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Outline of The 2011 off the Pacific coast of

Tohoku Earthquake



Source region of the earthquake
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Euraszian Plate

http://alterman47.wordpress.com

i
of Philippines Sea Plate
http://www.sonpo.or.jp

Approximate source region of the
earthquake. ‘X’ denotes the epicenter.

The pacific plate is subducting beneath the continental plate at the Japan trench.
The earthquake occurred between the two plates. 4



A large number of aftershocks
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have occurred as of December 6.



Great amount of subsidence due to coseismic slip

Horizontal displacement Vertical displacement
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¥
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120 cm
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" " (Geospatioal Information Authority of*¥apan)

A great amount of horizontal and vertical displacement occurred due to coseismic
slip. The Oshika Peninsula subsided about 120cm according to GPS observation
by the Geospatial Information Authority of Japan. The sea floor around the

epicenter moved 24m according to Japan Coast Guard. The movement was as
large as 50m according to JAMSTEC.



A large number of strong motion data was successfully

recorded by the “Strong Motion Earthquake Observation
In Japanese Ports”
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Design ground motions for Japanese Ports

Two kinds of design ground motions are considered in the seismic design of
Japanese port structures.

The Level-1 design ground motion is defined as a ground motion with the annual
probability of exceedance of 1/75.

The Level-2 design ground motion is so called “the worst case scenario” ground
motion.

Ground motions due to Ground motions due to
various earthquakes around a port critical earthquakes around a port
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Comparison with design ground motions

- The case of Onahama Port -
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It is quite natural that the observed ground motion exceeded the Level-1 design
ground motion. The observed ground motion was close to the Level-2 design
ground motion at frequencies relevant to major damage to port structures (0.3-
1Hz). But at higher frequencies, the observed ground motion exceeded the
Level-2 design ground motion. In the case of Onahama, the Level-2 design
ground motion was based on a scenario earthquake with magnitude 6.5 (but just
beneath the port). The appropriateness of the scenario should be investigated ¢
once more.



Measured tsunami height



GPS-mounted wave buoy
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Tsunami and earthquake damages

Tilted floating dock (Kuiji) Kl 25
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Collefpsed crane (Kashlma)



Tsunami and earthquake damages
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Drifted tank trucks (Sendai) -




Tsunami and earthquake damages
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Validation of the implemented countermeasures

against tsunami



Kamaishi Tsunami Breakwater
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Damages of breakwater

Landward

Landward
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Tsunami heights at Kamaishi Port and neighboring bays
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© Run-up height
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Made by Port Bureau of Ministry of Land, Infrastructure, Transport and Tourism on the basis of Coastal Engineering
Committee of Japan Society of Civil Engineers
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Simulation results for the ToHoku Earthquake in 2011

The 2011 off the Pacific
Coast of Tohoku
Earthquake (2011)

This tsunami simulation is
conducted by ‘Storm Surge
and Tsunami Simulator in
Oceans and Coastal Areas
(STOC)’, which is developed
by PARI.
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Effect of breakwater
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Effect of breakwater
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Hazard map at Oofunato

Comparison between the inundation areas at the
2011 earthquake and shown in the hazard map
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Severe damage at Taro, lwate
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Report of the Committee for Technical Investigation on Countermeasures for Earthquakes and 24
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Minor damage at Fudal, lwate
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High earthquake-resistance quay wall

Central Wharf, Hitachi-naka District, Ibaraki Port
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-Little lateral displacement of the q‘uay wall.
Liquefaction evidence was not recognized since un-sieved crushed stone is

filled as liquefaction countermeasure.
*The high earthquake resistance quay wall showed good seismic performance.
The quay went into service on March 15 after checking the burying of 26

navigation channel by tsunami.



Sendai Port: Base Isolated Gantry Crane

4 Gantry Cranes : 2 base-isolated cranes
2 non-base-isolated cranes

Trlgger Pin

Moment Transmission Bearing ’_
Base Isolation system

Patent holder : PARI and Mitsui Engineering & Shipbuilding Co, Ltd. Base-isolated cranes: No structural damage




Principles for future countermeasures

against tsunami




Major earthquakes and tsunamis in Japan(1896-2005)

O Number of casualties, @ Maximum run-up height
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Occurrence probability of subduction zone earthquake

within 30 yrs
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Future Improvement in Information Network
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Faillure mechanism of head breakwater at Kamaishi

Experiment

@ The mound was scoured at the outgoing tsunami and the head
breakwater was tilted.

North breakyvater

P e B @ Armor blocks were ripped offat

/ the outgoing tsunami.
oo SR ), | AU s

-. 7 South breakwater
@ Submerged breakwaters 2

were drifted by the first ]

incoming tsunami.,

o

Although the mound was scoured, the head breakwater was not tilted.



Faillure mechanism of breakwater at Kamaishi

Major factors in the failure under overflow tsunami

o -

The lateral force is increased

IDiﬁerence of hydraulic head
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Scour due to overflow.and flow at joint
v
The resistance force is decreased
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Safety factor _ LateralForce
againstslidingof caisson Resistanceforce




Faillure mechanism of breakwater at Kamaishi

Experimental Video under overflow tsunami

34



Faillure mechanism of breakwater at Kamaishi

Experimental Video under overflow tsunami




Fallure mechanism of breakwaters at Kamaishi

Damaged north breakwater

Experiment
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The wave pressure is slightly higher at the
ront wall and about 10% lower at the rear

wall than the hydrostatic pressure. 36

Two out of 17 caissons were slid and one was tilted.



Fallure mechanism of breakwaters at Kamaishi

Influence of scour due to overflow tsunami

The guantification of the amount of a decrease of the sliding resistance force
Is a future task




Tenacious breakwater

Outside port To prevent scour by
- Overtopping installing Iarge armor
blocks.

To prevent breakwater
sliding by installing
additional stones.

Wave pressure

6
Inside port
Safety factor against — Effectlve — The thickness of -
sliding [ ‘ addltlo_nal stones is 1/4
. ’% the caisson height.
3 *s IR | =
2 ‘Q_“
> 0‘
1 L R TIVS K
HLFvyY F(1/4)
Water level difference (m) The problem is the scour caused by

overtopping behind the breakwater.



Recommended countermeasures against tsunami

Based on the Reports of Central Disaster Management Council and
Council of Transport Policy

Level 1 Tsunami with relatively e To protect human lives
high frequency (return e To protect properties

period: 50 to 150 e To protect economic activities
years)

Level 2 One of the largest e To protect human lives
tsunamis in history e To reduce economic loss, especially
(return period: 600 to by preventing the occurrence of
1000 years) severe secondary disasters and by

enabling prompt recovery

In the event of ‘Level 2 tsunami,” the deformation of the facilities have
to be not so large to maintain the performance to reduce tsunami.
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Recommended countermeasures against tsunami

Based on the Reports of Central Disaster Management Council

(1) Basic principles

O For the largest-possible tsunamis, implement structural measures, such as
coastal protection facilities, and non-structural measures centering

on evacuation, such as preparation of hazard maps ,in accordance with a
‘disaster reduction’ philosophy that focuses on minimizing damage.

O The fundamental step in protecting human life from tsunamis is evacuating to
higher ground without hesitation, swiftly and autonomously, as soon as a strong or
extended shaking is felt.

O In communities where tsunamis arrive quickly, community development should
aim to enable evacuation within around five minutes. However, in communities
where topographical conditions or the state of land use make such responses
difficult, it is essential that measures for tsunami evacuation are thoroughly
examined with consideration to factors such as the tsunami arrival time.

40



Recommended countermeasures against tsunami

Based on the Reports of Central Disaster Management Council

(2) Preparation of a system and creation of rules for efficient evacuation

O Tsunami warnings and disaster management responses

O Improvement and strengthening of tsunami warnings and information delivery
systems

O Improvement and strengthening of earthquake and tsunami observation
system

O Designation of tsunami evacuation buildings and development of evacuation
sites and evacuation routes

O Development of rules of conducts for guiding residents for evacuation and
disaster management measures

(3) Development of communities resilient to earthquakes and tsunamis

O Multi-layer protection and construction of facilities

O Governmental and welfare facilities will be constructed in places with low
flooding risks

O Organic coordination between local disaster management plans for
municipalities and city planning

41



Recommended countermeasures against tsunami

Based on the Reports of Central Disaster Management Council

(4) Raising disaster awareness about tsunamis

O Improving hazard maps

O Thoroughness in the principle of evacuation on foot, and education about the
importance of evacuation

O Implementation of disaster education and improvement of community
disaster management capabilities

42



Efforts to biodiversity and

climate change in port areas




Restoration of coastal ecosystems located in port areas

Tidal flat- and seagrass
bed-hybrid breakwater



Global carbon cycle and

“Blue Carbon” reported in Oct, 2009

Atmosphere
41
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- Role of coastal ecosystems are unknown; a slight sink for
carbon or source?

- More than half of carbon are absorbed in coastal
ecosystems? 45



Blue Carbon flow to be tested
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