u

C C
u

R R

  

 

   

     



Noting that the constant 2C is independent of R , we can choose 0R  large enough such that

(3.20) holds.
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