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ABSTRACT 

Unmanned aerial vehicles (UAVs) are widely used in military applications, and one of 

the most common missions is remote sensing.  Remote sensing requires UAVs equipped 

with different kinds of sensors.  Information collected by remote sensors must be 

transmitted back to a ground control station (GCS) to conduct analysis.  The majority of 

UAVs are controlled directly by GCS personnel using radio frequency (RF), line-of-sight 

(LOS) links.  The ground antenna must acquire and then track the UAV signal.  A digital 

phased array allows signal processing functions to be performed in the antenna processor 

as well as beamforming and tracking. 

The development of a digital tracking array with single-channel robust 

symmetrical number system (RSNS) and monopulse digital beamforming (DBF) to track 

a UAV’s transmitted signal is described in this thesis.  The RSNS is used as the direction 

finding (DF) algorithm and can provide high angle resolution with two closely spaced 

elements.  However, as is typical for an array, the angle accuracy is reduced at the two 

ends of the field-of-view (FOV).  The monopulse DBF is used to precisely track the 

signals.  The monopulse tracking technique provides precise angle accuracy within a 

FOV of approximately 45 .±   The tracking system is developed in LabView, and the 

performance of a six-element prototype array is demonstrated by measurement in an 

anechoic chamber. 
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EXECUTIVE SUMMARY 

This thesis is a continuation of the previous research on a digital tracking array.  The 

objective of this project was to design, build and test a six-element phased array using 

robust symmetrical number system (RSNS) direction finding (DF) and monopulse digital 

beamforming (DBF) tracking.  The tracking system was designed to have the ability to 

accurately acquire the transmitted signals from a unmanned aerial vehicle (UAV) and 

track the video signal source continuously.  There are two parts to this thesis.  The first 

illustrates the RSNS DF algorithm and demonstrates the concept with hardware tests.  

The theory of the RSNS DF algorithm is explained and the hardware simulation is 

described.  In the second portion angle tracking techniques are examined, different types 

of tracking systems are considered and the RSNS DF with monopulse DBF tracking 

system is implemented.  The theory of the tracking system is described, and the results of 

the tracking system demonstration are provided.  The hardware components are 

commercial off-the-shelf (COTS) items to lower cost.  Simulations are implemented in 

MATLAB and the calibration, control, data acquisition and beamforming modules are 

built using LabView software. 

The first task simulated and validated the RSNS algorithms used in DF.  The 

implementation was for the single-channel RSNS DF system.  The received baseband in-

phase (I) and quadrature (Q) signals were recovered by direct downconversion 

demodulation.  A bench top setup for the RSNS DF method was used to measure angle-

of-arrival (AOA) and then to conduct comparisons between the measured and true values 

(from the vector network analyzer (VNA)).  The analysis was performed to assess the 

impact of noise on the AOA estimates.  Different signal-to-noise ratios (SNRs) from 10 

dB to 90 dB in increments of 20 dB were examined to see which SNR values were 

acceptable for the DF accuracy. 

In the second task, angle tracking techniques were investigated, different types of 

tracking systems were examined, and the RSNS DF and monopulse DBF tracking 

algorithms were implemented.  A six-element phased array was used for the tracking 



 xvi

system demonstration.  The hardware of the digital tracking array with single-channel 

RSNS DF and monopulse DBF was assembled and tested.  The tracking system used 

RSNS DF to first find the rough AOA and then passed the scan angle to the monopulse 

DBF module to conduct continuous tracking.  The tracking measurements were taken in 

an anechoic chamber to reduce interference from multipath, and the measured data was 

stored to perform offline analysis.  The first test was performed to find the maximum 

RSNS DF field-of-view (FOV) for a variety of element phase differences (one phase 

difference, or averaging three phase differences or five phase differences).  A FOV from 

80−  to 80  was tested.  The second test examined the pedestal movement effects and 

rotation steps for 2 , 5  and 10 .  Finally, a comparison of changing monopulse slope 

constant versus fixed monopulse slope constant was conducted. 
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I. INTRODUCTION 

A. BACKGROUND 

Unmanned aerial vehicles (UAVs) are operated indirectly by pilots and widely 

used in military applications such as reconnaissance, intelligence, electronic attack, strike, 

destruction of enemy air defense, communications relay and combat search.  In Figure 1, 

a MQ-9 Reaper UAV is shown.  It is equipped with hellfire missiles, laser guided bombs 

(GBU-12) and a 20 inch gimbal (AN/AAS-52) in the front of the plane fuselage.  It 

provides continual intelligence, surveillance and reconnaissance (ISR) capability and also 

carries out over-the-horizon, medium-altitude and long-continuance weapons delivery, 

fully loaded, for up to 14 hours [1].  Besides these military applications, UAVs are also 

used for civil purposes such as border protection, traffic monitoring, firefighting and 

search and rescue.  Using UAVs can avoid infringing on pilot safety and save costs when 

compared to traditional airplane employment [2]. 

 

Figure 1.   MQ-9 Reaper (from [1]). 

Among the applications carried out by UAVs, one of the most common missions 

is remote sensing.  Remote sensing requires UAVs equipped with different kinds of 

sensors for different purposes, such as infrared motion cameras, picture cameras, laser 
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rangefinders, designators, illuminators and so on.  Information collected by remote 

sensors must be transmitted back to a ground control station (GCS) to conduct advanced 

analysis by ground personnel.  Some information requires significant bandwidth, such as 

video streams [1]. 

A few types of UAVs are flown by pre-programmed flight plans and receive GPS 

signals to navigate.  The majority of UAVs are controlled directly by GCS personnel 

using radio frequency (RF) line-of-sight (LOS) links or using satellites to relay 

communication signals.  In Figure 2, an illustrative diagram of communication signals 

between a UAV and a GCS is depicted.  It is critical that the link between the GCS and 

UAV provides a high bandwidth, reliable and secure connection. 

Data
Processing

UAV
Operator

Ground Control Station  

Figure 2.   Communication and data link between a UAV and GCS. 

To satisfy the requirements mentioned above, the ground antenna must first 

acquire and then track the UAV signal.  Phased arrays are prime candidates for this 
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application.  In particular, a digital phased array would allow signal processing functions 

to be performed in the antenna processor, as well as beamforming and tracking. 

Digital phased arrays are collections of a number of individual antennas arranged 

to produce a directional radiation pattern.  In Figure 3, a block diagram of the 

components and architecture of a digital phased array is depicted.  Each array element 

has an individual transmit/receive (T/R) module [3].  By adjusting phase, a digital phased 

array can point its main beam electronically to a desired azimuth or elevation angle 

without actually moving or rotating an antenna.  Further, steering the main beam to the 

signal source can reduce interference and improve signal-to-noise ratio (SNR).  The 

phase shifting of each array element is controlled by the digital beamformer (DBF) which 

allows the array to scan at the speed of the processor.  With this characteristic it becomes 

possible to track multiple signals in a sequential (time-shared) manner [4]. 

Modulator

LO and Timing
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TX Channel: Waveform 
Generator, Filters, Power 
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Demodulator Duplexer

•
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•

 
Figure 3.   Components and architecture of digital 

phased arrays (from [5]). 
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Besides the advantages mentioned above, there are several others that can be 

illustrated.  First, traditional analog antenna processing is based on integrals but digital 

phased arrays can be analyzed using simple summations.  It is easier to design summation 

circuitry than integration circuitry [4].  Second, new solid-state transmitters are more 

convenient to integrate into digital phased arrays.  Third, it is easier to control beam 

shapes and half-power beamwidth (HPBW) in digital processing.  Fourth, with a proper 

design, a lower radar cross section (RCS) is possible [4]. 

Despite the many advantages, there are limitations and concerns associated with 

digital phased array implementations.  Of note, digital phased arrays have a greater 

degree of complexity and a higher cost when compared to traditional antenna systems.  

Additionally, there are other issues of concern, like bandwidth limitations and mutual 

coupling between elements [3]. 

Passive direction finding (DF) is a technique that can be used for initial signal 

acquisition.  It has been widely used in a variety of fields such as communication, 

navigation and electronic warfare (EW).  It is a method used to receive an 

electromagnetic (EM) wave which comes from a signal source or target and then 

calculate the angle-of-arrival (AOA).  Different DF algorithms can achieve different 

angle resolutions.  Even using the same DF algorithm but with different parameters can 

lead to different results.  The goal is to use a DF algorithm that optimizes angle resolution, 

accuracy, and can resolve ambiguities [6]. 

Note that DF is used to derive the AOA but not the range to an emitter.  This is 

unlike a common radar system which provides range and angle information to a target.  

DF systems can use high gain antennas or multiple baselines to provide better angle 

accuracy but then antenna size becomes prohibitive.  Even without high resolution, DF 

has been able to recognize and identify an emitter by its general nature or behavior in 

space.  Because of its passive receive characteristics, it alone cannot be used for tracking 

the range to an emitter.  However, a DF method can be used cooperatively with other 

tracking systems to provide a military air-defense radar system [6]. 
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After the signal is acquired by the DF algorithm, it can be tracked.  Most tracking 

radars adopt a pencil beam to achieve high accuracy in angle resolution.  Typically, the 

beamwidth of the pencil beam is less than a few degrees in both the azimuth and 

elevation planes [7].  Monopulse tracking is the most efficient technique.  The receive 

antenna forms a difference beam, and the null of the difference beam is kept on the target 

by forcing the output to zero.  In our design, we use a DF algorithm to get a rough AOA 

and then pass the scan angle to the tracker to do the monopulse tracking [7]. 

B. PREVIOUS WORK 

The ongoing digital array project begun by Gezer [8], who designed a digital 

phased array to track UAVs with the use of commercial off-the-shelf (COTS) hardware, 

is extended in this thesis.  The design of the tracking system was also verified through 

simulation. 

Eng [9] built a calibration station that provided an easy way to measure the direct 

current (DC) offset of the demodulator boards, which are critical components of the 

digital array.  The components of the calibration system were easy to disassemble, 

making upgrades easier to accomplish.  For example, the analog-to-digital converter 

(ADC) could be upgraded to give better resolution. 

Benveniste [10] implemented a single-channel robust symmetrical number system 

(RSNS) to conduct DF measurements.  Several moduli sets were used and evaluated 

through MATLAB simulations.  Results showed that there were large angle resolution 

errors at low SNR.  Additionally, large dynamic range moduli sets can yield high angle 

resolutions errors when compared to small dynamic range moduli sets.  He also 

assembled and tested bench top hardware with low noise amplifier (LNA) and 

demodulator boards.  The system was connected to National Instruments (NI) PXI-5112 

cards, and LabView software and calibration functions were evaluated.  

Tan and Pandya [11] carried out the design of a UAV tracking system with the 

use of RSNS DF and monopulse DBF.  Three different LabView modules were also 

developed.  The first provided monopulse beamforming and tracking, the second 

performed frequency modulation (FM) demodulation and the third performed decoding 
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of the National Television Standards Committee (NTSC) video signal.  The beamforming 

and tracking module used RSNS combined with monopulse DBF to acquire and track a 

UAV using a six-element antenna array.  The FM demodulation module was tested 

successfully for a single channel.  The NTSC decoding module was able to decode video 

signals and display them on a LabView console. 

Kaya [12] improved the FM demodulation module and integrated and initiated 

testing of the system. 

C. SCOPE OF RESEARCH 

The ultimate objective of this project was to extend previous work [8-12] by 

designing, building and testing an array and processor with RSNS DF and monopulse 

DBF to accurately acquire and track a video signal source.  Hardware used to implement 

the array and processor was built mainly from COTS components to lower cost.  

Simulations were implemented in MATLAB.  Antenna controller software was built 

using LabView. 

The first task was to simulate and validate the RSNS algorithms used in DF.  

RSNS folding waveforms and ambiguity resolution were investigated, followed by 

hardware design and implementation.  Calibration of the demodulator boards was 

described briefly.  A bench top setup in the Microwave Laboratory the RSNS DF method 

was used to measure AOA and then conduct comparisons between the measured and true 

values.  Further, analysis was performed to assess the calculated AOA values with the 

impact of noise on the AOA estimates to determine which SNR values were acceptable 

for the DF accuracy. 

The second task investigated angle tracking techniques and different types of 

tracking systems.  Tracking accuracy factors are also explained to better understand the 

noise effect on the tracking system design. Then a single-channel RSNS with monopulse 

DBF tracking system was constructed. A six-element phased array is used for the 

tracking. A block diagram of the array is shown in Figure 4. All of the functions shown 

outside of the first block are done in the processor. Measurements in the anechoic 

chamber are performed to demonstrate tracking. The anechoic chamber reduces 
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interference, and the layout of the anechoic chamber is described in Chapter V. The 

tracking system uses RSNS DF first to find the initial AOA and then pass the scan angle 

to the monopulse DBF module to do continuous tracking. 
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Figure 4.   Structure of a six-element phased array tracking system. 

Test data obtained from laboratory bench top testing and the anechoic chamber 

are compared to theoretical values to further refine the software modules. 

D. THESIS OUTLINE 

The basic principles of DF are reviewed and the RSNS folding waveforms and 

ambiguity are explained in Chapter II.  Furthermore, quadrature demodulation and 

fundamental RSNS theory are explained. 

Different types of tracking systems, angle tracking techniques and tracking 

accuracy considerations are reviewed in Chapter III. 
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The single-channel RSNS system design is presented and the results of MATLAB 

simulations conducted at different SNRs to examine tradeoffs and effects are included in 

Chapter IV. Moreover, the demodulator board calibration and LabView software 

demonstrations are covered. 

Measurements of the antenna hardware in the anechoic chamber and the results 

are evaluated in Chapter V. 

Summaries, conclusions and recommendations for future study are contained in 

Chapter VI. 
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II. DIRECTION FINDING AND ROBUST SYMMETRICAL 
NUMBER SYSTEM 

In Section A of this chapter, three DF methods are introduced.  In particular, the 

phase delay method used for the single-channel RSNS DF system of Chapter IV is 

highlighted.  In Section B, signal modulation and demodulation, commonly used in 

communication systems, are illustrated.  In Section C, the problems of ambiguity and 

folding waveforms are discussed.  Finally, RSNS parameters are defined and an 

interferometer design is explained in Section D. 

A. DIRECTION FINDING 

Radio DF systems use phased arrays to measure AOA from an incident planar 

EM wave.  There are three categories of DF methods: amplitude comparison, phase delay 

and time delay [13].  In order to perform a comparison, at least two antenna elements are 

required.  The antenna is assumed to be operated in the far-field, and for the present 

discussion, the EM wave is restricted to a narrow frequency band. 

The amplitude comparison method converts the amplitude responses received 

from antenna elements into voltages and then converts them to the AOA.  Phase and time 

delay methods use the phase and time difference between the antenna elements, 

respectively, to derive AOA. 

A single-channel array is shown in Figure 5.  A plane wave is incident on a 

phased array with two linear elements separate by a distance d , referred to as the 

baseline.  The distance between elements is determined by the required angle resolution 

and ambiguity issues.  The antenna field-of-view (FOV) ranges from 90−  to 90 .+   The 

planar EM wave first arrives at antenna 2 then travels another sin( )d θ  distance to 

antenna 1 [10]. 

The output voltages from the elements are fed to direct downconversion 

quadrature demodulators.  The waveform is translated in frequency from the carrier to  
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baseband (centered at 0 frequency).  The in-phase ( I ) and quadrature (Q ) components 

can be combined to form a complex baseband signal that contains all of the signal’s 

amplitude and phase information [5]. 

After down conversion, the I and Q voltages are sampled and sent to a processor 

where the RSNS DF algorithm is executed. 

LODemodulator

( )outV θ

2V

AOA

2I 2Q1I 1Q

RSNS

1V

Baseband Amp Baseband Amp

Demodulator

ADC ADC

, , ,I I Q Q+ − + −

d

θ

( )sind θ

Incident Plane Wave

Antenna 1 Antenna 2

 

Figure 5.   Incident plane wave and two-element array (after [10]). 
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The received signal out of the antenna element is 

 ( )cosi c i iV V tω ψ φ= + +  (1) 

where i  indicates the antenna element number ( 1, 2i = ), 2c cfω π=  is defined as the 

carrier frequency, iψ  is the phase delay from cables and iφ  is the path phase difference 

compared to the reference.  In this, case antenna 1 is considered the reference. 

The received signals iV  are passed to the quadrature demodulator for mixing and 

filtering.  These steps are elaborated on in more detail in Section B.  The signals out of 

the demodulator are 1I , 1Q , 2I  and 2Q .  They are the in-phase ( iI ) and quadrature ( iQ ) 

components of the signal 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )cos[ ] cos sini i c i i c i cV t A t t t I t t Q t tω ω ω= +Φ = −  (2) 
where 

 ( )cosi i iI A= Φ  (3) 

 ( )sini i iQ A= Φ  (4) 

 ( ) ( )2 2
i i iA I Q= +  (5) 

 1tan i
i

i

Q
I

− ⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
 (6) 

iA  is the amplitude and iΦ  is the phase [5].  A plot of the I/Q relationship is shown in 

Figure 6. 
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Figure 6.   I/Q signal diagram (from [5]). 

If we set the origin in the middle of the two antenna elements, the phase value of 

each element is given as 1 sin
2

kdφ θ= −  and 2 sin
2

kdφ θ= , where 2k π
λ

= .  The phase 

difference is calculated as 

 ( )2 1 sin .kdφ φ φ θΔ = − =  (7) 

Once φΔ  is computed, the normalized folding waveforms are obtained from the 

quadrature demodulator and are expressed as 

 ( ) ( )cosoutV θ ψ φ= Δ + Δ  (8) 

where 2 1ψ ψ ψΔ = −  comes from the cables.  This term can be neglected because the 

cable lengths are known and are assumed to be equal [5].  Finally, by combining 

Equation (7) and (8), the phase folding waveform is simplified as 

 ( ) ( )cos sin .outV kdθ θ= ⎡ ⎤⎣ ⎦  (9) 

We see from Equation (9) that AOA can be calculated directly because k , d  and 

outV  are known.  However, the measurement is ambiguous unless / 2d λ< , so that 
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0 2 .φ π≤ Δ ≤   To get higher resolution, an increase in the baseline distance is necessary.  

When the baseline distance is increased, more ambiguities are created which cause 

multiple AOAs for each φΔ .  This is the reason for the phase folding waveform.  A 

signal processing method based on a RSNS mapping can achieve a high resolution 

without ambiguities [14].  The details are explained in Section D. 

B. QUADRATURE DEMODULATION 

1. Signal Modulation 

Modulation and demodulation techniques are commonly used in communication 

systems, such as standard broadcast radio, wireless networks and telecommunication 

systems.  The block diagram in Figure 7 demonstrates the modulation of a sinusoid with a 

message signal.  By modulating a sinusoid of carrier frequency cω  with the message 

signal ( )s t , we see that the modulated signal ( )y t  can be efficiently transmitted.  The 

inputs are the I and Q components of ( ).s t  

⊗

⊗

90

LO

Σ

( )cos ctω

Mixer

Mixer

( )I t

( )Q t

( )y t

 

Figure 7.   Modulation of a sinusoid with a message signal (after [15]). 
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There are three main reasons for using the modulation and demodulation process. 

First, baseband signals do not propagate far because frequencies at DC do not radiate.  

Second, it facilitates frequency-division multiplexing (FDM), where a single-channel is 

divided into several bandlimited sub-channels and each sub-channel modulates with a 

different carrier frequency.  Since frequency spectrum is a limited resource, this 

technique is used quite often in commercial applications [16].  Third, the frequency 

determines the physical size of the antenna.  Low frequency signals have long 

wavelengths and large diameter antennas are required.  If the physical size of the antenna 

is too large, the system becomes impractical [11]. 

2. Quadrature Demodulation 

The process of recovering the original message signal ( )s t  is called demodulation.  

The emitter signal ( )y t  at carrier frequency 2c cfω π=  is represented in I-Q form as 

defined in Equation (2): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )cos[2 ] cos 2 sin 2 .c c cy t A t f t t I t f t Q t f tπ π π= +Φ = −  (10) 

The ( )I t  and ( )Q t  components are derived using the quadrature demodulation 

technique [5].  The block diagram in Figure 8 shows the quadrature demodulation process.  

A photo of an AD8347 analog quadrature demodulator is shown in Figure 9.  This device 

has a LO input frequency range of 0.8 GHz to 2.7 GHz, and 2.4 GHz is used in the 

demonstration array described in Chapter IV.  The differential I and Q outputs are used to 

obtain the single-channel outputs I I I+ −= −  and .Q Q Q+ −= −  
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Figure 8.   Quadrature demodulation process (after [5]). 
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LO

Q+

Q−

I +

I −

 
Figure 9.   AD8347 quadrature demodulator made by 

Analog Devices, Inc. (after [5]). 

The purpose of a quadrature demodulator is to transform the received signal ( )y t  

into its ( )I t  and ( )Q t  form.  A complex envelop signal ( )u t  is given as 

 ( ) ( ) ( ).u t I t jQ t= +   (11) 
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First, ( )y t  is mixed with the LO signal ( )cos LOtω , where for direct downconversion 

.LO cω ω=   The in-phase channel, from [5], is represented as 

 ( ) ( ) ( ) ( )Re Re .
2 2

c LO c LOj t j tu t u t
e eω ω ω ω+ −⎧ ⎫ ⎧ ⎫

+⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

 (12) 

Next, the mixed signal is passed through a low pass filter (LPF), where the term on the 

left side at 2 cω  in Equation (12) is eliminated leaving only 

 ( ) ( )
Re .

2 2
u t I t⎧ ⎫

=⎨ ⎬
⎩ ⎭

 (13) 

A similar process on the second phase shifted channel gives the quadrature component 

 ( ) ( )
Im .

2 2
u t Q t⎧ ⎫

=⎨ ⎬
⎩ ⎭

 (14) 

C. AMBIGUITY AND FOLDING WAVEFORMS 

To obtain higher resolution, the distance between antenna elements must be 

increased.  However, if the baseline distance is increased over a half wavelength, an 

ambiguity problem arises.  This may result in more than one solution to the AOA, thus 

making the true AOA indeterminate. 

1. Ambiguity 

From Equation (7), φΔ  is related to wavelength, distance and AOA.  However, 

frequency is also related to wavelength.  Limits on all of these variables must be adhered 

to in order to avoid ambiguities. 

When the antenna element spacing is equal to / 2λ , ( )sinφ π θΔ =  is obtained.  

The plot in Figure 10 clearly shows the relationship between phase difference and AOA; 

one phase difference maps to one AOA.  The mapping relationship is unique [17].  For 

example, if the phase difference is 100− , only one AOA is obtained (indicated by the 

“o”). 
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However, if element spacing increases to λ , ( )2 sinφ π θΔ =  is obtained.  The 

plot in Figure 10 shows that this one phase difference can map to two AOAs (indicated 

by the “x”).  When the phase difference equals 100− , both 18−  and 47  are possible 

AOAs.  The mapping relationship is not unique and this phenomenon is called ambiguity 

[13]. 
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Figure 10.   φΔ  vs. AOA at / 2d λ=  and d λ=   (after [10]). 

Similarly, a change in frequency can cause an ambiguity [17].  For example, as 

demonstrated in Figure 11, if the element spacing is fixed at 0.5 m and the frequency is 

300 MHz, there is no ambiguity.  However, when the frequency is increased to 900 MHz, 

ambiguities are evident.  For a phase difference equal to 100− , there are three possible 

AOAs. 
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Figure 11.   φΔ  vs. AOA with fixed 0.5d =  m at frequencies 

of 300 MHz and 900 MHz. 

When designing a single-channel DF system, the distance between elements, 

wavelength and frequency should all be taken into consideration to avoid this ambiguity 

phenomenon. 

2. Folding Waveforms 

For a two element array, the output outV  in Equation (8) is a folding waveform 

that is periodic between / 2θ π= ± , and the number of folds is represented by 

 2 .dn
λ

=  (15) 

From Figure 12, we see that when / 2d λ= , there is only one fold (cycle) in the output 

waveform.  This is easily verified by inspection of Equation (15).  Another property is  

 



 19

that the folding waveform is symmetrical [14].  An increase in the baseline distance 

demonstrates this property.  In Figure 12, there are two folds in the waveform when 

d λ= .  Notice the symmetry about the origin. 

-100 -80 -60 -40 -20 0 20 40 60 80 100
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Angle of Arrival (Degrees)

V
ou

t (N
or

m
al

iz
ed

)

d = λ/2, 1 fold
d = λ, 2 folds

 

Figure 12.   Output voltage vs. AOA at / 2d λ=  and d λ=  (after [10]). 

To sum up, increasing the baseline distance also increases the number of folds.  

Thus, the number of folds can be controlled by antenna element spacing. 

D. ROBUST SYMMETRICAL NUMBER SYSTEM THEORY 

The concept of RSNS mapping is used to reconstruct the folding waveforms out 

of the antenna and obtain high resolution AOA estimates without long baseline distances.  

In this section, the RSNS parameters are first defined, then the DF antenna design steps 

are outlined. 



 20

1. RSNS Parameters 

The fundamental elements of the RSNS algorithm are the moduli ( )im .  They are 

integers greater than zero and are relatively prime.  The number of moduli is related to 

the number of antenna elements and is denoted by N , also called the number of channels.  

For example, as shown in Figure 5, a two element antenna is one channel with a spacing 

fixed by a modulus 1m  [10]. 

A RSNS row vector is defined such that 

 [0, 1, 2,..., 1, , 1,..., 2, 1].i i im m m− −  (16) 

A sequence used to represent the folding waveform is constructed by repeating each 

element N  times in the row vector represented in Equation (16).  For the i th sequence 

( )1, 2,...,i N= , the result should look like 

 [0 , 0,..., 0, 0,1,1,...,1,1,..., , ,..., , ,..., 1,1,...,1,1].
im i i i i

N N NN

X m m m m=  (17) 

After the sequence sets are generated, they are aligned vertically and shifted one column 

per sub-sequence.  Next, the dynamic range is defined as M̂  and is the maximum 

number of contiguous column vectors of the shifted sequence set that has no repetitions.  

An example for 1 3m =  and 2 4m =  is displayed in Table 1.  In this case, there is no 

column pair duplicated from column numbers 6 to 20, so ˆ 15M =  is the dynamic range 

[14]. 

Table 1.   RSNS sequence for moduli [3, 4] (after [10]). 

Column 
Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 1 2 2 3 3 2 2 1 1 0 0 1 1 2 2 3 3 2

1 0 0 1 1 2 2 3 3 4 4 3 3 2 2 1 1 0 0 1 1

ˆ 1 5M =

1 3m =

2 4m =
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Previous work in [6, 8, 9, 10, 12] found that for some specific two element cases, 

the dynamic range can be summarized and calculated as follows: 

Case 1: For 1 3m ≥  and 2 1 1m m= + , 

 ( )1 2ˆ 3 6;M m m= + −  (18) 

Case 2: For 1 5m ≥  and 2 1 2m m= + , 

 ( )1 2ˆ 3 7;M m m= + −  (19) 

Case 3: For 1 5m ≥  and ( )2 1 3 ,m m C C= + ≥  

 1 2ˆ 4 2 2.M m m= + −  (20) 

2. Interferometer Design 

After the number of channels and their moduli has been selected, there are several 

steps needed to implement a RSNS interferometer system.  The first is to calculate the 

number of folds for each modulus, which is given as 

 
ˆ

.
2i

i

Mn
Nm

=  (21) 

With in  defined, the corresponding element baseline distance can be derived.  By 

substituting Equation (21) into Equation (15), we get a new equation for spacing given by 

 
ˆ

.
2 4i i

i

Md n
Nm

λ λ
= =  (22) 

 Another issue is that the received signals from the elements degrade at wide FOV 

angles.  Therefore, a rescaling process is adopted to alleviate this angle distortion.  Only 

part of the FOV is used instead of the entire visible region [17].  From Equation (9), a 

new relationship ( ) ( )sin sind dθ θ′ ′=  is derived to define a scaling factor ( )ξ , 

represented as 

 ( )
( )

sin
sin

d
d

θ
ξ

θ
′

= =
′

 (23) 

where d ′  is the scaled baseline distance.  To verify the rescale effect, a smaller θ ′  is 

used in Equation (23) corresponding to a longer .d ′   As mentioned at the beginning of 
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this section, a longer baseline distance means a better AOA resolution.  Further, 

combining Equation (22) with (23), we get a new relationship 

 
ˆ

4i i
i

Md d
m N
λξ ξ′ = =  (24) 

where id ′  is the scaled baseline distance [6]. 

 Next, the folding waveforms are encoded out of the antenna (Equation (9)) into 

RSNS bins by comparing outV  to the thresholds given by 

 ,
0.5cos , 1 .

i
i

j m i
i

m jV j m
m

π
⎛ ⎞− +

= ≤ ≤⎜ ⎟
⎝ ⎠

 (25) 

Folding waveforms and thresholds for 1 3m =  and 2 4m =  are shown in Figure 13. 

V3,3

V2,3

V1,3

V4,4

V3,4

V2,4

V1,4  

Figure 13.   RSNS folding waveforms for 1 3m =  and 2 4m =   (from [17]). 

The final step is to calculate the phase adjustment ( )iς  and align the center of the 

dynamic range to the folding waveforms at broadside ( )0θ °=  [10].  After phase 

adjustment, Equation (9) becomes 

 ( ) ( )cos sin .outV kdθ θ ς= +  (26) 

 In a straightforward application of the RSNS, each modulus is mapped to a 

separate channel (pair of elements).  Since all channels can share a common reference 
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element, the total number of elements required for N  channels is 1.N −   However, it is 

possible to simulate the output from multiple channels from a single pair of elements as 

long as the folding waveform out of the elements is unambiguous.  That is, only one fold 

occurs in outV  which requires / 2.d λ≤   This approach has been called “virtual RSNS 

processing.”  This discussion has been based on the array output voltage given by 

Equation (9). This is referred to as the phase folding waveform because the phase 

difference between elements is used directly.  It is possible to generate an amplitude 

folding waveform, which is essentially the array factor for the two elements.  The 

amplitude waveform folds at half the rate of the phase waveform and, therefore, the 

spacing requirement for an unambiguous fold is .d λ≤  

A single-channel RSNS DF of moduli 5 and 9 is designed and simulated in 

Chapter IV.  Parameters of this RSNS DF system are derived based on the theory 

presented earlier and on the equations described in this section. 
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III. TRACKING SYSTEMS AND TECHNIQUES 

Once the AOA is obtained, the digital processor can initiate the tracking 

algorithm.  In Section A, a brief discussion of two types of tracking systems is introduced.  

In Section B, several candidate angle tracking techniques, such as conical scan, 

sequential lobing and monopulse tracking are explained with a focus on monopulse 

tracking.  In Section C, theoretical angle accuracy is derived and several factors that 

affect the limitations of tracking accuracy are discussed. 

A. TYPES OF TRACKING SYSTEMS 

There are many applications that use tracking systems for either civilian or 

military purposes.  In the civilian area, airports deploy air traffic control (ATC) systems 

to manage air traffic in the vicinity of airports.  In the military area, tracking radars track 

target trajectory, compute the best intercept path and guide missiles to the target.  The 

purpose of tracking in this application is to track a designated signal with continuous 

measurement of the angle coordinates. 

1. Single-Target Tracker (STT) 

The proposed digital phased array design is essentially a STT.  The STT 

continuously tracks a signal with a high rate of observation frequency.  Observation rate 

depends on how many times the source signal is observed within a period.  Typically, 10 

observations per second are enough to maintain track on a UAV emitter.  A STT with a 

closed-loop tracker obtains the angle error signal and keeps adjusting the tracker to 

minimize the angle error.  Similarly, the proposed algorithm is a closed loop technique.  

The accuracy of tracking is not as major a concern as it is for a radar application.  It is 

only necessary that the UAV stay roughly in the array main beam to avoid a significant 

loss in gain [4]. 
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2. Phased Array Radar Tracking 

Phased array radars can track multiple targets by steering beams electronically in 

different directions.  In digital phased arrays, computers are used to quickly switch beams 

in multiple directions in different time frames.  They have the advantage of high 

observation rate, as in STT, plus the capability of multiple-target tracking.  The 

disadvantage is the complexity associated with analog beamforming, where each array 

element must contain a phase shifter, duplexer and T/R module [11].  A typical phased 

array radar (AN/SPY-1D) on an Aegis platform is shown in Figure 14.  It is able to 

perform search, track and missile guidance functions with a capability of simultaneously 

tracking over 100 targets. 

 

Figure 14.   AN/SPY-1D (from [18]). 

B. ANGLE TRACKING TECHNIQUES 

Angle tracking techniques are used to keep signals in the antenna main beam.  In 

a simple tracking system, the AOA estimate of the signal is somewhere around a 

beamwidth.  This is too rough for a tracking system to operate as a tracker. 
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Three common techniques are conical scan, sequential lobing and monopulse 

tracking.  Monopulse tracking is the main technique used in this work and is discussed in 

Chapter V to implement a tracking system using DBF.  Thus, the first two techniques are 

only discussed briefly. 

1. Conical Scan 

Conical scan, also known as con-scan, uses a single time-shared beam as a tracker.  

The scan structure of conical scan tracker is shown in Figure 15.  The squint angle qθ  is 

defined as the difference angle between the rotation axis and the beam axis.  The target 

axis points toward the signal source.  The antenna beam traces a cone pattern around its 

rotation axis. 

The amplitude of the signals from the emitter is modulated at a frequency equal to 

the beam rotation frequency.  If the target axis and the rotation axis are aligned, there is a 

constant amplitude return.  If the target is away from the rotation axis, the amplitude of 

the modulation depends on the angular distance between the rotation axis and the target 

axis [4]. 

A tracking system can be implemented by continuously adjusting the rotation axis 

to position to the target axis. 

 

Figure 15.   Scan structure of conical scan (from [4]). 
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2. Sequential Lobing 

Sequential lobing, as depicted in Figure 16, uses a single beam that is rapidly 

switched between positions 1 and 2.  Two beams are squinted with angles qθ±  compared 

to the boresight angle 0θ .  The boresight angle is defined as the crossover of the two 

beams.  The amplitudes of the received signals are A and B for beam positions 1 and 2, 

respectively.  It determines the sources’ deviation angle from the boresight.  After 

obtaining the arrival angle Tθ , the antenna repositions the boresight to the Tθ  direction.  

The tracking process is accomplished by continuously comparing the amplitude and 

adjusting the boresight direction to the source direction [4].  The switched time interval 

causes the received signals from the source to fluctuate due to propagation variations and 

results in degradation of the accuracy of the measurement. 
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Figure 16.   Sequential lobing in rectangular representation (after [4]). 
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3. Monopulse Tracking 

The first two methods require the processing of multiple measurements over a 

finite observation time.  Fluctuations in the signal over the observation time cause 

measurement errors.  Instead of switching beams to different angles like sequential lobing 

or using one single time-shared beam to do conical scan, monopulse (simultaneous lobing) 

tracking uses two or more simultaneous beams to conduct comparisons.  It derives the 

angular location of a target with a single observation.  Hence, there is no time interval 

problem in monopulse tracking.  The accuracy of monopulse is higher than other tracking 

systems because the sampled signals do not change with time.  There are no amplitude 

fluctuation problems in monopulse [4]. 

There are two types of monopulse.  One is amplitude comparison monopulse and 

the other is phase comparison monpulse.  Amplitude comparison monopulse is the most 

common, so the term monopulse generally refers to amplitude comparison monopulse. 

a. Amplitude Comparison Monopulse 

Two beams are overlapped and their main beams are pointed at small 

positive and negative angles qθ±  which are defined as squint angles or offset angles.  

The antenna radiation patterns of the two squinted beams are shown in Figure 17.  One 

way to implement two squinted beams in arrays is to use two beamforming networks. 

 

Figure 17.   Antenna radiation patterns of two squinted beams (from [19]). 
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The sum and difference of the two squinted beams are displayed in Figure 

18.  Both the sum and the difference patterns are used for reception but only the sum 

pattern is used for transmission.  Each channel requires a separate receiver [19]. 

 

Figure 18.   Sum and difference patterns of two squinted beams (from [19]). 

The objective of monopulse tracking is to position the null of the 

difference pattern in the direction of the source.  The difference pattern provides the 

magnitude of the angle error.  The direction (± sign) of the angle error comes from the 

phase comparison of the sum pattern with the difference pattern.  From [19], the 

difference-to-sum voltage ratio is used to generate the angle error and is represented as 

 difference voltage .
sum voltage

Δ
=

Σ
 (27) 

The plot of /Δ Σ  in the vicinity of the null is shown in Figure 19.  In the 

linear region, the ratio can be simplified to 

 KθΔ
≈

Σ
 (28) 

where θ  is the angle error (how far the source is off boresight) and K  is the monopulse 

slope constant.  If the squint angle is increased, the monopulse slope constant, K , 

increases and the angle measurement is more accurate.  However, increasing the squint  
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angle also decreases the gain on axis of the sum pattern.  From [4], there is an optimum 

two-way tracking squint angle derived as 0.31q Bθ θ=  where Bθ  is the HPBW of the 

squinted beams. 

 
Figure 19.   Plot of Δ Σ  where scan angle is at boresight (from [19]). 

b. Phase Comparison Monopulse 

Phase comparison monopulse is similar to amplitude comparison 

monopulse, but the two antenna beams point in the same direction rather than being 

squinted at an angle.  In this case, the amplitude of the received signals is the same, but 

the phase is different.  The phase difference ( φΔ ) of the signals from the source is 

estimated as 

 2 sindφ π θ
λ

Δ =  (29) 

where d  is the spacing between the two antennas and θ  is the signal direction compared 

to the normal direction of the baseline. 

By measuring the phase difference of the received signals, the angle to the 

signal can be derived.  A phase comparison monopulse tracker is also known as an 

interferometer [4]. 
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C. ANGULAR ACCURACY AND LIMITATIONS 

In this section, discussion focuses on angular accuracy.  There are factors that 

limit angular accuracy, such as receiver noise, antenna errors and multipath.  They are 

discussed briefly in this section. 

1. Theoretical Angular Accuracy 

Following the approach in [4], the theoretical antenna root mean square (RMS) 

error in angle measurement can be approximated as 

 
( ) ( )1/2 1/2

0

1 1

/2 / S NE N
δθ

γγ
= =  (30) 

where E  is the received signal energy, 0N  is the noise power per unit bandwidth, γ  is 

the effective aperture width and /S N  is the SNR.  For an array, γ  is defined as 

 
( )2 2

2 1
2

1

2 /
N

n n
n

N
n

n

d A

A

π λ
γ =

=

∑
=

∑
 (31) 

where N  is the number of array elements, nd  is the distance of element n  from the 

center of the array, λ  is the wavelength and nA  is the amplitude illumination, which is 

further discussed in Chapter V.  The theoretical angle error with a uniform amplitude 

illumination ( )1, 1,...,nA n N= =  is 

 
( ) ( )1/2 1/2

0

0.6283

2 /
B

SNRD E N

θλδθ
π

= =  (32) 

where Bθ  is the HPBW and is approximately 0.88 / .Dλ   D  is the total length of the 

array ( )( )1 .D N d≈ −  

2. Receiver Noise 

Noise at the receiver will affect the angular accuracy of a tracking system.  As 

seen in Equation (32), high angular accuracy can be achieved by using a narrow HPBW 
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and high SNR [4, 20].  In the case of monopulse, the noise fills the difference beam notch 

and prevents accurate measurement of angle, as shown in Figure 20.  Receiver noise 

becomes a major factor for angular accuracy when the received signal is very small.  The 

RMS error in angle measurement due to receiver noise in terms of the monopulse slope 

constant, K  is given as 

 0.868 .
K SNR

δθ =  (33) 

This relationship is based on results that are derived in Chapter V. 

-50 -40 -30 -20 -10 0 10 20 30 40 50
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Angle of Arrival (Degrees)

A
rra

y 
P

at
te

rn
 (d

B
)

Sum Beam
Difference Beam
Receiver Noise

θΔ

 

Figure 20.   Monopulse tracking with receiver noise contribution (after [8]). 

3. Antenna Errors 

The theoretical antenna radiation pattern is often different from the actual 

radiation pattern, especially at wide angles.  There are two main factors that cause 
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aperture illumination errors, one is systematic and the other is random.  Systematic errors 

consist of mutual coupling and discrete quantization from the digital phase shifter.  

Random errors may come from fabrication precision, distortion of the antenna surface or 

phase variation caused by temperature [4]. 

In the system considered in this thesis, antenna errors cause null shifting and null 

filling and are independent of the signal.  The patterns in Figure 21 show the effect of 

random amplitude errors.  Simulated random amplitude errors (0.95 < amplitude errors < 

1.05) are multiplied at each antenna element and the resulting difference beam deviated 

slightly from the original one [19]. 
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Figure 21.   Difference beam with antenna errors contribution. 

In Figure 22, two slope constants are displayed, one with no error and the other 

with random errors.  The slope constant with random errors causes a reduction in angle 

accuracy.  This is due to antenna hardware errors rather than amplitude errors.  As 
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explained in Chapter V, the digital beamforming process weighs all channels equally.  

Therefore, amplitude errors do not affect beam pointing. 
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Figure 22.   Slope constants variation with antenna errors contribution. 

4. Multipath 

Except for LOS wave propagation, there are potentially multiple propagation 

paths between the transmitter and receiver.  Multipath is a major factor causing the 

degradation of angle accuracy, especially near the surface of the earth.  Emitted signals 

reflect from the ground causing a mirror image which confuses the tracker [21].  The 

multipath between the transmitter and receiver is shown in Figure 23. 
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Figure 23.   Multipath between transmitter and receiver (from [22]). 

From [22], the path difference when ,t rh h << d  is given by 

 ( ) ( ) ( )2 22 2
1 2 0

2 t r
t r t r

h hR R R R d h h d h h
d

Δ = + − = + + − + − ≈  (34) 

where ( )1 2R R+  is the reflection path and 0R  is the direct path.  The path gain factor 

(PGF) is defined as 

 ( )2 /1 1 2 sin /t rjk h h djk R
t rF e e kh h d−− Δ= + Γ = +Γ =  (35) 

where 1Γ = −  is the reflection coefficient of the surface.  The received power, which is 

proportional to the square of the PGF, is given as 

 
2

2 24sin 4 .t r t r
r

kh h kh hP F
d d

⎛ ⎞ ⎛ ⎞∝ = ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (36) 

In Equation (36), the small angle approximation is assumed.  As the altitudes of the 

transmitter and receiver decrease, the received signals ( )rP  are weaker, resulting in 

larger tracking errors [22].  In Chapter V, the hardware testing of a monopulse tracker is 

implemented in an anechoic chamber to reduce multipath effects.  In the system 
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developed in this thesis, only tracking in azimuth is of interest.  Multipath is primarily of 

concern in elevation tracking.  However, ground bounce may cause fading of the signal 

and possible loss of track, in which case, the processor must re-acquire the signal. 
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IV. DESIGN AND BENCHTOP HARDWARE TESTING OF A 
SINGLE-CHANNEL RSNS DF ARRAY 

There are three objectives in this chapter. The first objective is to design and 

implement a DF hardware platform using a single-channel virtual RSNS.  The second 

objective is to demonstrate the operation of the RSNS module using a benchtop test setup.  

The received phase difference from the simulated signal source is converted to the AOA 

and compared to the AOA based on the actual phase difference from the network 

analyzer.  The LabView software design and development is also described in this 

chapter. 

A. SINGLE-CHANNEL RSNS DESIGN 

The RSNS algorithm was implemented in LabView and encapsulated as a visual 

interface (VI) function called out by the DF main program.  At the beginning of the 

RSNS design, the channel number and moduli were selected based on system 

requirements. 

In this application, a single-channel RSNS was designed.  It had two antenna 

elements ( 2N = ).  Two relatively prime numbers, 5 and 9, were chosen as the moduli 

( 1 25, 9m m= = ).  From Equation (20), the dynamic range ( M̂ ) was obtained as 36.  The 

number of folds for each moduli was calculated by using Equation (21).  The result was 

1.8 folds and 1 fold for moduli 5 and 9, respectively.  The testing platform was operated 

at a frequency of 2.4 GHz ( 0.125λ =  m).  From Equation (22), the antenna virtual 

element baseline distances for the two channels were computed as 1 0.1125d =  m and 

2 0.0625d =  m.  These are virtual channels in the sense that they do not require physical 

elements spaced at 1d  and 2.d   Any physical spacing can be used as long as the 

amplitude folding waveform has only one fold ( ).d λ<   For the array, the selected 

physical spacing was 0.0625d =  m.  With regard to re-mapping the FOV for acquisition,  
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the required FOV was from 90−  to 90+ .  Therefore, by Equation (23), the scaling 

factor was 1.ζ =  The thresholds were calculated from Equation (25) and are shown in 

Table 2. 

Table 2.   Threshold values ,j mV  for ˆ 36M =  (after [10]). 

m j  1 2 3 4 5 6 7 8 9 

5 -0.9511 -0.5878 0 0.5878 0.9511     

9 -0.9848 -0.8660 -0.6428 -0.3420 0 0.3420 0.6428 0.8660 0.9848 

 

The final step was to calculate the phase adjustment for each element to align the 

center of the dynamic range to the folding waveforms at broadside ( )0θ °= .  In 

accordance with [8] and Equation (26), phase adjustments were calculated.  The result for 

element 1 was 1 1.2566ς = −  radians and for element 2 it was 2 1.5708ς = −  radians.  The 

normalized folding waveforms with phase adjustments for moduli [5, 9] are shown in 

Figure 24. 
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Figure 24.   Normalized folding waveforms with phase adjustment 

of moduli [5, 9]. 

From [20], the estimated AOA ( )uθ ′ for the thu  bin is given as 

 1 2 1 1sin ˆu
u
M

θ
ζζ

− ⎛ ⎞+′ = −⎜ ⎟
⎝ ⎠

 (37) 

and the angle resolution ( )ur  for the thu  bin is given as 

 1 1ˆ ˆ2 2 2sin sin .ˆ ˆu
u M u Mr

M Mζ ζ
− −⎛ ⎞ ⎛ ⎞− + −

= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (38) 

The ideal transfer function of the actual AOA versus estimated AOA is displayed in 

Figure 25.  Examining the transfer function reveals that there were 36 stairs due to the 

dynamic range.  The transfer function shows no ambiguities in the FOV. 
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Figure 25.   Transfer function for moduli [5, 9] (after [13]). 

The error in estimated AOA versus actual AOA is displayed in Figure 26.  The 

minimum angle resolution was 3.1847  at the broadside, and the maximum angle 

resolution was 19.1881  at two ends of the FOV ( )90 .±  
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Figure 26.   AOA error for moduli [5, 9] (after [23]). 

B. BENCHTOP HARDWARE SETUP 

A benchtop hardware test set was built to test the single-channel virtual RSNS 

concept [10].  The test platform used a signal generator to simulate a signal source that 

was received at the outputs of the antennas.  The system block diagram, including 

hardware and software blocks, is shown in Figure 27.  The generated signal out of the 

vector network analyzer (VNA) was separated into two paths.  The first was connected to 

another power splitter and served as the LO input to the two demodulator boards.  The 

second path was connected to a power splitter and served as the RF input to the two 

demodulator boards.  One sub-division was the reference path (master) with no phase 

change inserted, and the other was a phase-shifted path (slave) with a phase change 

inserted.  The demodulator board within the master path was designated TST1 and in the 

slave path was called TST2.  The received signals through each of the paths were 
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demodulated and output I/Q values were passed to the digitizer, PXI-5112.  The digitized 

signals were then passed to the computer, PXIe-1062Q, and accessed by the RSNS 

module, which was developed in LabView, to calculate the AOA [10]. 

N
et

w
or

k 
A

na
ly

ze
r

H
P 

85
10

C

Power
Splitter

AD8347 
(TST1)

Amplifier/
LPF

PCI/PXI-
5112

PXIe-1062QAOA estimate

AD8347 
(TST2)

Amplifier/
LPF

PCI/PXI-
5112

Power
Splitter

Power
Splitter Power

Splitter

Reference Path 
(Master)

Phase-Shifted Path 
(Slave)

RSNS Algorithm 
in LabView

: Attenuator

: Phase Shifter

Si
gn

al
 G

en
er

at
or

H
P 

83
65

1A

LO LO

 

Figure 27.   Block diagram of the DF testing platform (after 10). 

The main purpose of this measurement was to validate the DF system software 

and evaluate the performance of the single-channel RSNS.  To simply the system, the 

phase difference coming from the signal source was simulated by changing the phase 
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shifters in the test platform.  The signal source was operated at 2.4 GHz, and a total of 

360  phase change was provided by two mechanical phase shifters.  Each of them had a 

180  range with 30 turns (one turn equals to approximately 6 ). 

The signal generator was part of the VNA, HP8510C.  The phase difference was 

not only measured by the DF system but also measured by the VNA, so the exact phase 

was known to within about 1 .  The two acquired values were compared and the details 

were presented in Section E of Chapter IV.  To make the phase measurement accurate, 

the signal paths were required to be equal, aside from the mechanical phase shift. 

A photograph of the testing platform is shown in Figure 28.  The test set 

components and their specifications are listed in Table 3. 

 

Figure 28.   Photograph of a single-channel RSNS DF benchtop test system. 
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Table 3.   Hardware equipment list (after [10]). 

Component Name Quantity Specification 

Signal Generator 1 
Model: HP 83651A Series Synthesized Sweeper 

Frequency Range: 45 MHz to 50 GHz 

S-Parameter 1 
Model: HP 8517A S-Parameter Test Set 

Frequency Range: 45 MHz to 50 GHz 

Network Analysizer 1 Model: HP 8510C Network Analyzer 

Power Splitter 4 

Model: Anaren 40266 

Frequency Range: 2 to 4 GHz 

Maximum Insertion Loss: 0.3 dB 

Maximum VSWR: 1.3 SWR 

Phase Shifter 2 Sage Laboratories Inc. DC-8 GHz 

DC Power Supply 1 Condor GL50A 50 Watt CH1 5.05 VDC 4 A, 
CH2 12 VDC 2.5 A, and CH3 12 VDC 0.2 A 

Cable 19 Pasternek Cable RG-306 

Variable Attenuator 1 Telonic Altair Attenuation Model 8140S 

Direct Conversion 
Quadrature 
Demodulator 

 [TST1, TST2] 

2 

Model: AD8347 (Analog Devices) 

LO/RF Frequency Range: 800 MHz to 2.7 GHz 

LO Input Level: -10 dBm to 0 dBm and -8 dBm 
(recommended) 

RFIP: 10 dBm (Max) 

Power Supplies: 2.7 to 5.5 V 

Amplifier 2 Differential Amplifier with LPF bandpass 3 dB of 
10 MHz and Voltage gain of 10 

Processor 1 
Model: PXIe-1062Q (NI) 

Slots: 8 PXI Express Chassis for PXI and PXI 
Express Modules 

Digitizer 

[DAQ 2, DAQ 3] 
2 

Model: PCI/PXI-5112 (NI) 

Resolution: 8 bits 

Sample Rate: 100 MS/s (Max) 

Bandwidth (-3 dB) : 100 MHz (Max) 
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Before starting measurement, there was another issue taken into consideration.  

Two of the demodulator boards, TST1 and TST2, had to be calibrated to remove DC 

offsets.  The calibration process is explained in Section C. 

C. CALIBRATION 

Two of the demodulator boards, TST1 and TST2, used in the testing platform, had 

DC offsets that had to be determined and deducted from test measurements before 

applying the RSNS algorithm.  This process made the phase measurement more accurate.  

The calibration method was to measure the I and Q values through the whole 360  and 

calculate the mean I and Q values, which corresponded to the I/Q circle center 

coordinates.  The calibration process was to re-map the I and Q values so that they were 

centered at zero [10]. 

The program used to calibrate was developed in [10] and implemented in 

LabView.  Some of the functions were revised.  The new LabView front panel is shown 

in Figure 29.  A default file-save-name and paths are located in the upper-left corner of 

the front panel.  The graph in the upper-right of the panel is used to display the I/Q input 

signals from the testing platform.  The lower-left graph displays the uncalibrated DC 

offsets and the lower-right graph displays the calibrated DC offsets.  The measured I and 

Q DC offset values appear at the bottom of the panel. 
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Figure 29.   Front panel of calibration (after [10]). 

There are two parts in this calibration program.  The first part of this program is 

shown in Figure 30.  A rate of 10,000 samples per second is selected.  Every 10,000 

points are summed and used to compute the mean values for both I and Q.  The initial 

measured values are saved to the selected file and a prompt window pops up waiting for 

the user to change the mechanical phase shifter.  In this test, the phases are changed 
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approximately every 6  (one turn of the phase shifter).  The process must go through all 

360  of phase, and the measured values are automatically appended to the file. 

 

Figure 30.   DC values collection in LabView (after [10]). 

The second part of this program is to read the saved file in part one and use the 

raw data to draw the uncalibrated graph, which is not centered at the origin.  Another 

function calculates the mean I and Q values, then subtracts them from the raw data.  The 

subtracted values are used to draw the calibrated graph, which should be centered at the 

origin.  The second part of the calibration program is shown in Figure 31. 
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Figure 31.   Draw the uncalibrated and calibrated values 
in LabView (after [10]). 

Another issue which affects the accuracy of the measurement is the selection of 

the proper power level.  The power level in each component must be adjusted to avoid 

over driving or under driving the circuit [10].  Further, the power into the two 

demodulator boards must be equal, so several attenuators are used to balance the input 

power levels.  Third, most components have a limited or optimum operating power range, 

and it is necessary to set the power levels to this range.  The measured power levels, 

power supply voltage and attenuator values of the components in the testing platform are 

listed in Table 4.  The minimum, maximum and optimum values are also listed for 

reference. 
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Table 4.   Power levels in components (after [10]). 

 Measured Values Spec. 
Min 

Spec. 
Max Optimum 

Network Analyzer 10 dBm N/A 14 dBm N/A 

LO (TST1) -8.63 dBm -10 dBm 0 dBm -8 dBm 

LO (TST2) -8.70 dBm -10 dBm 0 dBm -8 dBm 

RFIP (TST1) -41.57 dBm N/A 10 dBm N/A 

RFIP (TST2) -41.61 dBm N/A 10 dBm N/A 

Attenuator (TST1) 33.5 dB N/A N/A N/A 

Attenuator (TST2) 29.5 dB N/A N/A N/A 

Power Supplies for 
TST1 and TST2 5.05 V 2.7 V 5.5 V N/A 

 

This calibration routine was executed and the results follow.  A screen shot of a 

test is shown in Figure 32.  The DC offset for TST1 had a mean value of -0.562005 V in 

the I channel and a mean value of -0.291017 V in the Q channel.  After subtracting the 

offset values, we see that the calibrated graph shows a circle centered at zero. 
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Figure 32.   Calibration for TST1 (after [10]). 

The DC offset for TST2, which had a mean value -0.540751 V in the I channel 

and 0.167873 V in the Q channel, is shown in Figure 33.  After subtracting the offset 

values, we see that the calibrated graph shows a circle centered at zero. 
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Figure 33.   Calibration for TST2 (after [10]). 

After implementing the calibration process, we consider that the two demodulator 

boards are accurate.  The next step was to estimate the actual AOA from the signal source 

as discussed in Section D of Chapter IV. 
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D. RSNS DF LABVIEW BENCHTOP MEASUREMENT MODULE 

LabView is the control and processing software developed by NI.  It is a virtual 

environment for computation as well as control and data logging for physical instruments, 

such as meters and oscilloscopes.  The graphical programming environment provides 

users the tools to intuitively design test and measurement systems more easily.  It is a real 

time system and is designed to be reliable and much faster than other software system.  

The programs developed in LabView are easy to revise and modify, so simulations can 

be used, thus, saving more time than actually assembling and testing a circuit.  In this 

project, LabView Version of 8.5 was used to design and control all modules of the array 

processor. 

After the I and Q signals are sent to the computer, the LabView program assumes 

control and performs all of the necessary processing.  The DF program was originally 

developed in [10], but some of the functions and layout were revised and modified in this 

work.  Three sections to this program were developed.  The first part loads the DC offsets, 

initiates signal input and configures the system parameters.  The second part subtracts DC 

offsets, calculates the AOA and saves the measured values in various output files.  The 

third part loads the saved files from the second part, draws the simulated AOA versus 

estimated AOA graph and draws the actual phase difference versus measured phase 

difference graph.  The front panel of the DF module is shown in Figure 34. 
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Figure 34.   Front panel of the benchtop DF test software (after [10]). 

In Figure 35, the first portion of the VI block diagram used for the DF test is 

shown.  During the test, two of the calibration files (tst1.txt and tst2.txt), saved in the 

measurement process and described in Section C, are loaded at the beginning of the 

program.  The input signals from the master path are initiated and the data acquisition 

(DAQ) device is set to the number 2 (the second slot of the chassis).  The DAQ number 

of the slave path is set to 3 (the third slot of the chassis).  The sampling rate is set to 1 

MS/s (mega samples/sec), and the record length is set to 0.1 MS. 
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Figure 35.   The first portion of the DF block diagram (after [10]). 

The second part of the VI block diagram is shown in Figure 36.  Both of the 

demodulator boards (TST1 and TST2) require removal of their DC offsets.  The phase of 

the signals from the master path and slave path is passed to the RSNS Sub-VI to calculate 

the AOA.  The phase difference, estimated AOA, phase difference of master, phase 

difference of slave and phase difference from the VNA are sequentially stored in an 

output file (df.txt). 
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Figure 36.   The second portion of the DF block diagram (after [10]). 

The RSNS Sub-VI program was developed in [10]. This component takes the I 

and Q values from both of the paths (master and slave) and calculates the AOA.  There 

are four parts in the RSNS algorithm as shown in Figure 37.  In the first part, two of the 

I/Q pairs from the master and slave paths are used to calculate the phase difference.  In 

the second part, the phase differences are used to generate the folding waveforms.  In the 

third part, the folding waveforms of each channel are compared with the RSNS 

thresholds.  Finally, the thresholded outputs are compared to the RSNS code to estimate 

the AOA. 
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Figure 37.   Sub-VI of RSNS algorithm (after [10]). 

The third part of the VI block diagram is shown in Figure 38. The saved file from 

the second part is loaded. An embedded MATLAB script is used to plot the actual phase 

difference versus the measured phase difference.  Another simulated AOA versus 

estimated AOA graph is plotted on the front panel.  Both of the results are discussed in 

more detail in Section E. 
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the Measured Phase Difference

Plot the Simulated
AOA vs. Estimated AOA

 

Figure 38.   The third portion of the DF block diagram (after [10]). 

E. BENCHTOP TEST RESULTS 

In this section, the measured values from the DF benchtop testing platform, 

shown previously in Figure 27, are examined and analyzed, along with the measured 

values from network analyzer.  The results shown in Figure 39 are typical of the 

simulated AOA (from VNA phase) versus the estimated AOA (from RSNS DF) extracted 

from the front panel of the DF program.  The test data was obtained by shifting the phase 

shifters in one turn steps through 360  to simulate the signals from the emitter arriving at 

different angles.  From this figure, the RSNS transfer function steps are vaguely observed 

along the diagonal line, similar to those seen in Figure 25. 
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Figure 39.   Simulated AOA vs. estimated AOA from DF testing platform. 

The measured values stored in the output file (df.txt) are extracted and plotted 

with the RSNS transfer function for moduli [5, 9] in Figure 40.  The estimated AOAs 

from the DF testing platform are overlapped with the theoretical RSNS AOAs.  Based on 

these results, it can be concluded that the simulated signals with phase changes could be 

successfully transformed to the AOA values. 
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Figure 40.   Comparison of ideal RSNS vs. DF testing platform. 

To determine if the phase differences obtained from the I and Q values of the 

testing platform are in accordance with the phase differences measured by the network 

analyzer an analysis of the raw phase differences from the testing platform and the 

network analyzer are analyzed.  These results are plotted in Figure 41.  Note that there are 

break points around sample points 38 and 42 due to the phase cycles from 180−  to 180 . 
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Figure 41.   Phase difference of VNA and DF module. 

After unwrapping the phase and centering the lines to the average phase values, a 

smoother phase plot is obtained and is shown in Figure 42.  Both of these phase 

difference lines are almost matched to one another and they have the same slope when a 

least squares fit is applied. 
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Figure 42.   Phase difference of VNA and DF module with adjustment. 
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The actual AOA versus the AOA errors are compared and plotted in Figure 43 for 

the ideal RSNS, measured DF testing platform and network analyzer. The shift in 

measured data is likely due to demodulator calibration error. 
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Figure 43.   Comparisons of AOA errors from ideal, mesaured DF 

testing platform and VNA. 

F. COMPARISON OF MEASURED AND SIMULATED DATA 

In Section A, the ideal angle resolutions of moduli [5, 9] are derived from 

Equation (38) and plotted in Figure 26.  In this section, different SNRs, varying from 10 

dB to 90 dB, in increments of 20 dB, are simulated to observe their effects on angle error.  

The MATLAB file (virtualnoisejb.m) developed to simulate a plane wave incident from 

90−  to 90  with different SNRs added was modified [10] for this research.  The input I 

and Q voltages for each element were set to 0 dBW and white Gaussian noise was added 

as 

 II I N= +  (39) 
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and 
 QQ Q N= +  (40) 

where IN  is the noise added on the I channel and QN  is the noise added on the Q 

channel.  From [11], note that the monopulse difference beam has a linear region of 

approximately 20 .  Therefore, the angle errors of the estimated AOA must be less than 

20  for successful acquisition. 

In Figure 44, actual AOA versus ideal (noiseless) AOA and versus the AOA for a 

SNR of 10 dB is shown.  The maximum error between the ideal and 10 dB SNR cases is 

about 10±  at broadside but degrades at the two ends ( )90 .±  
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Figure 44.   AOA error for noiseless and for SNR = 10 dB. 
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In Figure 45, actual AOA versus noiseless (ideal) AOA and versus the AOA for a 

SNR of 30 dB is shown.  The maximum error between the ideal and 30 dB SNR cases is 

about 3±  at broadside and again degrades at the two ends ( )90 .±  
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Figure 45.   AOA error for noiseless and for SNR = 30 dB. 

Figures 46 through 48 contain the corresponding results for SNRs of 50, 70 and 

90 dB.  The angle error continues to decrease as the SNR increases.  At a SNR of 90 dB 

the performance is essentially ideal. 
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Figure 46.   AOA error for noiseless and for SNR = 50 dB. 
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Figure 47.   AOA error for noiseless and for SNR = 70 dB. 
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Figure 48.   AOA error for noiseless and for SNR = 90 dB. 

Monte Carlo simulation tests show that a SNR of approximately 30 dB is 

acceptable for the RSNS DF system to acquire accurate AOAs.  For SNRs greater than 50 

dB the performance is essentially ideal. 

The design, simulation and benchtop test results for the RSNS DF algorithm were 

presented in this chapter.  The integration of the antenna components and software and 

the system testing are addressed in the next chapter. 
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V. INTEGRATED ARRAY SYSTEM HARDWARE AND 
SOFTWARE TESTING 

The hardware of the digital tracking array with single-channel RSNS DF and 

monopulse DBF was assembled and tested.  The angle measurements were taken in an 

anechoic chamber to reduce interference from multipath.  The antenna under test was a 

six-element phased array.  The structure of the phased array and the theory of monopulse 

DBF are elaborated and explained, and the hardware used in this tracking system is 

described.  The tracking module was written in LabView and originally developed in [11].  

It was modified and tested as described in Section C of Chapter V.  Finally, the 

measurements and simulation results are analyzed and explained in Section F of Chapter 

V. 

A. PROTOTYPE PHASED ARRAY DESCRIPTION 

The six-element phased array used for angle tracking is shown in Figure 49.  The 

array axis is aligned parallel to the x-axis.  The x-z plane represents azimuth and the y-z 

plane represents elevation.  Each elevation (vertical) subarray consists of two half-wave 

dipole antennas aligned in the y-axis.  This subarray design can provide a higher gain 

than a single dipole, increasing the range and the angular accuracy.  The spacing between 

subarrays is 0.0625 m, which is small enough to prevent grating lobes when scanned. 

 

Figure 49.   A six-element phased array. 
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The structure of each subarray is shown in Figure 50.  Two half-wave dipole 

antennas and one microstrip power divider are printed on a thin, dielectric substrate of 

thickness substrated  and permittivity rε  [24].  To make the current on the two arms of the 

dipole in phase, one of the paths is a half wavelength longer than the other (at 2.4 GHz).  

The parameters of the subarray are calculated in [11] and shown in Table 5. 

W1

W2

W3

 

Figure 50.   Layout of the elevation subarray (after [11]). 

Table 5.   Parameters of the elevation subarray (after [12]). 

Gain ( )G  5.16 (dB) 

Azimuth HPBW ( )Bθ  78  

Permittivity of the substrate ( )rε  3.38 

Thickness of the substrate ( )substrated  60 mils (1.52 mm) 

Trace width of the 180 splitter 1( )W  35.7 mils (0.91 mm) 

Width of the rat-race hybrid feed lines 2( )W  139  mils (3.53 mm) 

Width of the rat-race hybrid 3( )W  76.3 mils (1.94 mm) 
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From [3] the half-wave dipole has a directivity of 1.64 (2.15 dB).  The subarray 

under consideration for this thesis has two half-wave dipoles, so the directivity is 3.28 

(5.16 dB).  Further, with the use of the ground plane, another 3 dB gain comes from the 

image.  The total gain of the subarray is 8.16 dB.  The gain of the six-element phased 

array was measured in [12] and has a gain of 14 dB, which is 1.95 dB lower than its 

theoretical value.  The excess loss can be attributed to measurement system loss and 

subarray circuit board loss.  The HPBW is 20.17  by using the approximation of 

0.88 / .B Dθ λ=   The measured azimuth radiation pattern of the six-element phased array 

is shown in Figure 51. 

θ

dB

(Degrees)  

Figure 51.   Measured radiation pattern of a six-element 
phased array in azimuth (after [12]). 

The main beam of the radiation pattern is at 0 .θ =   The asymmetrical radiation 

pattern is primarily due to the asymmetrical shape of the anechoic chamber.  A reflecting 

ground plane (visible in Figure 49) is used to diminish the rear radiation and constrains 

the FOV from 90−  to 90 .   The spacing between subarrays equal to / 2λ , which is 

0.0625 m at 2.4 GHz. 
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B. DIGITAL BEAMFORMING 

Digital phased arrays form their beams in a beamforming computer (digital 

beamformer). The phase shifting of each array element is controlled by the DBF, 

therefore, the array scans at the speed of the processor. 

Let there be N  elevation subarrays positioned along the x-axis as shown in 

Figure 52.  For the following analysis it is assumed that N  is even. 
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Figure 52.   Digital phased array azimuth beamforming 
on reception (after [25]). 

Let nd  be the element n  location on the x-axis ( )1, 2,...,n N=  so that the array is 

centered at the origin with inter-element spacing .d   Therefore, nd  can be expressed as 
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 ( )2 1
.

2n
n N

d d
− +

=  (41) 

The array factor of the one-dimensioned linear array can be expressed as [5] 

 ( ) sin sin

1 1
n n n

N Njkd j jkd
n n

n n
AF w e A e eθ α θθ

= =
= =∑ ∑  (42) 

where nw  is the complex weight, nA  is the amplitude illumination (for a uniform array, 

1nA = ), and nα  is the thn  element phase weight.  The angle θ  is the incoming plane 

wave direction relative to the z axis [3].  The phase nα  is given as 

 sinn n skdα θ= −  (43) 

where sθ  is the scan angle of the main beam [25]. 

The digital beamforming process is depicted in Figure 53.  The array is split into 

two azimuth subarrays with / 2N  elements each.  The distance of the centers of the 

subarrays from the array center is 

 .
4c
Nd d=  (44) 

The subarray factor for an azimuth subarray is 
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sin sin
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Figure 53.   Sum and difference beamforming of monopulse (after [25]). 

The subarrays are used to generate the sum and difference beams.  From the 

principle of pattern multiplication [5], the sum and difference beams can be formed as 
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θ θ

− − −∑ = ⋅ + ⋅
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and 

 
( ) ( )
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The difference over sum ratio is derived as 

 
( ) ( )
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2 sin sin sin
tan sin sin .
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Assuming ( )sθ θ−  is a small angle, we know that sin sin s sθ θ θ θ− ≈ −  and 

( ) ( )tan c s c skd kdθ θ θ θ⎡ ⎤− ≈ −⎣ ⎦  [26].  The difference over sum ratio can be simplified as 
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 ( ) ( )c s skd Kθ θ θ θΔ
≈ − = −

∑
 (49) 

where K  is the monopulse slope constant.  The monopulse slope constant can be 

transformed to 

 2 0.88 1.38
4 2 2c

B B

N N dK kd dπ π λ π
λ λ θ λ θ

⎛ ⎞≈ = = = =⎜ ⎟
⎝ ⎠

 (50) 

where 0.88 / 0.88 /B D Ndθ λ λ≈ ≈  [26].  This formula is accurate near broadside.  

However, at wide scan angles the slope decreases significantly due to a reduction in the 

array’s projected aperture.  To compensate, the constant can be modified by multiplying 

by cos sθ  [26]. 

The nI  and nQ  values out of the demodulators are used to form the array 

response.  Ideally, when a wave is incident from the direction ,θ  

 ( )cos sinn nI jkd θ=  (51) 

and 
 ( )sin sin .n nQ jkd θ=  (52) 

To form a beam in the direction of sθ  the processor must apply a complex weight of 

 sin .n n sj jkd
n n nw A e A eα θ−= =  (53) 

The output of the DBF for the sum beam is [26] 

 ( )
1

N
n n n

n
w I jQ

=
Σ = +∑  (54) 

and for the difference beam 

 ( )
( )

( )
/2 /2

1 /2 1
.

N N
n n n n n n

n n N
w I jQ w I jQ

= = +
Δ = + − +∑ ∑  (55) 

C. RSNS DF AND MONOPULSE DBF LABVIEW BEAMFORMING 
MODULE 

The signals after the digitizer, PXI-5112, are transformed to digital format and the 

computer is used to form the beam and perform the tracking process.  There are two 
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methods used to implement the tracking operations, one is continuous RSNS DF and the 

other is RSNS DF with monopulse DBF.  The explanations of the RSNS DF and the 

monopulse DBF were presented in Chapter II and Chapter III.  The module was 

developed in LabView and originally designed by [11].  Some new functions have been 

added and part of the control panel layout has been revised and modified. 

There are four sections to this program. The first part initiates the input signals 

and configures the system parameters.  The second part includes subtracting the DC 

offsets, adding phase adjustments, calculating the initial scan angle using the RSNS Sub-

VI and computing the phase differences between adjacent elements.  The third part is the 

digital beamformer, which calculates the difference over sum ratio and estimates the 

monopulse slope constant.  The fourth part defines the angle error ranges, recalculates the 

scan angle from the angle error and then feeds data back to the starting point of the 

monopulse sequence, saving the measured values. 

The front panel of the beamforming module is shown in Figure 54. There are two 

major sections to the front panel. The left side displays the configuration and results, 

which includes the calibration parameters of the array and the phase differences between 

elements during the testing.  When the array is calibrated, the phase differences should be 

identical for an ideal plane wave arriving at broadside.  The right block is the display and 

control zone, which includes an azimuth scan angle meter and a rectangular angle error 

meter.  The lower-right panel is used to change the tracking modes and stop operation. 
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Figure 54.   Front panel of the tracking module. 

In Figure 55, the first portion of the VI block diagram used for the tracking 

process is shown.  For brevity, only the master and two slave channels are shown.  The I 

and Q signals output from the digitizers (six PXI-5112s) are the inputs to the process.  

The top path is set as the master (DAQ number to 2, the second slot of the computer, 

PXIe-1062Q) to perform as a reference trigger.  Others paths are set as slaves (DAQ 

numbers are 3, 5, 6, 7 and 8, respectively). The sampling rate is set to 1 MS/s and the 

record length is set to 0.1 MS. 
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Initiate the Input Signals Configure the System Parameters  

Figure 55.   The first portion of the tracking system 
block diagram (after [11]). 

The second part of the VI block diagram is shown in Figure 56 and only part of 

this portion is shown. The six demodulator boards must have their DC offsets removed. 

The procedure for offset calibration is described in Chapter IV, and the DC offset values 

were measured before the demodulators were installed.  The phase differences from 

several combinations of elements (1-2, 2-3, 3-4, 4-5, 5-6) are averaged and passed to the 

RSNS Sub-VI to calculate the AOA.  The averaging should reduce the effects of mutual 

coupling and any isolated channel phase errors.  The monopulse uses the AOA as the 

initial scan angle of the emitter.  In this testing, one phase difference (3-4), two 

combinations of three phase differences (2-3, 3-4, 4-5 and 1-2, 3-4, 5-6) and five phase 

differences (1-2, 2-3, 3-4, 4-5, 5-6) were compared to find the best estimate. 
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Figure 56.   The second portion of the tracking system 
block diagram (after [11]). 

Another important step in the second part is the initial phase adjustment.  The six-

element phased array is aligned with the horn antenna at the boresight.  The incident 

wave is assumed to be a planar wavefront and hence the phases of each subarray are 

assumed to be equal.  However, the phases of each subarray may be different, as shown 

in Figure 57.  The phase differences are due to variations in the insertion phases of the RF 

devices in the individual channels, as well as the effects of mutual coupling.  As shown, 

there is a 3.8  angle bias at broadside and other errors are expected at other measured 

angles. 



 80

 

Figure 57.   Display before phase adjustment. 

These phase differences are recorded and then subtracted to give a common 

reference, which is 0  for the testing platform.  The original angle bias is diminished as 

shown in Figure 58. 

 

Figure 58.   Display after phase adjustment. 

The third part of the VI block diagram is shown in Figure 59.  The subarray 

locations are calculated and provided as input arguments of the array factor Sub-VI.  The 

array factor Sub-VI uses the phases with the subarray locations to construct the DBF.  

The beams of the six subarrays are divided into two subarray groups, which are referred 

to as left-subarray and right-subarray.  For monopulse tracking, both the sum and 

difference beams are used for reception.  The left-subarray adds the right-subarray to 

form the sum beam and the left-subarray subtracts the right-subarray to form the 
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difference beam.  The difference over sum ratio is computed.  The previous scan angle 

becomes the variable to estimate the monopulse slope constant and is divided by the 

difference over sum ratio to estimate the new scan angle. 

Calculate the Subarray
Locations

Estimate the Monopulse
Slope Constant by the Scan 
Angle

DBF Network

Calculate the 
Difference over 
Sum Ratio

 

Figure 59.   The third portion of the tracking system 
block diagram (after [11]). 

The fourth part of the VI block diagram is shown in Figure 60.  An angle error 

diagnostic function is built in to prevent track loss.  If angle errors are more than the 

limits, the monopulse tracking will stop and jump back to RSNS DF to re-acquire a new 

scan angle.  From [11], the monopulse has a total linear region of approximately 20 ; 

therefore, the angle errors should be less than 20  to provide an accurate measurement.  

In the RSNS with monopulse DBF mode, the scan angle adds with the angle error and 

feeds the data back to the starting point of the monopulse sequence to become the new 
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monopulse scan angle.  Finally, the index numbers, tracking mode numbers, scan angles, 

angle errors, RSNS AOAs and monopulse slope constants are stored sequentially in an 

output file (scan_angle.txt). 

Limit the Range 
of Angle Errors

Save the Meausured Values in 
the File (Scan_Angle.txt)

Add the Scan Angle 
with the Angle Error 
and Feed the Data 
Back to the Starting 
Point of the 
Monopulse Sequence

 

Figure 60.   The fourth portion of the tracking system 
block diagram (after [11]). 

D. FULL SYSTEM BENCHTOP HARDWARE TEST 

Before testing the array in the chamber, a benchtop test was performed using a 

signal generator to simulate a signal transmitted from a UAV.  A specially configured 

transmit antenna was used for the transmitter as displayed in Figure 61.  The transmit 

antenna was surrounded by absorber material to limit the scattering of microwaves.  The 

absorber material can be placed very close to an element (≈1 inch) to act as a probe for 

diagnostic evaluation or several feet away to excite all of the array elements.  If an  
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element is operating normally, the software displays voltage variations on the front panel.  

The purpose of this test was to check each element’s functionality before conducting the 

tracking measurement in the chamber. 

 

Figure 61.   Diagnostic probe for the full system benchtop testing. 

The return loss ( )11S  of the probe at 2.4 GHz was measured and the results are 

shown in Figure 62.  A return loss of 31.58 dB was measured. 
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Figure 62.   The 11S  values of the probe at 2.4 GHz. 

The emitted signals from the probe antenna simulate a UAV and were captured by 

the six-element phased array located on the benchtop.  The incident signals were digitized 

and then processed using RNSN DF and monopulse DBF.  The system block diagram, 

including hardware and software modules, is shown in Figure 63. 
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Figure 63.   Complete block diagram of the digital tracking array configured 
for the benchtop system test (after [11]). 
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All hardware items were tagged in order to avoid misconnection between the 

elements and the digitizer cards.  The detailed setup, including element name, DAQ 

number, channel number, DC offset values and path name in LabView are listed in Table 

6. 

Table 6.   Mapping of antenna element to DAQ number, channel number, 
DC offset values and path name (after [11]). 

Antenna PXI-5112 
Channel 

Number 
DC Offset (V) 

Path Name in 

LabView 

0 I: 0.291598 
Element 1 DAQ 2 

1 Q: 0.228723 
Master 

0 I: 0.467246 
Element 2 DAQ 3 

1 Q: 0.397841 
Slave 1 

0 I: 0.950052 
Element 3 DAQ 5 

1 Q: 0.536271 
Slave 2 

0 I: 0.383027 
Element 4 DAQ 6 

1 Q: 0.428907 
Slave 3 

0 I: 1.05652 
Element 5 DAQ 7 

1 Q: 0.014059 
Slave 4 

0 I: 0.575009 
Element 6 DAQ 8 

1 Q: 0.517006 
Slave 5 

 

The main purpose of this benchtop system test was to implement the RSNS DF 

with monopulse DBF tracking system and demonstrate the operation of the testing 

platform.  After several test cycles, it was determined that the system components and 

software were functioning.  This enabled testing to proceed to the anechoic chamber. 
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E. ANECHOIC CHAMBER 

The anechoic chamber can reduce the reflection of electromagnetic waves 

significantly and provide a low noise environment.  It simulates the free space 

environment and also provides an environment to measure antenna radiation patterns and 

parameters such as HPBW and gain.  The effects of multipath diminish the angle 

accuracy of measurements as explained in Chapter III.  A tracking system needs to 

receive signals from the emitter without multipath interference to accurately determine 

the AOA.  If there is reflection, an image may confuse the tracker causing loss of track 

[8]. 

A layout of the anechoic chamber at the Naval Postgraduate School (NPS) is 

shown in Figure 64. 

Unit: inchx

y

z

 

Figure 64.   Anechoic chamber at the Naval Postgraduate School (after [11]). 

The chamber is designed to operate above 3 GHz.  Since the system demonstrated 

for this thesis is operated at 2.4 GHz, slightly higher reflection levels from the walls are 

experienced.  Further, the chamber is not symmetrical in shape due to space constraints.  
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The distance between the transmit horn antenna and the phased array under test is 228 

inches ( 5.8R =  m).  Recall that the three far-field conditions are [25] 

 22 / 1.5625,R D λ> =  (56) 

 D >> 0.125,λ =  (57) 

and 
 R >> 0.125λ =  (58) 

where D  is the total length of the array ( )( )1 .D N d≈ −   The testing platform is operated 

in the far-field, which means the wavefronts are spherical and there is a negligible radial 

component to the field [13]. 

In Figure 65, the transmit horn is shown connected to the VNA, which is located 

outside of the chamber.  This horn simulates the emitter on a UAV.  The six-element 

phased array is placed on a rotating pedestal facing the emitter, as shown in Figure 66. 

 

Figure 65.   Horn antenna as the emitter. 



 89

 

Figure 66.   A six-element phased array placed on the pedestal. 

The pedestal is operated by a servo computer and rotates from 80−  to 80  to 

simulate the movement of a UAV [8].  Figure 67 is a block diagram of the equipment 

used in the anechoic chamber. 

HP 83631
Synthesized Sweep
45 MHz - 26.5 GHz

HP 8511
Vector Network 

Analyzer

HP 8511
Frequency 
Converter

HP 8348A
Amplifier
25 dBm

HP 87300
10 dB Directional 

Coupler
Phased Array

Receiver

Variable
Attenuator

3m + 2m
cable

1m
cable

Variable
Attenuator

LO

3m
cable

 

Figure 67.   Block diagram of the equipment used in the anechoic chamber (from [11]). 
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F. CHAMBER TEST RESULTS 

In this section, chamber measurements of the array tracking system are reported.  

Two tracking modes are presented over a range of operating parameters to examine their 

performance.  The data collected is plotted and a comparison of the recorded tracking 

angles with the pedestal angles is made.  The results are analyzed and the performance of 

the tracking system is determined. 

The first part of the chamber test was to find out the maximum RSNS DF range. 

The initial scan angle provided by the RSNS DF limited the FOV of operation.  If the 

RSNS DF cannot provide a close enough scan angle, the monopulse tracking cannot 

acquire the signal.  The acceptable angle error in the series of tests was defined as less 

than 20  because within this range, monopulse tracking guarantees an accurate updated 

tracking angle.  At the beginning of the test, the tracker’s capability was unknown so a 

smaller FOV (from 80−  to 80 ) was tested.  Further, a variety of element phase 

differences (one phase difference, or averaging three phase differences or five phase 

differences) were tested and comparisons provided.  The goal in averaging the phase 

differences was to reduce the effect of errors in the individual channels, as well as mutual 

coupling.  The results of the combined RSNS and monopulse DBF mode using one phase 

difference (elements 3-4), three phase differences (elements 1-2, 3-4, 5-6 and elements 2-

3, 3-4, 4-5) and five phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) with 1 degree 

steps are shown in Figures 68 to 71, respectively. 
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Figure 68.   Tracking with RSNS mode using one phase difference 
(elements 3-4) and 1 degree steps. 
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Figure 69.   Tracking with RSNS mode using three phase differences 
(elements 1-2, 3-4, 5-6) and 1 degree steps. 
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Figure 70.   Tracking with RSNS mode using three phase differences 
(elements 2-3, 3-4, 4-5) and 1 degree steps. 
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Figure 71.   Tracking with RSNS mode using five phase differences 
(elements 1-2, 2-3, 3-4, 4-5, 5-6) and 1 degree steps. 
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The results are summarized and shown in Table 7.  The one phase difference 

RSNS approach can provide a scan angle from the very beginning of 76.46− , but from 

25  to 35.6  there is a region that is outside the angle error limitation.  Within this region, 

monopulse tracking cannot acquire the signal and will point to an incorrect angle.  The 

array may track in a sidelobe null instead of the mainlobe null. 

The results show that the three phase differences RSNS approach (elements 1-2, 

3-4, 5-6) can provide a wide FOV of 115 ; although, it cannot provide a maximum 

continuous range like the other three phase differences (elements 2-3, 3-4, 4-5).  It can, 

however, provide symmetric DF from 55−  to 60 .   The RMS errors are also the lowest 

at a range of 80−  to 80  and 50−  to 50 . 

The five phase differences approach was expected to give the best results.  

However, the mutual coupling phase variation was much larger than expected for the 

edge elements, especially at wide angles.  Therefore, it is proposed that it may be best to 

discard the data from the edge elements. 
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Table 7.   Results of tracking with RSNS DF mode. 

 
One Phase 

Difference 

Three Phase 

Differences 

Three Phase 

Differences 

Five Phase 

Differences 

Phased Array 

Elements 
3-4 1-2, 3-4, 5-6 2-3, 3-4, 4-5 

1-2, 2-3, 3-4, 

4-5, 5-6 

Start Tracking 

Angle 
76.46−  55−  74−  55−  

End Tracking 

Angle 
25  60  41.43  42.53  

Maximum 

Continuous 

Tracking Range 
101.46  115  115.43  97.53  

RMS 

 ( 80−  to 80 ) 
36.4173  31.9450  35.7984  32.8421  

RMS 

 ( 70−  to 70 ) 
16.8417  19.5789  26.5191  22.0799  

RMS 

 ( 60−  to 60 ) 
12.4996  12.5066  16.1248  12.7128  

RMS 

 ( 50−  to 50 ) 
10.5736  6.2898  12.3253  7.2884  

 

The second tracking mode of the array (RSNS acquisition and monopulse DBF) 

was evaluated using one phase difference (elements 3-4), three phase differences 

(elements 1-2, 3-4, 5-6), three phase differences (elements 2-3, 3-4, 4-5) and five phase 

differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) with 1 degree steps. The results are shown 

in Figures 72 to 75, respectively. 
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Figure 72.   Tracking with RSNS and monopulse DBF mode using one 
phase difference (elements 3-4) and 1 degree steps. 
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Figure 73.   Tracking with RSNS and monopulse DBF mode using three 
phase differences (elements 1-2, 3-4, 5-6) and 1 degree steps. 
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Figure 74.   Tracking with RSNS and monopulse DBF mode using three 
phase differences (elements 2-3, 3-4, 4-5) and 1 degree steps. 
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Figure 75.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) and 1 degree steps. 
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The results are summarized and shown in Table 8.  The initial scan angle is very 

important for the tracking system, as indicated by the test results.  From the previous test, 

the one phase difference RSNS DF provided a correct scan angle from 76− , showing 

that monopulse tracking could implement tracking from the very beginning of a sweep.  

The results show that it could track from 75−  to 73  and has a tracking range of 148 .  

On the other hand, the RSNS DF with other phase differences did not provide a correct 

scan angle in the beginning of the sweep and gave the monopulse tracker a wrong 

direction.  The wrong direction is likely near a sidelobe null, so the tracker locks into the 

sidelobe null.  It maintained the lock until around 26− , where the angle errors were over 

the limit or the SNR dropped.  This forced the tracker to reacquire a new scan angle from 

the RSNS DF.  At 26− , the RSNS provided a sufficiently accurate AOA. 

The angle error displayed in the plots is the difference between the current scan 

angle and the new scan angle based on the most recent I and Q data.  It is not the 

difference between the scan angle and pedestal angle. 

The one phase difference has the best RMS errors performance from 80−  to 80 , 

50−  to 80 , 20−  to 80  and 10  to 80 , but the RMS differences are very close for 

track initiation angles larger than 20 .−   This is because all of the trackers can track 

signals after 26−  and this should result in no significant difference. 
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Table 8.   Results of tracking with RSNS and monopulse DBF mode. 

 
One Phase 

Difference 

Three Phase 

Differences 

Three Phase 

Differences 

Five Phase 

Differences 

Phased Array 

Elements 
3-4 1-2, 3-4, 5-6 2-3, 3-4, 4-5 

1-2, 2-3, 3-4, 

4-5, 5-6 

Start Tracking 

Angle 
75−  27−  26−  26−  

End Tracking 

Angle 
73  74  74  74  

Tracking Range 148  101  100  100  

RMS 

 ( 80−  to 80 ) 
28.8093  46.9470  46.6417  46.7666  

RMS 

 ( 50−  to 80 ) 
2.9305  34.4132  34.2354  34.3468  

RMS 

 ( 20−  to 80 ) 
3.2319  3.2454  3.2626  3.2754  

RMS 

 (10  to 80 ) 
3.5656  3.5692  3.5935  3.6100  

 

The second series of tests required a change to some of the parameters and with 

an examination of the resultant performance.  The five phase differences (elements 1-2, 

2-3, 3-4, 4-5, 5-6) RSNS DF setup were used to test the effects of the movement of the 

pedestal.  The pedestal step size was adjusted to 2 , 5  and 10 .  This change in step size 

is equivalent to changing the update rate of the tracker.  A larger step size simulates the 

UAV moving farther between samples.  The results are shown in Figures 76 to 78. 
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Figure 76.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) and 2 degree steps. 
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Figure 77.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) and 5 degree steps. 
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Figure 78.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) and 10 degree steps. 

There are two features that are noteworthy.  First, increasing the step size of the 

pedestal also increases the angle error.  Second, some of the angle errors are over the 

angle error limitation, forcing the monopulse tracker to reacquire the new scan angle 

from the RSNS DF.  These effects can be seen in Figure 78.  Essentially, the RSNS is 

used continuously and operates from 68.08−  to 73.31 .  

Another test was conducted by lowering the limitation of the angle errors from 

20  to 10  and examining the results.  The five phase differences (elements 1-2, 2-3, 3-4, 

4-5, 5-6) RSNS DF were used for the test, and the pedestal was rotated in steps of 2 , 5  

and 10 .  The results are shown in Figures 79 to 81, respectively. 
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Figure 79.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6), 2 degree steps 

and 10  angle error limitation. 
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Figure 80.   Tracking with RSNS and monopulse DBF mode using 
five phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) , 5 degree steps 

and 10  angle error limitation. 
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Figure 81.   Tracking with RSNS and monopulse DBF mode using 
five phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) , 

10 degree steps and 10  angle error limitation. 

With lowering of the angle errors from 20  to 10 , the results were the same as 

increasing the pedestal steps.  The plots in Figures 80 and 81 show a track initiation angle 

around 53.66− , approximately 27  earlier than the 2 degree step case displayed in 

Figure 79. 

Finally, the monopulse slope constant was fixed to -0.0822467, which was the 

slope constant at boresight.  The results are compared to those for a slope constant that 

changes with the scan angle.  The one phase difference (elements 3-4) and five phase 

differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) RSNS DF were used for the test, and the 

pedestal was rotated by steps of 1 .   The results are shown in Figures 82 and 83, 

respectively. 
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Figure 82.   Tracking with RSNS and monopulse DBF mode using one 
phase difference (elements 3-4) , 1 degree steps 
and fix monopulse slope constant (-0.0822467). 
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Figure 83.   Tracking with RSNS and monopulse DBF mode using five 
phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) , 1 degree 

steps and fix monopulse slope constant (-0.0822467). 
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The results were collected and are shown in Table 9.  The improvement when the 

changing monopulse slope constant near the boresight is not significant.  Some ranges 

such as 0  to 20 , 20  to 40  and 40  to 60  show that the fixed slope constant has 

better RMS errors than the variable slope constant.  However, when the scan angle goes 

to 60  to 80 , the results show that the variable slope constant has better RMS errors. 

Table 9.   Results of tracking with RSNS and monopulse DBF mode. 

 
One Phase 

Difference 

One Phase 

Difference 

Five Phase 

Differences 

Five Phase 

Differences 

Phased Array 

Elements 
3-4 3-4 

1-2, 2-3, 3-4, 

4-5, 5-6 

1-2, 2-3, 3-4, 

4-5, 5-6 

Monopulse 

Slope Constant 

Change with 

Scan Angles 
Fixed 

Change with 

Scan Angles 
Fixed 

Start Tracking 

Angle 
75−  73−  26−  25−  

End Tracking 

Angle 
73  73  74  75  

Tracking Range 148  146  100  100  

RMS 

 ( 0  to 20 ) 
2.1361  2.0491  2.1336  2.0260  

RMS 

 ( 20  to 40 ) 
4.1878  3.4557  4.2634  3.3669  

RMS 

 ( 40  to 60 ) 
1.7902  1.6456  1.8358  1.6188  

RMS 

 ( 60  to 80 ) 
4.7646  5.1917  4.6938  5.1797  
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VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

This thesis is a continuation of the research addressed in references [8, 10, 11, 12]. 

The objective of this project was to design, build and test a six-element phased array 

using RSNS DF and monopulse DBF tracking.  The tracking system should have the 

ability to accurately acquire transmitted signals from a UAV and track the video signal 

source continuously.  There are two parts to this thesis. The first illustrates the RSNS DF 

algorithm and demonstrates the concept by hardware tests.  The theory of the RSNS DF 

algorithm is explained in Chapter II and the hardware simulation in Chapter IV.  The 

second portion examines angle tracking techniques, different types of tracking systems 

and implements the RSNS DF with monopulse DBF tracking system.  The theory of the 

tracking system is described in Chapter III and the results of the tracking system 

demonstration are provided in Chapter V.  The hardware components are COTS items to 

lower cost.  Simulations are implemented in MATLAB, and the calibration, control, data 

acquisition and beamforming modules are built using LabView software. 

The first task was to simulate and validate the RSNS algorithms used in DF. The 

implementation is for the single-channel RSNS DF system. The received baseband I and 

Q signals are recovered by direct downconversion demodulation. A bench top setup for 

the RSNS DF method is used to measure AOA and then do comparisons between the 

measured values and the true value (from the VNA). The analysis is performed to assess 

the impact of noise on the AOA estimates. Different SNRs from 10 dB to 90 dB in 

increments of 20 dB are examined to see which SNR values are acceptable for the DF 

accuracy. 

The second task investigates angle tracking techniques, examines different types 

of tracking systems and implements the RSNS DF and monopulse DBF tracking 

algorithms. A six-element phased array was used for the tracking system demonstration. 

The hardware of the digital tracking array was assembled and tested. The tracking system 

uses RSNS DF to first find the rough AOA and then passes the scan angle to the 
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monopulse DBF module to do continuous tracking. The tracking measurements were 

taken in an anechoic chamber to reduce interference from multipath and the measured 

data are stored to do offline analysis. The first test was to find the maximum RSNS DF 

field-of-view for a variety of element phase differences (one phase difference, or 

averaging three phase differences or five phase differences). A FOV from 80−  to 80  

was tested. The second test examined the pedestal movement effects and rotation steps 

for 2 , 5  and 10 . Finally, the comparison of changing monopulse slope constant versus 

fixed monopulse slope constant is provided. 

B. CONCLUSIONS 

For the RSNS DF benchtop test, it was found that the resultant AOAs were in 

very close agreement with the known values computed from the measured phase 

difference.  The results prove the single-channel RSNS DF system works properly and 

can be used to provide an initial AOA estimate for the monopulse tracking system. 

A Monte Carlo simulation of the RSNS DF with SNRs from 10 dB to 90 dB 

showed that a SNR of approximately 30 dB is acceptable, and 30 dB is realistic for actual 

operations.  For SNRs greater than 50 dB the performance is essentially ideal. 

For the tracking part, the RSNS DF provides the monopulse DBF tracking system 

an initial AOA.  Chamber measurements were presented for a range of operating 

parameters to examine their effects. 

The first test determined the maximum RSNS DF FOV.  A horn transmitter was 

used while the antenna was rotated in 1 degree steps.  A variety of element phase 

differences (1 phase difference, or averaging 3 phase differences or 5 phase differences) 

were tested.  The best results showed that a maximum continuous tracking range of 148  

and a minimum RMS of 2.9305  was achieved using one phase difference. 

Variations in the rotation rate and data collection rate were investigated.  The five 

phase differences (elements 1-2, 2-3, 3-4, 4-5, 5-6) RSNS DF setup was used to test the 

effects of the movement of the pedestal.  The pedestal was rotated with step sizes of 2 , 
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5  and 10 .  This simulated a UAV moving farther between beamforming updates.  This 

increased angle errors due to the additional latency in the system.  More instances of 

large angle errors occurred, which forced the monopulse tracking to reacquire the new 

scan angle from the RSNS DF. 

Finally, adding a variable monopulse slope constant was compared with the fixed 

monopulse slope constant.  The improvement of the changing monopulse slope constant 

near the boresight was not significant.  Some ranges such as 0  to 20 , 20  to 40  and 

40  to 60  showed that the fixed slope constant had better RMS errors than the variable 

slope constant. 

C. RECOMMENDATIONS FOR FUTURE WORK 

There are several areas that need to be investigated to provide the tracking system 

better capabilities.  One area is the effect of frequency drift between the source and local 

oscillator (LO) on performance.  The current design is an open loop LO.  The design does 

not work well because the frequency drift between the LO and the incoming signal causes 

a phase shift.  One solution is to add a phased locked loop (PLL).  The performance of 

such a tracking system could be simulated in MATLAB and then tested with a hardware 

build. 

A second area of consideration is modification of the antenna to handle possible 

saturation conditions due to strong signals.  Strong signals may come from a short 

operating range or high power transmission. 

A third area for future work is embedding the pedestal rotation with the tracking 

module.  For chamber measurements, the computer used to control the pedestal is not the 

same as the tracking computer.  The pedestal rotation Sub-VI can be embedded into the 

tracking module so data logging can be automated. 
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