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Abstract

The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using 4 copper samples with different thicknesses. Furthermore, the bottoms of the samples are heated by applying the standard heat source, and the temperatures on the tops are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of samples. The influence on the estimation caused by the processing noise covariance Q, the weighting factor 
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, will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input.
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introduction
Given the known initial conditions, boundary conditions, and physical properties of materials in the heat conduction problem, to investigate the temperature distribution in the solid by utilizing the heat-conducting equations is called the direct heat conduction problem (DHCP). On the other hand, the estimation of unknown heat flux, heat contact coefficient, heat conduction coefficient, and heat source by utilizing the temperature measurements inside the heat-conducting solid is called the inverse heat conduction problem (IHCP). The bottoms of samples are heated by applying the standard heat source, and the actual temperatures on the top are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the flux of the standard heat source. Furthermore, the feasibility of presented theory method can be verified through the procedure of this research.
The related researches about the inverse heat transfer experiment are as follows. Gardon and Akfirat [1] in 1965 presented the complete heat transfer measurement for the two-dimensional turbulence injecting shock. Linton and Agonafer [2] utilized the calculation of the hydromechanics software, Phoenics, to investigate the heat transfer of the plate-shaped heat sink. The simulation results were later compared with the actual experiment data. It showed that there was a large error between the simulation and actual experiment, but it was accepted in the industry applications since the similar tendency still existed. Zhan [3] in 1997 presented the finite difference method to estimate the high temperature of a cutter under the friction force due to the high speed cutting process. A metal bar was simulated as a cutter, and its temperature at any position was inversely estimated in the experiment. Wang [4] in 1998 combined the function specification method with the least-square scheme to inversely estimate the heat flux and temperature.
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Two different samples with six different curves of heat flux were adopted in the experiment. The inner temperature data of the samples were measured for the estimation of heat flux and temperature. Xu [5] in 2004 presented a hybrid method, which combined the Laplace transformation technique with the finite difference method, in coordination with the least-squares scheme. The inner temperatures of the standard samples were measured for the use of estimating the heat dissipation quantity of CPU heat sink equipped on these samples. Liu [6] in 2006 utilized the same numerical method and measured the inner temperature of the standard sample for the use of estimating the surface temperature and heat flux of the sample. The result was later used to estimate the heat dissipation quantity and average heat transfer coefficient of the CPU heat sink. Wang [7] in 2006 utilized the measurements to inversely estimate the unknown boundary condition and the physical property. The chip heated by different heat sources was simulated to present the rising temperature in the real operating condition. 
Besides, the related researches about the modern estimation theory based on the Kalman filtering technique and the recursive least square algorithm are discussed as follows. Tuan [8] presented an adaptive weighted input estimation method, which combines the Kalman filter (KF) [9] with a recursive least square estimator (RLSE). The residual innovation sequence is generated by the Kalman filter and applied to the real-time recursive least square algorithm to estimate the unknown heat flux. The constant weighting factor is applied to the RLSE to emphasize the weights of the latest data. In order to improve the adaptation and estimation capability of the estimator, the adaptive weighting function is used to replace the constant weighting factor in 1998 [10]. Although the input estimates converge slowly in the initial time when the adaptive weighting function is used in the RLSE, the estimator has relatively better overall tracking performance when the unknown input is time-varying regardless of the influence of the measurement noise interference [11]. A non-destruction ballistic experimental method was established in 2006 to measure the temperature by using the thermocouple equipped on the outer wall of gun barrel during the firing process [12]. A feasibility investigation to estimate the heat flux is produced with regard to the estimation of the high temperature due to the rapidly burning propellant in the inner wall of the gun tube. The input is time-varying and may not be easily predicted. As a result, it is difficult to choose an adaptive and efficient weighting function. To resolve this situation, Chen et al. [13] in 2008 presented an intelligent fuzzy weighting function to replace the weighting factor,
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Improving the weighting efficiency of the RLSE is essential, because the unknown input is time-varying and changes continuously. The adaptive weighting function takes any input variation into consideration. Therefore, the inverse method is developed to rapidly track the target and effectively reduce the effect due to the noise. In this paper, the feasibility of this method can be verified by adopting the temperature measurement experiment. 4 copper samples with different thicknesses are adopted in the experiment. The bottoms of samples are heated by applying the standard heat source. The thermocouples are used to measure the temperatures on the tops of samples. The temperature measurements are then regarded as the inputs into the presented method, which can estimate the heat flux in the bottoms of samples. The influence on the estimation caused by the processing noise covariance Q, the weighting factor 
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, will be investigated by utilizing the experiment verification.. The results show that this method is efficient and robust to estimate the unknown time-vary heat input.
experiment equipment

The entire experiment modular includes the signal source, the test samples, the sensors, the data acquisition device, and the computer module. The purpose of experiment is to inversely estimate the temperature and heat flux of the sample by using the temperature measurements of the sample surface. Therefore, the samples are heated by adopting the standard heat source, and the thermocouples (K type) are equipped on the sample surface. The structure chart of experiment devices are shown in Figure 1. The experiment devices and the samples used are illustrated as follows:
(1) The signal source:

The standard heat source generator with the maximum 
output power of 200W is compatible with an alternating/direct current power source of 110 volt. The 30VDC power is series connected and can supply stable power to the heater. The standard heat source generator provides heat from its bottom layer. The inner wall and top of this device is insulated. It is a critical technique to perform the experiment in the insulated condition for the direct heat conduction problem. In addition, 5 holes with the diameter of 2mm have been punched on the top of the generator for the thermocouples to measure the surface temperatures of the test samples.
(2) The test samples:
4 copper samples with different thicknesses of 4mm,
5mm, 6mm, and 7mm are used. The following thermal properties are used in the calculation. 
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(3) Sensors:

The thermocouple is the NIST ITS-90 Type K. The temperature range is 0~
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, the error range is 
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 and the error ratio is 0.01％. The error of the hardware and equipment fabricated can be considered as the model error.
(4) The temperature data acquisition device:
The device with the type of NI-9211 and the interface of 
4 data transmission (NI USB-9162) is manufactured by the National Instruments Company and can be used to implement the signal acquisition, procedure and transformation. It is composed of the high performance measurement and control card, the signal process modular, the filter amplifier, and the electric charge amplifier.
(5) The computer module (including the software programs):
a. Intel processor 1.6G computer, the signal express software, and the Matlab programming language can be used to process the signal data.
b. The SIGNAL EXPRESS acquisition software: The software in coordination with the data acquisition system developed by the National Instruments Company can collect data from the subject system in real time. The sampling rate, the temperature range, the sampling time, the sensor type, the compensation of the cold junction, the frequency channel, and the record style to record the real-time signal of the system can be configured.
c. The presented method can be programmed by using the Matlab programming language. The temperature measurements are then regarded as the inputs into the method, which is to estimate the heat flux in the bottoms of samples.
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 Figure 1. The structure chart of the experiment devices.

MATHEMATICAL FORMULATION
The boundary condition at the position, 
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, is assumed to be heat-insulated . By equipping the thermocouple sensor at the position, 
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, and measuring the surface temperature of the copper sample, the heat-conducting model is formed as shown in Figure 2.
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Figure 2. The heat-conducting model.

The heat-conducting governing equations are as follows:
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where 
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 is the heat-melting coefficient of the sample material. 
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[image: image86.wmf](

)

vt

 is the measurement noise. 
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 is the temperature measurement, which is assumed to be the Gaussian white noise with zero mean. By using the central differential method to disperse Equation (1) with respect to the space derivative, the following equation is obtained.
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By substituting Equation (7) in Equation (6), the time derivative equation when 
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When 
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    On the other hand, when 
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By rearranging Equations (8), (9) and (10) along with a simulated noise input, the continuous-time state equation can be obtained as the following:
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where 
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is assumed to be the Gaussian white noise with zero mean, and it represents the modeling error. Furthermore,
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The continuous-time state equation ( Equation (11)), can be discretized with the sampling time, 
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. The discrete-time state equation and its relative equations are shown as follows.
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In the equations above, 
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 is the processing error input vector, which is assumed to be the Gaussian white noise with zero mean and with the variance, 
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 is the Dirac delta function. The discrete-time measurement equation is shown below.
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 where 
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 is the observation vector at the kth sampling time. The measurement matrix, 
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 is the measurement error vector, which is assumed to be the Gaussian white noise with zero mean and with the variance, 
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. After the state equation is obtained, the inverse estimation process is carried out by using the on-line input estimation method, which is the combination of the Kalman filter mechanism and the adaptive fuzzy weighting function of the recursive least square estimation (RLSE) algorithm.

the Intelligent Fuzzy Weighted RLSE Input Estimation Approach
The conventional input estimation approach has two parts: one is the Kalman filter without the input term, and the other is the fuzzy weighted recursive least square estimator. The system input is the unknown time-varying heat flux. The Kalman filter is operating under the setting of the processing error variance, 
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. It is to use the difference between the measurements and the estimated values of the system temperature as the functional index. Furthermore, by using the fuzzy weighted recursive least square algorithm, the heat flux can be precisely estimated. The detailed formulation of this technique can be found in Ref [14].

1. The equations of the Kalman filter are shown as follows: 
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2. The recursive least square algorithm:
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 is the error covariance of the estimated input vector. B(k) and M(k) are the sensitivity matrices. 
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3. The construction of the intelligent fuzzy weighting factor:
The fuzzy weighting factor is proposed based on the fuzzy logic inference system. It can be operated at each step based on the innovation from the Kalman filter. It performs as a tunable parameter which not only controls the bandwidth and magnitude of the RLSE gain, but also influences the lag in the time domain. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tacking capability and the flexibility against noises. In the recursive least square algorithm, 
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 is employed to compromise between the upgrade of tracking capability and the loss of estimation precision. The relation has already been derived as follows (Tuan et al. 1998 [10]):
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The weighting factor, 
[image: image153.wmf](

)

k

g

, as shown in Equation (34) is adjusted according to the measurement noise and input bias. In the industrial applications, the standard deviation 
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 is set as a constant value. The magnitude of weighting factor is determined according to the modulus of bias innovation, 
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. The unknown input prompt variation will cause the large modulus of bias innovation. In the meantime, the smaller weighting factor is obtained when the modulus of bias innovation is larger. Therefore, the estimator accelerates the tracking speed and produces larger vibration in the estimation process. On the contrary, the smaller variation of unknown input causes the smaller modulus of bias innovation. In the meantime, the larger weighting factor is obtained according to the small modulus of bias innovation. The estimator is unable to estimate the unknown input effectively. For this reason, the intelligent fuzzy weighting factor for the inverse estimation method which efficiently and robustly estimates the time-varying unknown input will be constructed in this research. 

The intelligent fuzzy weighted input estimation method is derived following as [13]: 
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where 
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 are labeled in the linguistic terms of EP (extremely large positive), VP (very large positive), LP (large positive), MP (medium positive), SP (small positive), VS (very small positive), and ZE (zero). The specific membership is defined by using the Gaussian functions.
A fuzzy rule base is a collection of fuzzy IF-THEN rules: 
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 are the input and output of the fuzzy logic system, respectively. Therefore, the nonsingleton fuzzier can be expressed as the following equation:
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The Mamdani maximum-minimum inference engine was used in this paper. The max-min-operation rule of fuzzy implication is shown below:
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where c is the fuzzy rule, and d is the dimension of input variables.

The defuzzier maps a fuzzy set 
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[image: image196.wmf](

)

(

)

(

)

(

)

*

1

1

()

n

ll

B

l

n

l

B

l

yk

k

k

mg

g

mg

=

=

=

å

å

                 （39）                                                                            


[image: image197.wmf]n

 is the number of outputs. 
[image: image198.wmf]l

y

 is the value of the 
[image: image199.wmf]lth

 output. 
[image: image200.wmf](

)

(

)

l

B

k

mg

 represents the membership of 
[image: image201.wmf](

)

l

k

g

 in the fuzzy set 
[image: image202.wmf]B

. Substituting 
[image: image203.wmf](

)

*

k

g

 of Equation (39) in Equations (30) and (31) allows us to configure an adaptive fuzzy weighting function of the recursive least square estimator (RLSE).

DISCUSSION OF THE EXPERIMENTAL MEASURE-MENT AND ESTIMATIMATION RESULTS
To verify the performance of the proposed method, a standard heat source is modeled. The heat flux in the bottom is estimated inversely by measuring the temperature on the top. The test sample is heated by the standard heat source with the fixed power. The copper test sample is heated in the bottom. The inner wall and the top of the environment are insulated. 4 copper samples with different thicknesses and the thermocouple sensor located on the top surface, 
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sec. The measurement temperature curves of different test samples are shown in Figure 3.

The measurement error of the thermocouple is approximately ±0.01% (with the measurement noise covariance, 
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. The temperatures are measured on the tops of different samples with different thicknesses. Figure 4 shows that the heat flux in the bottom is estimated inversely by substituting the temperature data into the presented method. The estimation results demonstrate that the penetration delay of temperature may exist in the estimation process. The time to reach the thermocouples will be shorter as the thinner test sample is used; on the other hand, the time will be longer as the thicker one is used. Since the standard heat source is not in an absolutely insulated condition in the measurement process, in order to reduce the influence of the penetration delay of temperature, 100 data are averaged to ensure the accuracy of the heat flux estimation. The data are selected from the smoothest curve (50sec) of Figures 4a~4d. The average value of the estimated heat flux, 
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The total average value of the heat flux is regarded as the heat source in the bottoms of the test samples. In this paper, the percentage error (PE) is used to verify the precision of the estimation model. The definition of the PE is described in Equation (41). 


[image: image223.wmf]_

_

ˆ

ˆ

()

(%)100%

ˆ

taveavei

tave

qq

PE

q

éù

-

ëû

=´

            （41）                                 
where 
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The Kalman filter is operating under the setting of the processing error variance, 
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where 
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 is the total number of time steps. 
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Figure 5 shows that as the process noise variance (
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The estimation results of the heat flux using the constant weighting factors (
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The sampling interval of the data acquisition device is 0.5sec. The interpolation method is used to increase the samples. The influences produced by using different sampling time on the estimation results when 
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Figure 3. The curves of temperature measurements（
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Figure 4a. The estimated heat flux (
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Figure 4b. The estimated heat flux (
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Figure 4c. The estimated heat flux (
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Figure 4d. The estimated heat flux (
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Figure 5. The RRMSE vs. The different values of Q, (
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Figure 6. The estimation results of the heat flux    （
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Figure 7. The estimation results of the heat flux.（
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Figure 8. The estimation results of the heat flux.（
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CONCLUSIONS
In this paper, the bottoms of the copper samples with different thicknesses are heated by applying the standard heat source, and the temperatures on the top are measured by using the thermocouples. The FWIEM is utilizing the measured temperature data to estimate the heat flux in the bottoms of samples. The influence on the estimation caused by the processing noise covariance 
[image: image288.wmf]Q

, the weighting factor 
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, the sampling time interval 
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, will be investigated by utilizing the experiment verification. The results reveal that if the process noise variance 
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 increases and the smaller weighting factor is adopted, the faster estimation convergence and larger oscillations will be produced. The experiment verification shows that the FWIEM has the properties of better targat tracking capability and more effective noise reduction, and that it is an efficient, adaptive, and robust inverse estimation method for the estimation of the unknown heat flux.
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