LCC Setting standards in analytical science

Science and Technology

Analysis for REACH Compliance

Alan Handley LGC Ltd

Today's Talk

- What is REACH
- What is the role of Analysis in REACH
- REACH Registration and Analytical Requirements
- Analytical Technologies for Substance Characterisation in support of REACH
- Issues with REACH

REACH

 It is a European Union regulation concerning the Registration, Evaluation, Authorisation and restriction of Chemicals. It came into force on 1st June 2007 and replaced a number of European Directives and Regulations with a single system

- Aim is to provide a high level of protection of human health and the environment from the use of chemicals.
- To make the people who place chemicals on the market (<u>manufacturers</u> and <u>importers</u> responsible for understanding and managing the risks associated with their use.)
- REACH applies to substances manufactured or imported into the EU in quantities of 1 tonne or more per year. Generally, it applies to all individual chemical substances on their own, in preparations or in <u>articles</u>

- Substance : a chemical element and its compounds in the natural state or obtained by any manufacturing process- toluene, chromium
- Preparation: is a mixture or solution composed of two or more substances- paint, detergent
- Article: is an object which during production is given specific shape, surface or design which determines its function to a greater degree than does its chemical composition- furniture, electronic equipment

REACH

- A major part of REACH is the requirement for manufacturers or importers of substances to register them with a central <u>European Chemicals</u> <u>Agency (ECHA)</u>. A registration package will be supported by a standard set of data on that substance.
- It applies to manufacturers, distributor, importers and downstream users in the supply chain
- No data No market

The role of analysis in REACH

- First and foremost, establishing substance identity (SID) for the purposes of a REACH registration/submission.
- Helps establish main categories of substance :
- Well Defined Composition- Quantitative/Qualitative
- UVCBs Unknown or Variable composition, Complex reaction products or Biological materials
- Helps establish substances grouping:
- Mono constituent one main component at least 80%w/w
- Multi component –one main component in a concentration >10% and <80%.</p>
- Defined by more than the chemical composition

The role of analysis in REACH

- Deciding which materials qualify as polymers
- Deciding whether a product is chemically identical to a substance found in nature
- Process and pre-release quality control to check that substances, mixtures and articles comply with restrictions, limits on SVHC[1]

[1] Substances of Very High Concern http://guidance.echa.europa.eu/index_en.htm,

The role of analysis in REACH

- Shows whether different industrial products are the same REACH substance, and establishing a single joint specification
- Providing evidence of structural similarity between substances, to support the read-across of valuable data on physicochemical, toxicological and ecotoxicological properties
- Filling gaps in supply chain data, such as for imported materials - for example, establishing whether they are multiconstituent substances or deliberate mixtures.
- Enforcement, such as testing whether a substance is really what it is claimed to be, checking the nature and concentrations of substances in mixtures and articles, and policing restrictions.

REACH Registration and Analytical Requirements

- Registrations must include:
- Tests for elemental composition and purity
- For Organic materials the minimum spectral package should include UV/VIS, IR and NMR
- Plus HPLC or GC data and method or other appropriate test methods
- Any other technologies which can provide complementary data to confirm structure or define the whole substance
- Interpretation and verification by a technically qualified individual

What need to be measured?

- All constituents and impurities which are known to make up 1% or more of a substance should be identified and quantified.
- At least 99% and ideally 100% of the substance should be accounted for and any unknown impurities listed
- Looking to produce a dossier to include purity based on concentration of the main components plus impurities
- For substances /articles SVHV levels <1% need to be measured

Analytical Technologies For REACH support

Techniques for Confirmation of Structure

Analytical Tool Box	Main Substance Organic (80%)	Main substance Inorganic (80%)	Substance <10%	Substance < 0.1%	UVCB
IR*					
NMR*					
UV/VIS*					
MS					
Raman					
XRD	•				
XRF	Ne				
AA	6				
ICP/MS	00,				
ICP/OES	<i>J</i>				

Instrumental Techniques for Purity/Impurity Profiles

Analytical Tool Box	Main component Organic (80%)	Main component Inorganic (80%)	Substance <10%	Substance <0.1%	
XRF					
AA					
ICP/MS					
ICP/OES	3				
GC					
HPLC					
Thermal Analysis		CCUP			

Impurity Investigative Techniques

Analytical Tool Box	Main Substance Organic (80%)	Main substance Inorganic (80%)	Substance <10%	Substance < 0.1%	UVCB
GC/MS					
GC/GC/MS					
HPLC/MS					
HPLC/MS/MS					
HPLC/ ICP/MS					
	Ğ	CCUracy	1	1	Kan

Probe Techniques

Analytical Tool Box	Isomers	Branching	Chiral	Crystallinity	Salts	Molecular weight D	Speciation
IR							
NMR							
Raman							
XRD							
XRF							
AA							
ICP/MS							
ICP/OES							
GC							
HPLC							
GPC	91						
GC/MS							.0
GC/GC/MS							2
HPLC/MS		- 'ac					c)
HPLC/MS/MS				Innovat	ion •	Sccon	
GPC							
HPLC/ICP//MS							

Additional Technologies

- Karl Fischer water content
- Materials Analysis- Particle Size, Surface Area, Shape, Hardness, Density, Refractive Index.
- Biological property measurements Catalytic activity for enzymes and amino acid sequencing

Issues with REACH

- Guidance documents are not comprehensive
- Difficult if there are no reference standards or spectral databases
- To effectively compare substances the same analytical method has to be used
- May have to explore batch to batch variation and sample homogeneity

Health Warnings

- Compounds can appear the same or different depending on what analytical technique is used.
- Easier to detect difference than sameness
- The harder you look more you find
- Ultimate aim is to produce relevant, reliable ,adequate and defensible data

