HEHE (HEER @ 2HEREES)

MBI F RS
SPIN/CAV HE & &

String Abstractions for String Verification:

The report of attending the 18 International SPIN Workshop on
Model Checking of Software and the 23" International

Conference on Computer Aided Verification

Yu, Fang (A J5)

PRI ¢ BT BOA R B A
AR AT, BB
RELER :

HBIEAR ¢ 7/12-7/22, 2011
#wEHEH © August 10, 2011

BUBAKERREBR-—RABRERHARHLHE
HERRHER (#BX)

FTEmREE AT | ERVEE A
HEAE | HIT H B B & 108 78 12
HZE 100 %
7H22 H,#
11 H
H B b BE 2011 SPIN and CAV | HE#&&E* | NT 97,277
Conferences, Snowbird,
Utah, United States.

SRR EGEE 200 F ~ 300 FEHRH)

This report summarizes my presentation and selected invited talks, tutorials, regular
paper presentations in the 18" SPIN Software Model Checking workshop and the
23" International Conference on Computer Aided Verification. I conclude with my
future research directions inspired by the talks and discussions among attendees.

(A30°)
Objective:

I am pleased to attend and present my recent work on string abstractions for string
verification in the 18" SPIN workshop on model checking of software. This year,
SPIN is co-located with the 23" International Conference on Computer Aided
Verification (CAV), which has been recognized as one of the top conferences in
Computer Science. The program of CAV consists of 9 workshops, 4 tutorial talks, 3
invited speeches, 35 regular paper presentations and 20 tool short talks and demos.
This joint event attracts many researchers in the verification and software
engincering fields, altogether with impressive brainstorming.

It has been a great experience to attend SPIN/CAV this year. I can see that in the
near fufure verification of parallel programs and verification of mobile applications
would continuously be the focus in the next few years, and has potential to bring
significant affects not only in research but also in industry and common life.

My talk on symbolic string analysis:

Veritying the properties of string manipulating programs is a crucial problem in
computer security. String operations are used extensively within web applications to

DEAHEZEALE 1 0L BB RS S A S A T BATEGEE - T XX (B

2 S PR) , AR - WER 1 % - ALITTRE S B AR 2l -
? T B AR TR R B AR i Y -

* B RA A B RS - R e -

| EREI R TR) A -

TEHEAR IES TER - DB DO R -

manipulate user input, and their erroneous use is the most common cause of security
vulnerabilities in web applications. Unfortunately, verifying string manipulating
programs is an undecidable problem in general and any approximate string analysis
technique has an inherent tension between efficiency and precision. In this paper we
present a set of sound abstractions for strings and string operations that allow for
both efficient and precise verification of string manipulating programs. Particularly,
we are able to verify properties that involve implicit relations among string variables.
We first describe an abstraction called regular abstraction which enables us to
perform string analysis using multi-track automata as a symbolic representation. We
then introduce two other abstractions---alphabet abstraction and relation
abstraction---that can be used in combination to tune the analysis precision and
efficiency. We show that these abstractions form an abstraction lattice that
generalizes the string analysis techniques studied previously in isolation, such as size
analysis or non-relational string analysis. Finally, we empirically evaluate the
effectiveness of these abstraction techniques with respect to several benchmarks and
an open source application, demonstrating that our techniques can improve the
performance without loss of accuracy of the analysis when a suitable abstraction
class is selected.

My talk was well received by the audiences. Several questions have been addressed,
e.g., how we generate constants for alphabet abstraction (we did this by collecting
constants appearing in the corresponding dependency graphs automatically), and
what the differences compared to Prof. Dirk Beyer’s recent work CPAchecker.
CPAchecker is the reimplementation of BLAST which is for analyzing C/CH+
programs. We focus on siring manipulating programs. An interesting future work is
to extend their abstraction framework to string analysis, This can be done by adding
string abstractions to their abstraction lattice. T will discuss more details later in
summary and suggestions,

Other talks: There are total 3 invited talks, 4 tutorials, 35 regular paper
presentations and 15 tool demonstrations in CAV. Below I summarizes some of
them.

HAVOC

In the CAV tutorial day, Dr, Shuvendu Lahiri from Microsoft presented SMT based
predictable analysis. The tool Havoc is a property checker for C Program. The basic
idea is translating C programs to Boogie-Memory models, to verification condition
generation, to the inputs of satisifiability SMT solver (Z3). They focus on type safety,
particularly support low-level data structure using new efficient SMT solvers. The
problem comes from that type checking in ¢ is lack of support for memory safe
violation on lists.

The idea of combining SMT: Boolean Satisfiability solving and theory reasoning
provides a powerful approach to combine decision procedures for theories [Nelson,
Oppen'79], e.g., Z3, Mathset.

One way to deal with memory model for C is treating pointer is an integer, heap as a
map and as a result, they have the following:

mem: int -> int // all values are integers,
alloc: int -> {Unallocated, allocated, freed}
base:int-> int //map base address of each pointer-> size from that address

Then they are able to translate C to Boogie (intermediate language, procedure) with
simple semantics in integers. For type checking to assertion checking, the run time
value corresponds to its compile time type.

Mem: addr-> value

Type: addr->type

HasType: value x type -> bool

forall a in addr, HasType(Mem(a), Type(a))

Here is the formula for modeling the heap:

t* -> HasType(v, Ptr(t)) <-> v==0 || v>0 && Match(v,t))

To deal with aliasing (field safety) refinement of type safety, we add field names and
offsets. Briefly, the whole idea is to treat types as additional part of the state.

Regarding the precision of the presented approach, Shuvendu mentioned that the
approach is precise to {P} S {Q}, S is a loop free program (Bound program) bounded
quantification for interpreted sets. On the other hand, the problem including unsorted
logic is undecidable. They enforce sorting restriction on \forall x \in S.F, where sort(x)
should be in an less order, so that an incomplete axiomatization of predicate
reachability analysis can quantify over lists, array, types.

In sum, synthesizing the quantifier invariants starting from a property is difficult for
real code. Havoc presents techniques for new efficient logics on SMT for type
checking of lists, arrays, etc. Here are some references: VCC, a functional memory
checker for concurrent program, can be downloaded from http://risedfun.com. For
more details about how to deal with Lists: Nelson POPL'83, Strand: Madhusudan et
al. POPL11, Trees: Wies et al, CADEI11, and Separation Logic: O'Hearn, Reynolds,
Yang CSLO1.

HAMP]

Vijay Ganesh from CMU presents his recent string constraint solver: HAMPL His
work has been recognized by theACM distinguished paper award, The motivation is
that the traditional SMT logics lacks of support for Strings. The key to support strings
is how to do approximations, so that it is precise enough to verify interesting
propertyes while coarse enough for us to conduct formal analyses.

A satisfiability solver (SAT) consists of the following key techniques: clause learning
using conflict analysis, backjumping, variable selection heuristics, restarts. The
advanced technique, Set module theory (SMT), provides combinations, under/over
approximation of formulas, DPLL(T) solving Boolean formulas, bounding (sandbox)
with an effort to combine decision procedures {but not giving ingredients).

The aim of this work is to provide a string solver using SMT, which is motivated by
security errors (very difficult to define security errors), incomplete sanity checking,

The frmawork for string analysis is:

String Program, specification -Program reasoning tool-> string formulas-->
HAMPI-->SAT, UNSAT

Theories of strings: HAMPI-based vulnerability detection: is there an assignment for
the string expression matches the regular expression. You can write as many as attack
vectors as you want to finding a string in an intersection of formal regular language.
HAMPI takes a satisfying assignment by bounding (Scalability vs. Completeness).
The trick is to find an implicit bound by variables:

Hampi->Normalizer, STP Encoder-STP solver-> STP DEcoder

Here are some recent work on string constraints: Hampi, Ardilla, Kudzu, Klee,
STP+HAMPI exceed 100+ projects. The secret of HAMPI is eager for Boolean
vectors and lazy for Arrays substitution. Another issue is how the bound is
automatically derived: length, minimal length, --> enumeration. Also HAMPI encodes
regular expression recursively and treats concatenation/kleen star to conjunction.

In the experiments, they deal with 1367 string constraints from Su [PLDI'07], and
concolic executions for XSS (the result would be similar to taint analysis), and no
replacement examples of Ardilla (Kazen et al. ISSTA'09).

Here are some related work: CFGAnalyzer, REX(MSR), DPRLE (U. Virinia) and
Klee: symbolic execution engine with implicit spec, Static analysis: Su, Security
testing: Ernst. An interesting project: NoTamper-parameter tamper detection, is based
on HAMPI. The idea is to solve S1, 82, .. to C, El, E2, ... to ~C by calling Hampi,
and submit (81, El...) to the servers to see how the server responds. If they are the
same, then ignore. Otherwise, the server differs from the tamper and mat contain
potential vulnerability.

Finally, here are some complexity results: Undecidability of of Quantified word
equations, Quine (1946), Undecidability of Quantified Word Equations with single
abstraction, Durnev (1996), Decidability of QF theory of word Equations +RE
(Makanin, 1977, Plandowski, 1996), Decidability of QF, QF word equation +length
(7), QF word equation in solved form+length+RE (G. 2011). It is worth to note that
the complexity to solve QF word equations+length constraints is open.

As for the future research direction, they will work on bound for completeness, which
appears to be another interesting questions.

Memory Safety

Prof. Ranjit Jhala from University of California, San Dicgo, presents his recent work
on memory safety. The title is using types for software verification. Specifically, he is
working on combining several techniques of artificial intelligence, formal methods
and counter example guided abstraction refinement to derive sound loop invariants
automatically.

This work is motivated by the fact that quantifiers kill SMT solvers, and the key idea

is to derive invariants without quantifiers by separating type and logic (so that logic is
quantifier free). He gave an example using a famous algorithm: "Map-reduce"

map:: (e-> (k,v) list) > e list -> (k,v) list
group:: (k, v) list -=> (k, v list) table
reduce:: (v->v->v) > (k, v list) table -> (k,v) table

Another example is on “K-means clustering.”

0. choose k centers arbitrary

1. (Map) Points to Nearest Center

2. (Group) Points by Center

3. (Reduce) Centroids into New Centers

Repeat till you feel Thappy (Convergency). The demo is on:
demo:http://goto.ucsd.edu/~rjhala/liquid/demo/index2.php

His approach can also extends to collections i.e., structure, as well as genetic types.
To make it easy checking software, they tried to avoid quantifiers by mapping factor
invariants into liquid types based on SMT+predicate abstractions. In sum, they
identify invariants that are independent of states, and use the functional language-ml
to simplify the most behaviors of C programs.

After Rajit’s ‘talk, Andre Platzer from CMU presents how to conduct logic and
computation verification of hybrid systems. Hybrid system analysis is important for
many real time applications, such as flight control. He reduced verification of hybrid
systems to image computation problems, and use differential dynamic logics to model
semantics. He realized his idea in his tool Keymaera by hacking Key, a theorem
prover for Java.

One important result is that dL. calculas is a sound and complete axiomation of hybrid
systems relative to differential equations. Based on this result, hybrid systems can be
verified by recursive decomposition differential equations/parallel computations.

Finally he mentioned how to model stochastic hybrid system using logical
foundations of cyber-physical systems.

Summary and Suggestions:

These four tutorials bring the brainstorm among the audiences. Tom Ball and Shaz
Qadeer from Microsoft Research, Prof. Moshe Vardi from Rice University, Ed Clark
from CMU, Rejeev Alur from U Penn, Kim Larson from Sweden, Alan Hu from
University of British Columbia, Daniel Kronning from Oxford University, and many
excellent researchers sit together, asked and answered sharp questions. As a junjor
faculty, I am very lucky to have this chance to attend this joint event. T cannot stop but
keep taking notes in every minute.

I have several chances to talk with Rajeeve Alur, asking my recent research problem
on Strategy Interaction Logics (joint work with Prof. Farn Wang, NTU). His insight
opinion on whether Alternating Temoral Logic is expressive enough for the

interaction of strategies directs us the next level of this research. I have also asked for
the potential future collaboration and chances to visit his lab next year. His lab in
UPenn is recognized as one of the toppest verification lab in the whole world. T
believe the experience will be rather helpful both for research and teaching,

Industry talks:

Andy Chou, the cocounder of Coverity Inc, one of the largest static analysis tool
company, gave the invited talk: static analysis tools in industry: notes from the front
line, to share his past six years experiences on applying research results to real
products to solving industry scale program analyses. He starts from static analysis
overview, with an aim to do bug-findling and fixing.

Coverity has more than 190 employees. Their tool has analyzed 3-5 billion lines of
code, detecting memory leak, deadlocks, race conditions, etc. (Here one problem
comes to my mind: how about string defects in web application.) The advantage is the
low false alarm rate (typically <20 \% out of the box) of their tools. Several
techniques have been implemented including interprocedural analysis with bottom up
function summarization. path sensitivity with false path planning, and staged
analyses, i.c., cheaper analyses are run before more expensive ones, and parallel,
incremental analysis (used to verify android kernal, ~700KLOC).

On the other hand, the things that they don't have: pointer alias analysis, heap
structure analysis, and complex string analysis. This is very interesting since all these
three topics are the current research focus of programing analysis. I have noticed more
than three papers related to these three aspects accepted in CAV. In industry, the
major defects are integer overflows, buffer overflows (unknown size to fixed size
buffer, using tainted analysis).

Later, Andy shified the topic to its business model. The big question for a static
analysis company is why the clients are willing to provide their source codes for you
to analyze. Their business model is as follows: The first stage is trial process:
customer build (download trial software, analysis, crypt result). Then the second stage
is vetting: results meeting: Ieave. Then wait, wait until the clients come to see you to
explore more vulnerabilities that are encrypted. This is very smart. Their current
customers are around 80\% in embedded systems, where people write in C/C-++. On
the other hand, there is no glory in fixing bugs. You need to motivate your developers
and engineers.

At this point, David asked the question why not using binary analysis? The thing is
that you may detect bugs but don't know how to fix them in binary analysis. Another
question is what the impact is for multi-core changes? Andy answered that it is not
really affecting the current structure. For most engineers, their first order is to keep
things simple,

Finally, Andy showed some secret statistics that are used in the internal company.
One shows that new languages do get adopted in the past years. According to their
data, the most languages that are used to develop software in order as follows: Java(-),
C(-), C++(-), C#(increase), PHP(down), Objective C(increase significantly), ..., Java
Script. This indicates what languages shall we target on. More users, more bugs, and

more the need of static analysis.

Regular Paper Presentations;

Code Synthesis

Prof. Doron Peled: presents his work on synthesis of distributed control through
knowledge accumulation. The aim is to synthesize a system using formal methods.
Their approach consists of the following stages: from a CTL/LTL specification, to
synthesis, then to a system. However, it has been shown that synthesize concurrent
programs is a undecidable problem. To tackle the problem, they focus on discovering
additional specifications to the given system, as automatic generation of controllers to
enforce a sound system. This is then the decidable alternative (synchronizing actions
as nceded by the analysis). Further more, they distribute the analysis by making
decisions distributed: local states with overlap. The knowledge is calculated based on
the states of original code alternative architecture. They can check knowledge of a
process about other processes having enough knowledge. This work will also be
published in ATVALI.

Real Time Svystems

Real time constraints are everywhere. One can analyze rela time systems using ILP
modulo theories (IMT). In CAYV, they present the tool Synthia: synthesis of real time
systems. They first perform model checking on timed automata, then synthesize the
component to satisfy the property, and finally do simplification and optimization to
build the final sound system. As we have mentioned in the previous talk, the problem
is undecidable in general. We need some means to develop either sound or complete
techniques. They adopt absiractions. They convert input models to symbolic product
automaton to explicit abstraction automaton, so that they can apply zone based
analysis with approximations. If it is too coarse to prove the property, i.e., raising
false alarms, they apply abstraction refinement. They show the experiments against
CSMA/C for 3 processcs.

Model Checking -+ Theorem Proving

Model checking demonstrates the technique of (symbolically and automatially)
exhaustive search on all reachable states and possible behaviors to check the
correctness of systems; while theorem proving shows the ability to deduct rigid
theories with axioms and proofs to assert system properties, occasionally human
interactions involved. Tt then poses an attract direction to combine both techniques. In
this talk, they combine verification: model, implementation with mathematical theory:
algorithm, implementation. They put two famous tools together: formal verification
VCC with Isabella/HOL. The contribution would be connecting a dirty code verifier
to an interactive roof assistant. The analysis stage is:

Semantics C, Memory Model VCC, Assertion Language VCC -> Graph with pure
math manipulation -> Second order logic, which maps to the implementation; VCC->
Concrete property->Abstract Property----->Isabella-> Theory

Hybrid Systems

Prof. Sriram Shankarayamana presents how to discretize Hybrid Systems using
relation abstractions. Among numerous finite state abstractions, they use
relationalization of flows in infinite state transition systems. They use R(x,x')
with/without time, connection with positive invariants, and BMC/k-induction for
relation. The strongest relation is to collect all pairs of states, from all trajectory:

R \superset {(x,x")| x<x', x~>x'}

The next problem is how to find a good way to compute relational abstractions. They
propose positive invariants or ODEs based on the fact that flows starting inside s will
remain inside s. (Nagumo's Viability Theorem (1942)). For relation abstraction, the
reflexibity: R(x,y) holds. We can derive positive invariance for the associated systems
using widening and narrowing techniques. For optimal control approaches, they
compute eigen values for affine systems. They also apply loop acceleration, function
summarization, transition invariants [Podelski+Rybalchenko]. Their tool is based on
Linear Templatest+Fixedpoint Solver (Polybedral Solver using PPL library) + box
invariants. They showed the effectiveness of their approach against NAV benchmarks
(hard hybrid system).

In sum, they propose relationalization of Ordinary Differential Equations. However,
abstraction can be coarse. Their current work consists of refinement: CEGAR

approach and trace partitioning, and reduction from liveness to safety.

Timed Automata

Georges Morbe presented fully symbolic model checking for timed automata.
UPPALL, a famous existing timed model checker, is semi-symbolic model checking,
i.e., explicit location representations. The only fully symbolic model checker for
timed automata is RED by Prof. Farn Wang using BDD-like data structures CRDs. [
was involved in the RED project a few years ago. It is good to see another symbolic
model checker presented in CAV.

They introduce Finite State Machines with Time, and conduct backward reachability
analysis on top of them. The advantages of their approach include: symbolic
interleaving traversal of discrete states, and parallelism of the components. To
symbolically model configurations, they use LinAIGs: And-Inverter Graphs extended
with linear in-equations. They use FSMT parallelized interleaving behavior, add
boolean inputs to the guards, and allow parallel behaviors. Compared to RED, FSMT
outperforms in most standard benchmarks, such ag fisher and fddi.

Another Industry Talk:

Formal in Industry

Dr. Vigyan Singhal, Osaki Company, gave a keynote speech on “Deploying Formal in
a Simulation World.” He starts from the comparison — “Formal in Academia”: CTL
model checking (linear by system, PSPACE-complete by design), and “Formal in
EDA Company”: Property synthesis: PSL and SVA. We use to find as many bugs as

you did, but we seldom ask the question: when will we find the last bug?

In Silicon Valley, verification is still the largest problem. There are several large
verification companies that have been successfully inducing formal techniques to the
industry, e.g., Gate-level formal (verification 95\%) Chryslais->Cadence, RTL formal
(simulation 90\%). IBM-> Jasper, Mentor,

While using formal tools in industry, it is important to keep that single user should not
learn simulation and verification together. The tradeoffs in design flow include
schedule, scope, resource. Formal has to be more cost-effective than the alternative to
get adopted. It is then important to have an abstraction of design: localization,
datapath, memory, sequence, counter, floating pulse. The speaker shows an example:
PCle Transaction Layer. In sum, to be a successful verification company, you need
provide a unique methodology, highest coverage, fastest time to market.

More Interesting Talks (that are related to my research):

Parallel Programming

Another hot topic in CAV is parallel programming. Prof. Vikram Adve from UIUC
gave a keynote speech on “Parallel programming should be and can be deterministic
by default.” He starts from LLVM, string analysis, and client parallelism. According
to a recent survey on the priorities: HPC (expert parallel programmers) performance,
\$5B -> time to market \$100B, he pointe out that multi-threaded programming is
hard and in fact, developers tend to develop deterministic parallel programs. A
deterministic property is that “fixed input gives fixed output.” However, the current
parallelism paradigm is non-deterministic, e.g., thread libraries in C, Java, C#, or HPC
languages such as OpenMP, It is hence interesting to promote a deterministic
mechanism that aims at sequential reasoning, parallel performance model.

There are several benefits: no data races, deadlocks, subtle memory models, easier
debugging, using sequential-like tools, easier testing and verification, using sequential
tools, incremental parallel tuning, long-term maintenance. Still there are several
myths: high run time overhead, incompatible with low-level parallel code, and cannot
mix with non-deterministic code. For a parallel program, if you want to test a
program, you can test it with CHESS, which ignore data races and ignore compiler
non determinism but test as many schedules as possible. On the other hand, for a
deterministic parallel program, we can test with standard sequential tool. The
non-deterministic behavior was hidden with commutative updates to concurrent data
structures so that the final results are still deterministic.

In sum, parallel programming should be deterministic by default. Non-deterministic
algorithms should be: explicit, data-race free, strongly atomic, isolated from
deterministic ones. They achjeve programs that are parallel, statically typed,
deterministic by default by using a novel region-based type and effect system, and
successfully enforce safe uses of parallel frameworks. In the future direction, they
work on mixing deterministic +non deterministic code with an aim to get strongest
guarantees.

If we take a look at recent research, we will find that largely focused on arbitrary

multi-threaded code framework internals, to work on local properties of parallel
framework instead, model checking is needed!

Finally, the tool DPJ today is base on the foundation of deterministic execution
guarantee through simple compile-time type checking. It implements data structure
alias analysis. An ongoing work is ease of adoption (efficient implementation of
atomic blocks).

Malware Analysis

Dr, Domagoj Babic from UC Berkeley presented “Malware analysis with Tree
automata inference.” It has been dramatically increasingly in recent years malware
such as malicious unwanted software for stealing, spying, spamming, etc. 1nclud1ng
viruses, worms, botnets, trojans, rootkits, spyware, adware.

In this work, they first presented the current solution to detect malware: identification,
classification (15-30 min for manual per example), to signature extraction, and then
perform signature detection. The syntax based signature detection is brittle and casy
to circumvent by code obfuscation. In this work, they shift their focus on how the
malware operates, instead of what it does.

According to McAfee Threats report, Malware has six times increased (from 10000 in
2007 to 60000 in 2010) in the past four years. We need new malware samples per
day! It also affects the effectiveness of signature based detection: 20\% to 60\%
(refine after 7 days). On the other hand, for most applications, souces are not
available. In most cases, we need be able to analyze binaries instead, which is easier
to be obfuscated, pieces of code encrypted, and often can't even be disassembled!

These challenges come together make static analysis very difficult or impossible. To
perform behavior detection, the idea is to identify sequences of executed operating
system calls, and get an under approximation of the behaviors. To achieve this goal,
they draw system call dependency graphs that traces program executions, log system
calls, and track how parameter propagate, and finally compute graphs.

To learn behavior patterns of malware, they propose “trec automata” approach. From
the difference of malware graphs and goodware graphs, they generate an automaton
that accepts the malware but reject the good one. However, the inference problem of
regular tree languages is NP-complete. They use tree languages defined by a set of
patterns to scale their approach. They under approximate the beahviors using k-TSS,
so that s.length>k,1.s the same as1'. s, to ensure the properties of k-TSS language
inductive, positive examples, linear time for inference.

They collect 2631 malware samples in 48 families and show that their approach can
increase distinguish rate and classify malwares better. One can download their tool
from www.domagoj.info.

My Suggestions (Future Research Direction):

It has been a great experience to attend SPIN/CAYV this year. I can see that in the near
future verification of parallel programs and verification of mobile applications would
continuously be the focus in the next few years, and has potential to bring significant
affects not only in research but also in industry and common life. After attending
these talks, I was inspired to work on verification of parallel programs. I summarize
the idea below. This is my ongoing research project.

Symbolic Consistency Checking of Parallel Programs

Parallel programing is a kind of design to integrate computability of processes and has
shown great success in many blazing computing architectures, such as cloud
computing and GPGPU (General-Purpose computation on GPU). Although
integrating computability of processes can usually enhance total performance, writing
correct parallel programs is more difficult than doing so for sequential programs.

One of the challenges comes from the nature of concurrent execution of a parallel
program by different threads. Consistency is one fundamental property that a
well-developed multi-threaded program shall satisfy, i.e., any of its parallel
computation shall produce the same result as its sequential version despite of its
execution orders among threads. This property ensures that the result of a parallel
computation is deterministic and is consistent with its sequential version.

Open Multi-Processing (OpenMP) is an application programming interface (API) for
multi-threaded programming. It is proposed by OpenMP Architecture Review Board
in 1997 and now it is supported by many commercial compilers, for example, Sun
Studio, Intel Parallel Studio, and Visual C++. It is also supported by GNU Compiler
Collection (GCC) since version 4.2, Programmers can parallelize their codes to
multi-core systems or superscalar computers by OpenMP. OpenMP provides an easy
and incremental way to write parallel programs.

The well-structured OpenMP constructs and well-defined semantics of OpenMP
directives make compiler analyses more effective on OpenMP programs than on
loosely structured parallel programs that are solely based on runtime libraries, such as
MPI and Pthreads. While OpenMP provides a common useful interface and parallel
computing has been widely adopted, it is essential to have a formal approach and an
automatic tool to check the consistency of multi-threaded programs.

Our work can help programmers to check consistency of their multi-core systems and
generate counter examples for inconsistent ones. In this research direction, we will
propose a symbolic approach for consistency checking of multi-threaded programs.

Our approach consists of two phases: race detection and symbolic witness search.
Races on shared variables are the main cause that corrupts the consistency of parallel
computing. When threads can access a shared variable in different orders, the output
of the program that depends on the values of these variables may differ in different
concurrent executions and make parallel programs inconsistent,

Our race detection is based on constraint solving where we consider parallel
conditions, path conditions and race conditions to generate a sound race constraint of
a multi-threaded program and solve the constraints (as Presburger formulas), We

show that the program is race free (and hence, is consistent) if none of its race
constraints is satisfiable.

This consistency is based on the assumption that programming languages should by
default guarantee an interleaving-based semantics (sequential consistency) for
data-race-free programs. For programs that have any race constraint satisfiable, we
generate the corresponding truth assignments to characterize potential races during
concurrent executions.

The second phase of our approach is searching inconsistent witness guided by races.
This is achieved by symbolic model checking and simulation techniques. To model
and analyze a multi-threaded system, we need a modeling language with diverse
features, including machine-instruction-level concurrency, message passing among
threads, read/write operations on shared variables, and etc.

We can adopt a version of extended finite-state machines with thread
synchronizations as our modeling language. We convert programs to symbolic models
and perform symbolic simulation on them. With our simulator, we can record the
error traces, repeat the traces, backtrack in trace execution, observe intermediate
values of variables in trace execution, and even check whether all reachable states
have been explored.

We can perform symbolic simulations guided by the result of race constraint solving.
The truth assignments of a satisfiable race constraint, represented as a set of values on
variables, identify target variables on which races can happen. We symbolically
explore execution traces that access target variable(s) in different orders and check
whether the races render the output of the program. The search process terminates
when (1) a witness has been found, ie., there are at least two executions yield
different outputs, or (2) all reachable states have been explored. In (1), we conclude
that the program is inconsistent and generate two sequential versions of the parallel
program that yield different outputs as a counter example. In (2), we conclude that the
program is consistent (races are benign).

Finally, we would like to realize the ideas and develop the tool {\it Pathg}, an
end-to-end automatic tool that checks the consistency of multi-threaded programs
written in C with OpenMP directives. Pathg incorporates Omega library to constraint
solving and Red symbolic simulator to guided witness search.

EREESEERS HEARE BEUEEER

| BE | BEY |

me | W | mmes | wa |

SHEAS BT it - RRWOTE » IR TR A -

HEAZES T\j/ W 7) HEA

B G)¢ CY

